(in  2-921%-44-3 )

Proceedings Interm. AM SE Conference "Systems", London (U.K.), Sept. 1-3, 19983
AM SE Press, Vol. 2, pp. 23-32

Shaping a Fuzzy Rule-Base:
A Neural-Fuzzy System Which Learns Heuristically

Ahmet Sekerciogiu® Gregory K. Egan!
August 25, 1993

Abstract
In this study, an experimental sell-learning neural-fuzzy system is presented. The
system learns by doing and improves the performance. 1t consists of three main fune-
tional units: Behavior Generation Unit, which is a slightly modified fuzzy logic based
controller; Decision Unit, which is a Bidirectional Associative Memory, and Perfor-
mance Evaluation Unit. The learning and generalization capabilities of the system is
demonsirated on the truck back-up problem,

1 Introduction

Humans have a demonstrated capacity to reach decisions under the limitations of imprecise,
incomplete, ill-defined information; of course sometimes these decisions are wrong. Fazzy
mathematical Lechniques allow us to capture this type of reasoning and encapsalate it within
artificial systems. Increasingly, controllers based on fuzzy reasoning are béing applied fo
several commercial products successfully but, they lack one important ability of human beings:
learning and generalisation. Learning from experience and an ability to generalise make
us dynamic and adaptive. Experience, trial and error shape the mind and so, change our
responses. On the other hand, in the fuzzy controllers, once expressed, the rule-base is usually
fixed and static. To overcome this deficiency, the learning and generalisation capability of the
artificial neural netwarks can be used in & combined system.

In this study, an experimental, unsupervised learning neural-fuzzy sysiem is presented.
The system consists of three main blocks: Behavior Generation Unit, Decision Unit
and Performance Evaluation Unit.

General operating principles of the system can be summarized as follows:

When the system starts operating, it already has some ability to perform the required task
in the form of knowledge encapsulated in the fuzzy if-then rules contained within the Behavior
Generation Uait. This unit is a slightly modified fuzzy controller. The rules represent the
“coarse” knowledge necessary for performing the requested task, The advantage of having a
fuzzy rule-base within the structure of the system is two-fold: first, the training time to reach
a wscful stale is avoided; second, the structured representation of the system stale makes
analysis and understanding of the dynamics easies.
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The system processes the seasory information and generates a response. At the same
time, sensory input pattern is fed to the Decision Unit and a recalled pattern of “relative
rule weightings” is obtained. These “remembered” patterns are used to alter the relative
importance of the rules in the Behavior Generation Unit.

The Performance Evaluation Unit measures the performance of the action and generates
a geakar value related to the system’s performance change. This value Is used to alter the
respense of the sysiem to move from a lower performing state to a higher performing stale.
If the performance change is higher than 2 certain threshold, the response is not altered.
On the other hand, if the value is low, the response is altered. 1o enhance the system’s
response, hew sensory input - relative rule strength associations are preduced to replace the
tower perferming associations stored in the Decision Unit.

Similar sensory input patterns are associaled with the most successful response pattern,
and, long term changes in the environment dynamically modify the associations.

Performance measuring criteria within the Performance Evaluation Unit charges accord-
ing to the goal and physical structure of the system,

In this study we assume that the definition of the variable’s classes or fuzzy sets are
reasoniable and choose o tune the relative rule strength weightings. It is we believe more
Likely that erross in rule formulation will ocear when the expert's knowledge is being captared.
Others {NHWO2| have assumed that the rules are correct and tuned the fuzzy set definitions.

Foliowing sections describe the operation and details of the functional enfts of the exper-
imental system. Then results of the application to the truck back-up problem is presented.

2  Operation of the Heuristic Learning Neural-Fuzzy System

Main functional blocks of the system and their relationship is shown in figure 1.
The system receives information from the outside world via the input lines

TE T2 - 2 T

These lines represent the stimuli from the environment. The response of the system is repre-
sented by the output lires
Y ¥ s ke

Behavior of the system as a response to a particular pattern of input stimuli is encapsulated
in the Behavior Generation Unit. In other words, when the system comes to life, it already
“knows” how to perform a ceriain task ander certain circumstances.

When input patterns begin appearing on the input lines z,,z2,...,2m the system starts
generaling responses to achieve Hs task. At the same time, the input pattern is fod to the
Decision Unit. This pattern causes a recall of an associated pattern of “fuzzy rule base mod-
ifiers”. These modifiers are responsible for altering the actual response of the system. After
the first sequence of responses, the Performance Evaluation Unit commences measurement of
the system performance. If the measured performance is below a threshold, the associations
stored in the Decision Unit are modified. Since only the associations generating the “fuzzy
rule base medifiers” related to the inferior response of the system are modified only, repeated
trials of same task lead to better generated performance. Therefore, the Decision Unit makes
the zssociations and “remembers” the successful generalized response patterns against the
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Figure 1: Block diagram of the Heuristie Learring Neural-Fuzzy System.
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Figure 2: Overall structure of the Behavior Generation Unit.
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Figure 31 Overall structure of the Decision Unit.

various sets of input patterns. After some repeated trials, when the system gels sensory in-
put patiern, it dynamically associates this input pattern with the “fuzzy rule base modifters”
pattern leading to best performance based on its past experience.

it can be expected that, due to the long term changes in many environments, some input
pattern combinations will appear less frequently and, will uitimately never reoccur. So, some
rules in the Behavior Generation Unit will become less effective.

3 Behavior Generation Unit

Behavier Generation Unit is a fuzzy controlier [Zad84] {Zad88] having only shight modifica-
tions. Figure 2 depicts the general structure of the Behavior Generation Unit.
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Cperation of the unit can be summarized as below:
First, linguistic variables, possible linguistic values “term sets” of these linguistic variables
represented by fuzzy set membership functions and fuzzy control rules that operate on these
rules ate determined to model the behavior.

Every linguistic variable has a set of linguistic values and the iinguistic valies are modelied
by the fuzzy sets. At a particular instant, a Linguistic variable claims membership in one or
more of these linguistic values attached with a “degree of confidence™.

Furthermore, the instances of linguistic variables and the decisions arrived at hy the
individual rules are modified when the system is on-fine by multiplying their current values
by the coefficients

G, M2y - Tim

001,922+, Fm

Gniy@ngs. 3 Fum

and

ﬁl!ﬁ??“'hﬂﬂ

which are determined by the Decision Unit.
The rules are in the form
B ;. ifopzyis Al and ez is A and .. and 0T IS Al
then response is Oy
R® ; fopzis A% and ¢gp1q is Ag and .., and gy, 15 Ai‘

then response is Cz

R 1 ifoma is AT and on32; is A3 and ... and Onp T, I8 AL

then response is C,

where
R is the i** rule of the rule base,
I1,%2,..4Em are sensory inputs,
Ai- 's are the linguistic values that linguistic variables
in the rule B can claim membership and,
log is the response recommended by the rule R

For any given seasory input vector {Z1,21,...,Tm ), the rules individually determine their
responses and these responses have confidence values, W''s attached with them. Each of these
confidence values can be calculated as

W* = jugi (oaz) A IJA;{U;‘:ZI%) A A pgi (Fimam)
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where ij(a;j:cj} is the grade of membership of & particular value of the linguistic variable
£y scaled by the factor o;; and fuzzy-and operation denoted by the symbol “A™ is calculated
as the minimum of the grade of memberships

W mz’n(yA;{d;J—zj)), i=52,...,m.

To find the overalf response of the system to the sensory inputs zp,Tq,...,%.m, first, in the
fuzzy composition stage, the membership function #tc; () of the the particular Hnguistic value
for the output linguistic variable suggested by each rule is scaled by the “adaptation weight”
B and confidence leve! or rule strength, W' of the rule, such as

ﬁ{:‘;{i{} = ”’iﬂ,‘ﬂci{y)-

Second, in the defuzzification stage, the centroid of the areas of the scaled membership func-
tions of the suggested linguistic values is calculated to find the “crisp” value of the response:

Yorien = 2] Pei{y)ydy
T i Redyy

Put simply, every individual rule produces a response having a confidence degree attached
to. Turthermore, the coefficients gy, Ba, ..., B, which are determined by the Decision Unit
modify the effect of the individual response to the overall response to reflect the belief of the
system at that moment. The resulting combination of the individual responses can be seen
as the resull of a weighted vote.

4 Decision Unit

The Decision Unit is a “Bidirectional Associative Memory” [Was89} [Kos88]. Bidirectional
Associative Memories are two-layer recurrent neural network strictures. They are used to
encode pattern pairs, They are always stable and provide instant recall of either of the two
pattern-pair elements.

To encode an association, say, {A;, B;) pair, the correlation matrix

C= AT

is calculated and added to the weight matrix M.

After encoding the associations, whenever pattern 4; or a sufficiently similar pattern is
presented to the Bidirectional Associative Memory, pattern B; can be recalled.

Ta crase an association ((A;, B,

C=-ATn
is calculated and added to the weight matrix A,
The overall structure of the Decision Unit is depicted in figure 3.
5 Performance Evaluation Unit

The functions judging the on-line performance of the system are application specific. In
general it is tempting to encapsulate in the performance evaluation function more experlise
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Figure 4: diagram of simulated truck

than the rules themselves. In this study we used a relatively unsophisticated evaluation
function to prune a small rumber of incompetent rules from the rule set, and to tune the
remaining rules. The incompetent rules may typify errors by the expert ir encoding the rule
set or rules which may confliet in some way not necessarily foreseable at the time the rules
were encoded.

For our experiment we selected a simple strategy for generating the replacement associ-
ations. [f the performance is low, we reduce the relative rule weighting of the rule having
largest influence on the current decision and increase the relative rule weighting of the rule
having smallest { but greater than zero ) influence.

6 Application to Truck Back-up Problem

6.1 Problem Descripiion

The truck back-up example is due to [NW89] where an artificial neural network controller is
described. The principal reference used by us is due to {KK92] where this example is also
used for = fuzzy logic study. Readers are referred to this paper for a more fullsome description
of the problem and how the rule set was developed by them. This rule set was used as the
starting point for this study.

The problem is to steer a truck from some arbitrary starting position to a loading dack.
The input variables for the controller are the angle of the truck to the X-axis (¢) and the
position of the truck in the X-direction {z). The output variable is the truck steering angle (8}
It is assumed the truck is sufficiently far from the loading dock in the {negative} Y-direction.
The loading dock is assumed to be at (59,0).

The problem and its associated variables Is shown in figure 4.
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Figure 5: Four consecutive trials of simulation of truck back-up from the initial position
(20,0, ~150.0) with ¢ = —90.0 degrees.

6.2 Performance Measure

For the truck back-up example, evaluation of the system performance can be measured by
this criteria:

“Ideally the truck should approach the dock at 90 degrees to the x-axis and aligned with
the x co-ordinate of the docking point. The performance measure used to evaluate the current
rule(s) performance then is as follows:

If the distance from the docking point is increasing and the rate of change of distance is
also increasing, or, the angle of approach refative to the ideal approach line is increasing and
the rate of change of angle is increasing then the performance is judged to be bad.”

6.3 Experiments

We introduced some “bad” rules inta the rule set developed by [KK92] to sce whether the
system will weed out the bad ones after repeated trials. Table 6.3 shows a number of “bad”
rules marked in bold face introduced into the rule set and figure 5 shows results of some
simulations of backing np the truck from the initial position (20.0, ~150.0) with ¢ = ~99.0
degrees.
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S0 {ar we have obtained limited success. As can be observed from the table 6.3, successive
trials reduced the relative rule weightings of the “bad™ rules. But, at the same time, relative
rule weightings of the other rules also effected.

7 Conclusion and Future Research

So far, our experiments have shown that, the approach we proposed o refine the fuzzy rule
bases can be a useful one for complex systems which require large number of fuzzy variables
and rules. But, there are still problems waiting to be solved. First problem is, the usefulness of
our approach depends heavily or expressing the “performance evaluaticn function”. Finding
a performance evaluation function for some complex problems can be difficult and limits the
uselulness of our approach. Second Limitation is the memory capacity of the Bidirectional
Associative Memories. Because of this capacity problem we could not use the coefficients
(¢'s) modilying the relative weights of the input variables. To overcome the capacity problem
we are planning to conduct experiments using Bidirectional Associative Memory Systems
developed by Simpson {5im90].
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RyLES teial 1 f triaf 2 ] trial 3§ trial 4
if {z is le) and (¢ is tb} then =ps 15 1.6 1.7 18
if {z is le) and (¢ is ru) then t= ns 0.7 0.3 0.3 0.3
if (z is le) and (4 35 1v) then = nm 0.5 0.1 0.1 g.1
if (z is te) and (& is ve) then = nm 0.8 0.3 0.4 6.3
if (z is fe) and (¢ is ve) then #:= ps 0.8 0.4 0.4 0.4
if {zisle) and {¢ is Iv} then = nb 06 0.2 0.2 0.2
if {r is le) and {¢ s Iv) then = ps 0.6 8.2 0.2 0.2
if (z is le} and {¢ is lu} then = nb 0.8 0.4 0.4 0.4
i (zis le} and (¢ is Ib) then = nb 0.9 8.5 0.5 3.5
(i1 {z 15 Ic) and (¢ is 1b) then
if (z is lc} and (¢ is rb} then
if {x is ic) and (¢ is ru) then
H {zis1c) and {¢ is 1v) then
i {x is 1c} and (¢ is ve) then
it (2 is lc) and (¢ is Iv} then
if {z is 1c) and (@ is lu) then
if {xis 1c) and (¢ is 1b) then

=
4
&
&
#
g
4
f#
g:
# 1= pm 0.6 0.1 0.1 0.1
8 :=nb 0.5 6.1 0.1 0.1
g = ps 08 0.4 0.4 0.4
§:=ns 1 0.7 .7 0.5
§ = nm 0.8 0.4 04 0.4
&= nm 8.5 6.1 .1 0.1
§ = nb 0.8 0.4 0.4 0.4
# = ab 0.4 ot .1 0.1
if (z is ce) and (¢ is rh} then @ := pm 0.4 8.0 6.0 .0
if (7 is ce) and (¢ is ru) then § == ze 0.6 0.2 0.2 62
if {x is ce} and (¢ s ru) then & := pm 0.7 0.3 0.3 0.3
8-
g
g
f#
g
g
g
g:
8
q
8
g =
¢
#
4
§:
g
§:
f

if (z is ce) and (¢ is 1v) then = ps 6.3 0.0 0.0 0.0
if {z is ce) and (@ is vo) then = ze 03 0.8 10 £
H {z is ce} and {¢ is v} then 1= ns 0.8 0.6 0.5 0.4
if (2 is ce) and (& is 1u) then = nin 0.8 0.4 0.4 0.4
if { is ce} and (¢ is Ib) then = nm 0.7 6.3 6.2 0.2
if {z is rc) and (¢ is T} then = pb 0.4 0.3 0.3 §.3
i {xis rc} and (5 ru} then 1= ph 0.4 0.6 0.0 0.8
 {x is rc} and (¢ 15 rv) ther = pm 0.8 0.5 0.5 .3
if (z is rc} and (& is ve) then = pm 0.9 0.5 0.5 0.3
if (zis rcy and (¢ is 1v) then = ps 0.8 0.6 0.6 0.4
if (z is rey and (¢ is lu} then 1= ns 0.8 0.8 0.6 0.4
H {zis re)and (¢is 1h) then =nm 0.6 0.2 0.2 0.2
i (7 is ri) and (@ is rb) then = pb 0.5 .2 0.2 0.2
if (xis ri) and (¢ is ru) then = pb 0.8 0.4 0.4 0.4

)

)

if (z s el) and (@ is 1v then = pb 0.9 6.6 0.6 0.4
1= pm 0.4 0.0 0.0 6.0
= pm 0.5 0.3 6.3 0.3
‘= ps 0.6 0.2 0.2 0.2
= s 0.4 6.0 0.8 0.0

if (zis ri) and {¢ is ve then
if (z is 1i) and (¢ is Iv} then
if (z is ri) and (@ is lu} then
if (715 rf) and (& is 1b) then

Table 1: Full rirle set with four introduced “bad” rules marked in bold face and values of the
relative rule weightings at the end of each of the four sample trials



