
Implementing MPI Based Portable Parallel Discrete Event
Simulation Support in the OMNeT++ Framework

David Wu† Eric Wu† Johnny Lai† Andràs Varga‡

Y. Ahmet Şekercioğlu† Gregory K. Egan†

†Centre for Telecommunication and Information Engineering, Monash University, Melbourne, Australia
‡Department of Telecommunications, Technical University of Budapest, Hungary

Abstract

In this paper, we introduce our Message Passing Interface
(MPI) based Object-Oriented parallel discrete event simulation
framework. The framework extends the capabilities of the OM-
NeT++ simulation system. In conjunction with this project,
our research efforts also include the development of synchro-
nization methods suitable for architectural properties of the
distributed-memory and shared-memory parallel computer sys-
tems.

We intend to harness the computational capacity of these par-
allel systems for simulation, and to use this framework for mod-
eling very large scale telecommunication networks to investi-
gate protocol performance and rare event failure scenarios.

1 Introduction

Inevitably, telecommunication networks are increasingly be-
coming more complex as the trend toward the integration of
telephony and data networks into integrated services networks
gains momentum. It is expected that these integrated services
networks will include wireless and mobile environments as
well as wired ones. As a consequence of the rapid develop-
ment, reduced time to market, fusion of communication tech-
nologies and rapid growth of the Internet, predicting network
performance, and eliminating protocol faults have become an
extremely difficult task. Attempts to predict and extrapolate the
network performance in small-scale experimental testbeds may
yield incomplete or contradictory outcomes. Application of an-
alytical methods is also not feasible due to the complexity of the
protocol interactions, analytical intractability and size [Bagro-
dia et al., 1998]. For large scale analysis in both the spatial
and temporal domain, accurate and detailed models using par-
allel simulation techniques offer a practical answer. It should
be noted that, simulation is now considered as a tool of equal
importance as complementary to the analytical and experimen-
tal studies for investigating and understanding the behavior of
various complex systems such as climate research, evolution of
solar system and modeling nuclear explosions.

As part of our ongoing research programs on analysis of pro-
tocol performance of mobile IPv6 networks, we have developed
a set of OMNeT++ models for accurate simulation of IPv6 pro-
tocols [Lai et al., 2002]. We are now focusing our efforts to

simulate mobile IPv6 networks in very large scale. For this
purpose, we intend to use the computational capacity of APAC
(http://www.vpac.org) and VPAC (http://www.apac.edu.au)
supercomputing clusters.

In this paper we present our MPI (Message Passing Inter-
face) [MPI] based portable parallel discrete event simulation
framework. In a series of future articles, we will be report-
ing our related research on synchronization methods, efficient
topology partitioning for parallel simulation, and topology gen-
eration for mobile/wireless/cellular Internet.

2 Parallel Discrete Event Simulation

Discrete event simulation of telecommunications systems is
generally a computation intensive task. A single run of a wire-
less network model with thousands of mobile nodes may easily
take several days and even weeks to obtain statistically trust-
worthy results even on today’s computers, and many simulation
studies require several simulation runs [Bagrodia et al., 1998].
Independent replicated simulation runs have been proposed to
reduce the time needed for a simulation study, but this approach
is often not possible (for example, one simulation run may de-
pend on the results of earlier runs as input) or not practical.
Parallel discrete event simulation (PDES) offers an attractive
alternative. By distributing the simulation over several proces-
sors, it is possible to achieve a speedup compared to sequential
(one-processor) simulation. Another motivation for PDES is
distributing resource demand among several computers. A sim-
ulation model often exceeds the memory requirements of a sin-
gle workstation. Even though distributing the model over sev-
eral computers and controlling the execution with PDES algo-
rithms may result in slower execution than on a single worksta-
tion (due to communication overhead in the PDES mechanism,
a slowdown of 30 to 50% per processor reported in [Bagrodia
et al., 1998]), but at least it is possible to run the model.

Discrete event simulation consists of events that are executed
in order of the timestamps associated with each event. The
events are executed by logical processes (LP) that simulate one
or more physical processes of the physical system under simu-
lation. An LP does not share state with any of its neighbors in
the simulation. Messages are exchanged between LPs to rep-
resent event execution and also to notify changes of state. In



sequential simulations the events are kept in a global queue. In
PDES, different events in the simulation are distributed among
processors and each processor will now have to deal with mes-
sages arriving asynchronously from other processors.

2.1 Synchronization Methods for Parallel Dis-
crete Event Simulation

In PDES different events in the simulation are distributed
among processors, each with their own local simulation time.
Messages can now arrive asynchronously from other processors
and hence synchronization is required to maintain causality.
The two traditional classes of algorithms for ordering events
in a parallel simulation are conservative and optimistic. Both
algorithms are exact in the sense that they produce the same
results as a sequential simulation would.

2.1.1 Conservative and Optimistic Synchronization

Conservative algorithms preserve the causality constraint
across LPs by ensuring that a message arriving at time τ can
only be processed if there are no other messages that will arrive
from other LPs with a timestamp less than τ . The optimistic ap-
proach does not strictly enforce the causality constraint like the
conservative approaches. The messages can potentially be pro-
cessed out of order with respect to their timestamps i.e. it can
process a message with timestamp of τ + ∆ and then process a
newly arrived message with timestamp τ . When the algorithm
detects that the causality constraint has been violated, roll back
of previous computations occur, and the messages are reordered
to preserve causality [Bagrodia and Takai, 2000]. Although
the PDES concept was introduced two decades ago [Fujimoto,
1990], it is still not part of the everyday practice: the most com-
monly used simulation tools like ns2 [of Southern California]
or OPNETTM [OPNET] have only recently added support for
parallel simulation. But lack of mature tool support is not the
only cause for holding back development of PDES. The other
contributory causes are:

1. Difficulty in preparing models for PDES. They require
manual work: models have to be partitioned, and then in-
strumented for parallel execution. This is extra implemen-
tation effort, which may or may not pay off during actual
simulation experiments.

2. Both conservative and optimistic PDES algorithms inher-
ently build on heavy communication and frequent syn-
chronization between LPs, and they are very sensitive to
communication latencies. For practical purposes, it is
only possible to achieve speedup on shared-memory mul-
tiprocessors. On clusters, network latencies tend to ruin
speedup.

3. Optimistic synchronization requires periodic state saving
and the ability to restore the entire simulation to previous
states. This is difficult to implement and performance can
suffer in cases of excessive rollback

Issue (2) is a definite drawback, considering that clusters are
more readily available than shared-memory multiprocessor sys-
tems, and are becoming the dominant form of supercomput-
ers (see for example the Beowulf project (http://www.beowulf.
org). A novel and less known approach to PDES is the Statis-
tical Synchronization Method (SSM) [Pongor, 1992].

2.1.2 Statistical Synchronization Method

SSM works by sending statistics instead of messages. A mes-
sage arrives at a segment Sa. Sa processes the message and
sends only statistical data derived from the message across the
link to the destination segment Sb. Sb re-generates the message
from the collected statistical data.

SSM does not require instrumentation of existing models,
only the addition of “statistical interfaces” to gather and col-
lect the statistics. Not only is it comparably easier to implement
than the traditional methods, there is potential for much greater
speedup, because the method is less sensitive to network la-
tency, due to a reduction in synchronization overhead. However
the result obtained from statistical synchronization is different
from conservative and optimistic synchronization. The error
can be attributed to the statistical nature of the synchronization.

An extension to SSM, so-called SSM-T implemented in OM-
NeT++ is developed by Gabor Lencse [Lencse, 2002]. SSM-T
is a time-driven version of SSM by introducing a new factor of
local virtual time (LVT) in each segment. The idea of SSM-T is
to let each segment run independently and let the LVTs of the
segments meet at certain points of time ensuring an approxi-
mate synchronism. Lencse has demonstrated SSM’s suitability
for simulation of practical networks [Lencse, 1998].

3 An Overview of the OMNeT++ Simu-
lation Framework

OMNeT++ is a C++-based discrete event simulation package
developed at the Technical University of Budapest by András
Varga [OMNeT++, Varga, 2001]. The primary application area
of OMNeT++ is the simulation of computer networks and other
distributed systems. It is open-source, free for non-profit use,
and has a fairly large and active user community. It also al-
lows the design of modular simulation models, which can be
combined and reused flexibly. Additionally, OMNeT++ allows
the composition of models with any granular hierarchy. It has
been shown that this simulation framework is suitable for sim-
ulation of complex systems like Internet nodes and dynamics
of TCP/IP protocols realistically [Kaage et al., 2001, Wehrle
et al., 2001].

Simulated models are composed of hierarchically nested
modules. In OMNeT++, there are two types of modules: sim-
ple and compound modules. Simple modules form the lowest
hierarchy level and implement the activity of a module, and
they can arbitrarily be combined to form compound modules.
Modules communicate with message passing. Messages can be
sent either through connections that span between modules, or
directly to their destination modules. The user defines the struc-
ture of the model (the modules and their interconnection) by



using the topology description language (NED) of OMNeT++
[Varga, 1997].

Simple modules are implemented in C++, using the simula-
tion kernel system calls and the simulation class library. For
each simple module, it is possible to choose between process-
style and protocol-style (state machine) modeling. Therefore,
different parts of computing and communication systems can
be programmed in their natural way and connected easily.
The simulation class library provides a well-defined applica-
tion programmer’s interface (API) to the most common simu-
lation tasks, including: random number generation; queues, ar-
rays and other containers; messages; topology exploration and
routing; module creation and destruction; dynamic topologies;
statistics; density estimation (including histograms, P2 and k-
split [Varga and Fakhamzadeh, 1997]); output data recording.
The object-oriented approach allows the flexible extension of
the base classes provided in the simulation kernel.

Model components are compiled and linked with the simu-
lation library, and one of the user interface libraries to form an
executable program. One user interface library is optimized for
command-line and batch-oriented execution, while the other
employs a graphical user interface (GUI) that can be used to
trace and debug the simulation.

3.1 OMNeT++ Kernel Support for Implement-
ing Parallel Simulation

OMNeT++’s simulation kernel allows messages to traverse
across segments. A message can contain arbitrarily complex
data structures; these are transferred transparently, even be-
tween hosts of different architectures. The simulation ker-
nel provides a simple synchronization mechanism (syncpoints,
available through the syncpoint() call) that can preserve
causality when sending messages between segments. Sync-
points correspond to null messages found in the literature.

To illustrate the concept of syncpoints, consider two seg-
ments A and B. Segment A must know in advance when it will
send the next message to segment B and announce it with the
syncpoint() call. The simulation kernel sends the sync-
point to segment B. When segment B’s model time reaches the
specified time, segment B’s simulation kernel blocks execution
until the promised message arrives from A. Then the simula-
tion continues, typically but not necessarily with the message
that has just been received from A.

In the reverse case when A is ahead of B, A’s message arrived
at B before it has reached the syncpoint. In this case, there is
no problem and the syncpoint is just an unnecessary precau-
tion. B just inserts the message in its future event set, clears the
syncpoint and continues execution.

Message sending and syncpoints enable one to implement
conservative PDES and also SSM. The simulation class library
contains objects that explicitly support the implementation of
models using Statistical Synchronization.

OMNeT++ supports flexible partitioning of the model. In the
NED language, by using machine parameters you can specify
logical hosts for different modules at any level of the module hi-
erarchy of the network. You map logical hosts to physical ones

Figure 1: A very simple parallel simulation: tic runs on
host tangles0 and toc runs on host tangles1. The
simulated communication links use MPI. MPI messages
are sent and received through TCP/IP over an Ethernet
switch connecting the hosts.

in the ini file; if you map several logical hosts into the same
physical machine, they will be merged into a single OMNeT++
process.

4 Design of the Parallelized OMNeT++
by using Message Passing Interface
(MPI)

OMNeT++ has support for parallelization through an abstract
interface, that is used by the simulation kernel to send and re-
ceive messages between segments (partitions of a simulation
model) when in distributed mode. The interface implementa-
tion allows the use of an arbitrary parallel programming library.
By using this design feature, we have added support for MPI
alongside existing support for PVM (Parallel Virtual Machine).

4.1 Parallel Simulation Example

We will now illustrate the organization of parallel simula-
tion system through a very simple example. We have done
the development on the CTIE’s (Center for Telecommunica-
tions and Information Engineering, http://www.ctie.monash.
edu.au) Linux cluster (which consists of 8 dual-CPU 1 GHz
Pentium-III processors connected via a 100 Mb/s Ethernet
switch). We have installed the LAM-MPI [LAM-MPI] system
on our cluster.

In order to keep the explanation as short as possible, we
choose a network of two simulated end-systems (“tic” and
“toc”) which send packets to each other via two unidirec-
tional communication channels (See Figure 1). This simulation
configuration is described by a text file (a ned or network de-
scription file in OMNeT++ jargon) that identifies the network’s
nodes and links between them:

network TangleNet :



Figure 2: Sending/receiving functions are invoked by the
simulation kernel and handled by an arbitrary parallel in-
terface.

TicToc_net on:
processor1, processor2;

endnetwork

module TicToc_net
machines:

processor1, processor2;
submodules:
tic: tictoc on: processor1;
toc: tictoc on: processor2;

connections:
tic.out --> toc.in;
tic.in <-- toc.out;

endmodule

The ned file mainly performs two important tasks: (1) provides
the network topology, the modules used, and (2) distribution of
the topology to the “virtual” processors for execution.

One way of providing the mapping between the virtual pro-
cessors and real processors can be through a hostfile. In this file,
the names of the hosts that will participate in the computations
are written. For the above example, the hostfile we use con-
tains names of two hosts: tangles0 and tangles1. The
packet sources tic and toc are derived from the simple OM-
NeT++ module tictoc (their dynamic behavior is identical).
IN OMNeT++, simple modules are written in C++ by extend-
ing the base simulation classes. For details and C++ code of
the tictoc module, [Şekercioğlu, 2002] can be referred.

Since OMNeT++ supports unlimited levels of nesting of sim-
ple modules into compound modules, the partitions of a topol-
ogy to be distributed into separate computational nodes can be
as complex as one would want.

Implementation of PDES Support by using Mes-
sage Passing Interface (MPI)

OMNeT++ provides the inter-segment communication func-
tionality as an abstract interface (See Figure 2). This interface
provides a predefined set of abstract functions for initialization,
termination, network setup, and sending/receiving of messages
and abstract data types between the segments. The MPI in-
terface simply overrides the abstract functions of the parallel
interface to use the functionality provided by MPI.

Figure 3: The structure of the MPI - Interface is very similar
to that shown in Figure 2, with the exception of additional
MPI Package Object.

Figure 4: Conceptual message flows for communicating
segments in the TicToc example.

MPI Interface Implementation

Due to the tedious requirement of maintaining buffers for MPI
transmissions, we have implemented the MPI interface with an
MPI package class. This class handles all packing/unpacking
and sending/receiving functions as well as those required for
buffer maintenance (i.e., updating buffer pointers, setting buffer
sizes, specifying package sizes etc.)

The MPI package encapsulates the low level MPI calls and
aims to reduce redundant calls to MPI where possible e.g. when
requesting a new buffer for communication, reuse an existing
buffer if it does not exceed its capacity.

Figure 5: Message flows during simulation termination.



To illustrate the structure of the MPI Interface implemen-
tation we revisit the example simulation presented in Section
4.1, where we have two modules “Tic” and “Toc”, on separate
segments. Tic initiates the simulation by sending a message to
Toc, who then returns a message to Tic and vice-versa until the
simulation time limit is reached. Assume that Tic is sitting on
the Master segment and Toc is sitting on the Slave segment and
that all network initializations and start-up sequences have been
completed. Times of interest then begin from t = 0 seconds.
The sequence of events can be summarized as follows (see also
Figures 4 and 5 for message flows):

1. Tic initiates a message send to Toc.

2. Toc blocks and waits for a message from Tic to arrive.
This is implemented via a blocking receive function in
MPI (the blocking receive is always called in favor of non-
blocking receives when the message queue is empty. Since
there is only one message moving through this simulation,
blocking receive is used. When the message queue is not
empty, non-blocking receives are performed).

3. Once the message is received at Toc, it is processed by
a do process netmsg() function inside the simulation
kernel. This function is responsible for identifying the
type of message according to its MPI message tag.

4. do process netmsgs() is more or less just a large
switch statement handling the different message types. If
the message received is a simulation packet, then unpack
the contents of the message and hand it over to the actual
module.

5. The simulation kernel in the Toc segment then performs
some processing and checks if the module has messages
to transmit to other modules. In this case Toc just echoes
back the message so the simulation kernel determines that
the destination module is on another segment and reroutes
a normal send to a a network send which is provided by the
MPI Package Object and performs the MPI library func-
tion call MPI Send().

6. The last two steps are repeated for n number of iterations.
Once the simulation time limit is reached either by the
master or the slave, a call to Stop All Segments() or
Request Stop All Segments() are called respectively.
In the case for Stop All Segments() call, the master
simply sends a termination message to all the slaves. This
message contains a text message to be displayed at the
console and also carries the appropriate MPI message
tag for simulation termination. Otherwise, for the Re-

quest Stop All Segments() case, a message from the
slave is sent to the master first before the previous step is
carried out by the master. This message also contains text
message to be displayed as well as an appropriate MPI
message tag.

Implementation of SSM in MPI

We are now implementing the SSM-T synchronization method
using the MPI interface of OMNeT++. Been the simplest of

all the synchronisation schemes to implement, SSM does not
require insertions of syncpoints between segment boundaries
that change as we experiment with different partitioning con-
figurations when attempting to find the optimal one.

Later, we will implement the conservative approach and
compare the performance between the two and the amount of
error SSM introduces. We aim to find the best variables to be
used in SSM to minimize the statistical error and then increase
the number of nodes in a full scale simulation of a randomly
generated internetwork topology.

Concluding Remarks

In this paper, we presented the general overview of our
Message Passing Interface (MPI) based Object-Oriented par-
allel discrete event simulation framework. We have ini-
tiated this project for simulating and modeling very large
scale telecommunication networks on shared-memory and
distributed-memory parallel processing systems. Currently, we
focus our attention in the following three research projects:

• Automatic generation of realistic network topologies and
ned files.

• Optimal topology partitioning for minimizing the commu-
nication among the distributed network segments.

• Selection of the best synchronization method suitable for
the architecture of the underlying parallel computing hard-
ware.

We will be reporting the progress of our work in future papers.

Acknowledgment

This work is partially supported through a Victorian Partnership
for Advanced Computing (www.vpac.org) expertise grant.

References

R. L. Bagrodia, R. Meyer, M. Takai, Y. Chen, X. Zeng, J. Mar-
tin, and H. Y. Song. Parsec: A parallel simulation environ-
ment for complex systems. IEEE Computer, pages 77–85,
October 1998.

R. L. Bagrodia and M. Takai. Performance evaluation
of conservative algorithms in parallel simulation lan-
guages. IEEE Transactions on Parallel and Distributed
Systems, 11(4):395–414, 2000. URL citeseer.nj.nec.com/
bagrodia98performance.html.

Y. A. Şekercioğlu. Introduction to network simulation using
OMNeT++. Technical Report CTIE-TR-2002-004, Cen-
tre for Telecommunications and Information Engineering,
Monash University, 2002.

R. M. Fujimoto. Parallel discrete event simulation. Communi-
cations of the ACM, 33(10):30–53, October 1990.



U. Kaage, V. Kahmann, and F. Jondral. An OMNeT++ TCP
model. In Proceedings of the European Simulation Multi-
conference (ESM’2001) Soc [2001].

J. Lai, E. Wu, A. Varga, Y. A. Şekercioğlu, and G. K. Egan. A
simulation suite for accurate modeling of IPv6 protocols. In
Proceedings of the 2nd International OMNeT++ Workshop,
pages 2–22, Berlin, Germany, January 2002.

LAM-MPI. LAM (Local Area Multicomputer): MPI pro-
gramming environment and development system for hetero-
geneous computers on a network. URL reference: http:
//www.lam-mpi.org.

G. Lencse. Efficient parallel simulation with the Statistical Syn-
chronization Method. In Proceedings of the Communication
Networks and Distributed Systems Modeling and Simulation
(CNDS’98), pages 3–8, San Diego, CA, USA, January 1998.

G. Lencse. Parallel simulation with OMNeT++ using the Sta-
tistical Synchronisation Method. In Proceedings of the 2nd
International OMNeT++ Workshop, pages 24–32, Berlin,
Germany, Jan 2002.

MPI. MPI: A message-passing interface standard. Interna-
tional Journal of Supercomputer Applications, 8(3/4):165–
414, 1994. Message Passing Interface Forum.

The University of Southern California. The Network Simula-
tor - ns-2. URL reference: http://www.isi.edu/nsnam/ns/.
URL http://www.isi.edu/nsnam/ns/.

OMNeT++. OMNeT++ object-oriented discrete event simula-
tion system. URL reference: http://www.hit.bme.hu/phd/
vargaa/omnetpp.htm, 1996.

OPNET. OPNET Modeler. URL reference: http://www.opnet.
com. OPNET Technologies.

G. Pongor. Statistical synchronization: a different approach
for parallel discrete event simulation. In Proceedings of the
4th European Simulation Symposium (ESS’92), pages 125–
129, Dresden, Germany, November 1992. The Society for
Modeling and Simulation International (SCS).

Proceedings of the European Simulation Multiconference
(ESM’2001), Prague, Czech Republic, June 2001. The So-
ciety for Modeling and Simulation International (SCS).

A. Varga. OMNeT++ User Manual. Department of Telecom-
munications, Technical University of Budapest, 1997. URL
reference: ftp://ftp.hit.bme.hu/sys/anonftp/omnetpp/doc/
usman.pdf.

A. Varga. The OMNeT++ discrete event simulation system.
In Proceedings of the European Simulation Multiconference
(ESM’2001) Soc [2001].

A. Varga and B. Fakhamzadeh. The K-Split algorithm for the
PDF approximation of multi-dimensional empirical distribu-
tions without storing observations. In Proceedings of the

9th European Simulation Symposium (ESS’97), pages 94–
98, Passau, Germany, October 1997. The Society for Model-
ing and Simulation International (SCS).

K. Wehrle, J. Reber, and V. Kahmann. A simulation suite for
internet nodes with the ability to integrate arbitrary quality
of service behavior. In Proceedings of the Communication
Networks and Distributed Systems Modeling and Simulation
Conference (CNDS’2001), Phoenix, Arizona, USA, January
2001.


	c0: Proceedings 14th European Simulation SymposiumA. Verbraeck, W. Krug, eds.  (c) SCS Europe BVBA, 2002


