A DECENTRALISED COMPUTING SYSTEM BASED ON DATA-FLOW

G. K. Egan, Member, IEEE
Department of Computer Sclence
University of Manchester
Oxford Road
M13 9PL

Englandg .

Abatragh

Models underlying conventional comput ing
systems are unsuitable for decentralised control.
The Data-Flow model of computation 1s used as the
basis for a decentralised computing system
consisting of an arbitrarily large number of
conventicnal microprocessors whiph may communicate
over simple asynchronous links.

Summary

The beginnings of a coherent Decentralised
Control Theory has been developed in an attempt to
overcome problems of communications, computational
intractibility and reliability arising from the
concept of geptraliiy at the core of Modern
Control Theory [12]. This theory, coupled with
inexpensive computational power in the form of
mioroprocessors, may lead to ocomputing systems
with control computation distributed over hundreds
of processing elements.

However, the models wunderlying conventional
computing systems of the von Neumann type, like
Modern Control Theory, involve centrality, are not
very practiecal and have aome positive
disadvantages [3].

In thils paper a degentralised computing system
is deseribed [5] which is based on & variant of

the Pata-Flow model of computation [B]1[2].

The following are the Wey Ffeatures of the
gystem:

1) It consists of an arbitrarily large number
of conventional =
processing-elements, which, depending on the

application, may or may not be geo~
graphically distributed. The processing-
elements need not be identical.

2} The proceasing-elements communicate over
simple bit-serial or byte-parallel a8yn-
ahronous links.

165

3) The system copes with bursgts of data in an
orderly manner and normal computations need
net be interrupted.

W) Computations are deseribed by directed-
£raphs and the processing-elements evaluate,
or execute, the graph lpterpretively.

5) Graphical languages for the system may be
easily tailored to specific applications.

Most aof the system and it's process

environments are being gimulated on a large
conventional system (MU5) [6]. A number of
ttypleal? processing~elenents have been

constructed and are currently being commissioned.
These are connected to MUS and represent the real
part of the system.

Data-{low

The Data-flow model of computation was
originally developed by Karp and Miller at IBM's
Thomas J. Watson Researeh Centre [8] and
subsequently expanded by Adams to include
conditional evaluation [2].

Data-flow uses a finite directed-graph to
describe a computation. The edges or argg of the
graph are gueues of data directed from one pgde to
another. The nodes represent functions which map
input data onto output data.

Pata flows down the ares as packets or
Lokena, each node requiring a specifie number of
tokens to itprigger the node~function's evaluation.
The evaluation or firing consumes tokens from the
input arcs and places result tokens on the output
arcs. The number of nodes eligible for firing at
any instant depends gnly on the avallability of
data.

The models of Karp and Miller, and Adams have
the property of determinagy: it does not matter in
what order eligible nodes fire or how long the
node-functions take to be evaluated; the result of
the computation 1s always the same. This makes
Data-flow well suited to a aystem of loosely
coupled procesgsing elements,

CH1551~1/80/0000-0165%$00.75 (€) 1980 IEEE

2 2 3
R R
5
Fig. 1. Firing Example

A Control Example

Data-flow computations may be expressed in a
graphical formt which «closely resembles the
traditional block diagrams of control engineering.
As with a block diagram, the overall data-flow
graph may Dbe decompesed into more manageable
subwgraphs; this process is continued until some
desired level of functienal complexity is reached.
Eventually the decomposition process will lead to
sub-graphs which are the node-functions recognised
by the computing system.

which may occur some way down
process, we take the
f10] imbedded in a

As an example,
the overall decomposition
case of a PID compensator
single~ioop controller.

— HPID L ——] ZOHuw—{Process

= T=1

Fig. 2, Digital~PID based Controller

The PiD block can he decomposed into sub-blocks
derivative

for the proportional, integral and

companents of the compensator.

Proportional Integral
[}
L2 T
()
Derivative

Fig. 3. Block Diagram Decomposition

165

Similariy the PID data-fiow
decomposad into sub-graphs.

_FIBf
c_______m"——ua{255555rtional

- fBeiabive

graph can be

H

Proportional Integrall
<+ & #KS -0
o
~perivativgj

e}
R OIC

Fig. 4. Data-flow Decompesition

Iin this case, placing an initial token on an
are has the effect of delaying subsequent tokens
on that arc by T. In general, initial tokens
placed on arcs give the state of the graph at t=0
and as such represent an encapsulated history of
the graph'™s evaluation. The assumption in this
case is that the compensator input has been zero
for all kT, k50 .

G i i in Data-flow

All- the information needed to transmit a token
from one node %o another is contained in the
data-flow graph. Graphs are held in the computing
system as node-descriptions. The nede~descriptiona
hold, along with other information, the graph
connectivity in the form of destinations. Each
destination specifies the jpput-poipnt and pame of
a successor node to which result tokens should be
sent .,

Fig. 5. Input-Points

In this system the graph is partitioned and the
partitions allocated astatiecally teo processing-
elements; the node name is sub-divided into the
name of the processing-element and the name of the
node within that element. The partitions will to a
large degree follow the natural structure of the
control task,

Node-Fungtion Complexity

Provided the data-fiow Iinterface bebween npodes
is maintained, the level of node«function
complexity 1a gopmpletely at the discretion of the
system designer. Nodes with primitive arithmetic
and control functions give flexibility, but bring
with them the penalty of high token traffic in the
syatem's communication structure. Flexibility ecan
be retained and communication traffic reduced by
implementing common sub-graphs as node-functions.
Kinematic model s of adaptive industrial
manipulators require the evaluation of Sine and
Cosine frequently in co-ordinate transformations
{4]; in this application it may be better to
implement Sine and Cosine as node-functions.

in general any region of a data-flow graph may
he implemented as a complex node-functien (i.e, in
hardware), the only requirement being that the
data-flow interface is preserved on input and
output arecs.,

Iokens

The basic item in a data-flow system is the
token. Tokens carry the data used by the graph in
its evaluation and they may =zlso carry a
description of the data-flow graph itself.

Tokens are divided into six fields.

4 destination ———f-
1

Telement]input-pt . elem,-nodeltype] lengthidata]

Fig. &. Token Format

The flelds and their functions are as follows:

1) element: the name of the destination
processing-element,

2} input~point: the input peint on the
destination node.

31} element-node: the name of the destination

node within the processing-element,
type: the type of the token data.
length: the length of the token data.
data: the data carried by the token.

4)
5)
6)

At first inspection, the inclusion of type and
length rields may seem extravagant, particularly
if token size is to be minimised. However, if the
data-field length is carried, then the token size
may be yariable and need no longer be constrained
by the need toc cater for the longest data type.

Some benefits which result from type and length
fields are:

1) Average token size is reduced.

2) The node-function set 1s reduced. Type
coercion is performed automatically where
fgensible',

167

Tokens of one type <cannot masquerade as
tokens of a different type. The system
checks all node-function operands for valid
type.

Non-gignificant data~field
suppressed if necessary,
Complex objects such as node-descriptions
may be sent through the system as tokens.

) bytes may be

53

An example of an integer token is:

Ldestination!integer{iil)]

Fig. 7. Token Example

Nodeg

their function-name, possibly
literal operands and, in the ferm of destinations,
the graph connectivity. Like tokens, they have a
nunber of fields but the exact format varies with
the node«function.

function rields!destination [iei0s)

Monadic Nedes

Nodes carry

Tunction fields!link deatination fields!
Diadie Nodes

Function fieids|data fields,dest. fieldas}

Literal Form

Fig. 8. General Node Formats

The function fields are as follows:

{one-inpubldata-present] function-nama|

Fig., 9. Function Fields

A simple example of the literal node form, that
of adding some constant literal to a data token,
would be:

inp.%:int,real

out.0:int.real

fErueltrug [+ integer| t 4 dest . ~0]

Fig. 10. Add Constant

In this case the node has one input, a literal is
present and the function-name is additiom; the
literal is of type integer, length one byte and
value four, The result-token 1s to be sent to
destination-0.

Ain example of the diadic node form is the

3witeh node., This node requires a bitstring token
on input-point-¢ and a token of any typs on
input-point~1, If the bitstring token is 'true!
(the least significant bit of the data field is
set) then the token on input-point-1 is sent to
destination-1 otherwise it is sent to
destination-0.

inp.1:any

inp.C:hitatring ;ii

out.i:any out .0:any

\false] Falselawitehllink | dest .0 1 dest.=1]

Fig. 1%, Switeh

With two-input nodes, tokens do not arrive
simultaneously on both input-points. Therefore
some mechanism must be provided to allow tokens to
wait on one input-point until a complementary
token arrives on the other input-point, The link
points into a llnked-list structure, which
contains tokens queued on gpe input-point of
two-input nodes,

Because of the practical difficulties of
matching more than two input tokens, nodes have a
maximum of Lwo Input-points. There is no real
limit to the number of output-points but, for
graph partitioning and ‘'stability' reasons, the
initial limit is two.

Exc i H

One of the system's token types is the 2 or
'don't-know', While a 2 may be used in a variety
of applications such as partial pattern matching,
it's major use ig to communicate information about
‘exceptions' occurring during the evaluation of
the graph to the graph itself, Exceptions fall
inte two classes:

attempted
example

t) Faults in the evaluation or

evaluation - of node~functions for
function argument type exceptions (ine.
input-output), arithmetic exceptions. With
this «class of exception a 2 token |is
propagated to the succeeding nodes. 2 tokens
propagated in this manner retain the
original reagen for the exception and the
geatination at which that exception

occurred. The 7 token can not be used as a

control token on conditional path nodes
(Pass~if-Present, Pass-if-True, Pass-if-
False, Switch}.

2) Destination exceptions for example non-
existent node, inactive input-point ete,
Because no successor node exists for this
claas of exception, a reserved
gxception-node is defined in gach
processing-element., A token of type

destination is sent to input-point-1 of the

ncde and any 7 arriving at the other input
of the exception notde i3 sent to that
destination.

168

Loput apd Quiput Nodes

Input and output nodes are peserved and
assopciated with particular devices and
processing-siements., The actions of input and

output nodes are as follows:

1) Input: a response-destination, which remains
valid until another arrives, is sent to
input~point«1; to input-point-0 is sent a
token of anvy type. Depending on the nature
of the device, the associated input node
will eventually respond with valid data or a
2. I1Ff no response destination has been
apecified, a& A is sent Lo the
processing~element's exception~-node,

2) Output: a response-destination, as for
input, is sent to input-point-1; to the
other is sent data to be output. The node
responds with a copy of the original data or
a 2. If the output action fails apd no
response destination is specified, a 2 is
sent to the proceasing-element's
exception~ncde,

inp.0:any inp.l:dest inp.0:idev,.dep inp.t:dest

Méj m@“
out .0:dev,dep out.0:dev.den

Fig. 12. Input and Ouiput Necdes
Storage Nodes

In many applieations it is necessary, from time
to time, to update ‘constants' in, for example,
the difference equations which represent a digital
compensator. While it is possible to retain suech
semi-permanent information by ecirculating it
through the graph, this is, to say the least, not
very efficient,

For this situation and others like it a gtorage
node 1is provided. Input-point-1 of the storage
node recelves written tokens while input-point-0,
when receiving any token, causes a copy of the
last token written to input-point-1 to be sent ta
the successor nede, If no token has been written a
1 is sent instead.

read.request:any written.data:any

last ,token.written

Fig. 13. Storage Node

A Eurther Zxamole

The example below uses storage,input and ocutput
nodes in the implementation of a simple
controller. Setpoint tokens arrive and are held in
a storage node. Tokens arrive at the cloek.tick
input at ‘approximately'! the sampling rate T. The
procesa output 1s staticised in a sterage node for
interrogation by other regions of the graph.

Provided it's time sense is maintained by
clock-ticks, the controller maintains the process
output at the last specified sgetpoint,

Controller

status.reguest

)

'set.point

clock.tick J

Fig. 14, Controller Sub-graph

status

?

System Architecture

In the following description of the system
architecture, any detailed discussion aof
inter-processor communicztion has been omitted.
This is intentional as the type and nature of the
comnpunication structure will vary dramatically
from application to appilcation, perhaps even
within an application. The only requirement placed
on the communication structure is that tokens sent
from one procegsing-element to another will not
overtake tokens previously sent, .

The interrnal structure of processing-elements
will alse be application dependent. Nevertheless,
the experimental structure described bhelow is
sufficiently general and flexible to explore many
applications; it also closely parailels
conventional milcroprocessor system architectures.

communication atrUCQure

La o9 i

i T

l element bus

1/0 AQ cu NS

3¢

Fig. ®. Processing-element Sub-structure

169

Bach proceasing-element ia comprised of several
aub-units, The major unlty are as follows:

1) Computatipnal-Unit (CU}:; A shared controller
and computational unit,

2) Node-Deseription-Store (NS): A conventional
store contalning descriptions of graph nodes

agsigned to this particular processing-
element .

3} Input-Queue (IQ): A hardware FIFO buffer
through which the processing-element
receives tokens from other processing-
elements.

4} Leeal-Queue (LQ): A software gr hardware
queue <ontaining tokens generated by the
processing-element which are destined for

itself.

5) Output-Queue {0Q}: A hardware FIFD buffer
through which the processing-clement
transmits tokens to other processing~
elements.

6) Arc-Queue-Store {AQ}: A conventional store
helding tokens which are queued on one arc
of two-input-arce nodes.

structure Wwithin the Are-
Queue-Store is the mechanism by which
processing-elements preserve the queueing of
tokens on arcs, Each two-input node~description
has a lipnk into the Arc-Queue-Store; the first
entry in the Arc-Queue-Store, pointed at by the
link, has the following fields:

The linked-list

1) input-point: the input-point on which tokens
are currently gueued; tokens are peyer
queued on both input-points simuitaneously
as the node~function is evaluated
immediately.

2) present: indicates that a token is queued on
an input-point.

3) head: a pointer to the first token-entry on
the arc,

4) tail: a poimnter to the last token-entry on
the arc.

Arc-Queue-~Store token-entries have the following
fields:

1} type: the token data type. .

2) length: the length of the token data field.

3} data: the token data,

4} next: a pointer to the token-entry helding
the next token queuved on the are.

1iﬁkj
Linput-poini|presencel firstllast!
]

¥
ttyvpellengthidatainext)

¥
vEvpetengthidatal nil)

Fig. 16. AG List Structure

Processing-element operation proceeds as

follows:

The Computational-Unit scansz the Local and TInput

Queues until a token is present. When a token

arrives, the destination node-deseription is
examined to see if it roquires one or two
oparanda:

1) If the node requires one operand, the

Tomputational-Unit evaluates the node-
function and writes any result-tokens to
either the Loezl or Qutput Queus.

2} If the node has twe inputs, the
Are-Queue-Store is accessed via the iink for
the second operand token. If the token
input-points are complementary, a token is
removed from the head of the are queue and
the node-function evaiuated; otherwise the
arriving token is placed on the tall of the
arc gueus,

The Computational-Unit then returns to scan the
Local and Input Queues.

The basic operation 1is modified when the
element supports input-output tranaducers. As with
all conventional systems, the data rate of most
input-cutput transducers will be slow compared
with the processor. The Computational-Unit may
initiate an input-output action and then continue
with normal processing. Eventually the action will
be accomplished and, if a response destination has
been specified, the transducer may interrupt the
Computational-Unit. The Computational-Unit resets
the transducer status and places the
response-toxen on either the Local op Cutput
Queue. The Computational-Unit then resumes normal
procvessing.,

Real Processipg-elements

The aasociation between procesaing-element
sub-units and conventional system sub-units is
straight forward, In the experimental elements the
Computaticnal~Unit is based on a Zilog ZADA
microprocessor [14), The data-flow interpreter
resides in erasable read only wmemory and will
occupy from 2K to 16K bytes depending on the
node-~function and data-type set supported, The
Are-Queue~Store, Node-Store and Local-Queue reside
in randem access memory, although the Node-Store
could alsc reside in read only memory. MOS FIFOS
are used for the Input and Output Queues.

"Typical' graphs will involve an interpretation
overhead of the order of 20%. With the assistance
of 3 hardware arithmetic unit, such as the Am951%
{13, computational throughput will increase but
the interpretation overhead will rise to around

80%. These overheads are satisfactory where
throughput is not the major conaideration (9] and
compare favourably with other interpretive
systems,

System Stabtus

A paper such as this can only attempt to give
the flavour of the system. Several mechaniams have
not been discussed at all; amongat these are:

1) Sub-graph and recursive sub-graph sharing,
important in computationally intensive
control tasks [113.

2) The stream mechanism of Weng, important in
the development of functional languages
[131.

Research with the system is now well
established with work completed to date
including:

1) Comprehensive simulatien software which can
evaluate graphs with the order of 10,000
nodes and mode] upwards of 10
processing-elements. The software is written
in Paseal (7].

2} A translator Ssupporting a textual encoding
of the system's graphieal target language.

The translater allows maoro sub-graph
expansion and plants the necessary
encapsulating primitives for shared

sub-graphs [5][11].

3) Amongst other studies, algorithms for object
recognition based on multiple-hypothesis
testing using a laser range-finder {111,

Work in hand includes:

1) Appiication specific languages and theip
compilation on data-flow systems.
2) A detailed study of system aspecta

associated with time and non-determinacy.,

3} *Fast' purpose built processing-elements.

i) Communication techniques for asystems of
closely coupiled processing-elements.

5) Computer assisted graph partitioning with
practical constraints.

Agknowledgement

The saystem described in part in this paper was

developed during the course of the author's
doctoral research. The author is indebted to
Professor D, Morris for his guldance, and the

University of Manchester's Department of Computer
Science for financial and engineering support.

Referepces
[1] Advanced Micro Devices, Am9511 Apithmetic

Processing Unit (Product Sheet), Advanced
Micre Devices Inc., Sunnyvale, California,

{21 Dp.a. Adams, A Model for Parallel
Computations’, in Hobbs (ed) Parallel
Proceasor Systems, Technologies and
Applications, pp311-333, Spartan Books,
1970.

[31 4. Backus, 'Can Programming be Liberated from
the von Neumann Style? A Functional Style and
Its Algebra of Programs', CACM Vol.21 No.8,
pp613-641, Aug. 1978.

{41 P. Coiffet et al., 'Real Time Problems in
Computer Control of Robots*, Proceedings of
the 7th International Symposium on industrial
Rebots, ppilS.152, Oct. 1977.

{51 G.K. Egan, 'a Study of Data-flow: It's
Application to Decentralised Control', Ph.D,
thesis, Dept. of Computer Secience, University
of Manchester, 1979,

170

(6}

{71
[8]

fs]

£10]

[11]

(12]

£13]

{141

R.¥, Ibbett and P.C. Capon, 'The Development
of the MUS Computer 3ystem', CACM Vol.21
No.1, Jan. 1678,

K. Jensen and N. Wirth, Pascal-User Manual
and BReport, Springer-Verlag, New York, 1975.
R.M. Karp and R.E. Miller, 'Properties of a
Model for Parallel Computations: Determinacy,
Termination and Queueing', SIAM J, Applied
Mathematics, V¥Yol.11 No.6, ppi390-1411, Nov.
1966,

R, Mori et al., 'Microcomputer Applications
in Japan', IEEE Computer, Vol.i12 No.5,
ppbli-T4, May 1979.

K. Cgata, Modern Control Theory, Prentice-
Hall Inc., Englewood Cliffs, N.J., 1970.

C.P. Richardson, 'Object Recognition using a
Dataflow Machine: Algorithms for a Laser
Range-finder', M.Sc. dissertation, Dept. of
Computer Science, University of Manchester,
1979.

N.R. Sandell et al., "Survey of Decentralised
Control Methods for Large Scale Systems',
JEEE Transactions on Automatic Control,
Vol.AC-23 No.2, pp108-123, Apr. 1978.

K.3. Weng, 'Stream-oriented Computation in
Recursive Data~flow Schemas', Technical memo
#63, Laboratory for Computer Science,
Massachusetts Institute of Technology, Oct.
1675,

Zitog, ZBO/Z30A-CPU Teohnical Manual, Zilog,
Cupertino, California, 1977.

171

