
Abstract

This paper describes a real-time visualization tool for a UAV based on Microsoft Flight Simulator. The tool display
consists of a 3D simulation of the aircraft’s position and orientation as well as an instrument panel which displays flight
parameters and alarms deemed most relevant by the pilot in the UAV’s various flight modes. The tool is intended to bring
some comfort to the pilot when the aircraft is beyond visual range.

Biography

E. R. Price is a graduate of the Department of Electrical & Computer Systems Engineering and completed this research as
part of his undergraduate engineering programme.

Professor G.K. Egan is Professor of Electrical & Computer Systems Engineering and Director of the Centre for
Telecommunications and Information Engineering (greg.egan@eng.monash.edu.au).

Also published AIAC12, Melbourne, Australia, 16-22 March 2007

REAL-TIME UAV VISUALIZATION USING A FLIGHT SIMULATOR

E.R. Price and G.K. Egan

Department of Electrical & Computer Systems Engineering
Monash University 3800

Melbourne, Australia

Introduction
N unmanned aerial vehicle (UAV) is a self-descriptive
term used to describe the latest generation of pilotless

aircraft. The modern UAV originated in the early 1970s and
promises to transform both military and civilian aerospace
operations. The attractiveness of UAVs is their ability to do
the dirty, dangerous and dull jobs autonomously.

The Aerobotics© (Aerial Robotics) Research Group at
Monash University is interested in all aspects of the design,
construction and application of electrically powered UAVs.
The research group’s current aircraft transmit a significant
amount of information while in flight. The aim of this
project was to display this data within a flight simulator
package to obtain a pilot’s eye view of the aircraft’s behavior
in real-time to assist when flying the aircraft visually at
long-range and to give some confidence in the autopilot’s
operation when the aircraft is beyond visual range. Four
main objectives were identified in order to achieve this aim.
The overall system diagram is shown in Figure 1.

Data pipe application

Flight Simulator with ...

• Instrument Panel
• 3D model
• and Customised terrain

installed.

Data Pipe

Wireless Access
Point

Serial link

Visualization
System

Figure 1. Complete system diagram, showing how the four components of
the visualization system interact with the existing components of the

system.

An application to pipe flight data to a flight simulator
A Windows application was written to receive real-time data
from the UAV, convert this data into the format required by
Flight Simulator, and then pipe it to an instance of Flight
Simulator. The application also implements some
smoothing and interpolation to the data as the data is only
sent from the UAV once every second whereas the flight
simulator requires about 20 frames per second for smooth
simulation.

Constructing a 3D model of the UAV
A model of the UAV was made using a graphical modeling
package. This model was then converted to a new flight
simulator aircraft so that when simulating the UAV it would
actually appear as the UAV rather than one of the standard
aircraft supplied with the flight simulator.

Designing a graphical instrument panel
An instrument panel was designed that graphically displays
all the relevant flight data, such as:
• Position and orientation (latitude, longitude, altitude,

heading, pitch, roll, etc).
• Battery voltages and warning alarms
• Temperature levels and warning alarms
• Navigational information
The content and layout of the panel was designed in
consultation with those who fly the UAV with the aim of
designing a panel, which displays the most important
information in an easy to read format without overloading
the pilot with unnecessary information.

Customizing the terrain
The standard terrain used within Microsoft Flight Simulator
contains major roads and landmarks but is mostly just
computer generated from knowledge of the population
density in a particular area. To provide more realistic terrain,
satellite and/or aerial photos were collected for the areas in
which the UAVs are flown and were mapped to the terrain
surface.

Choice of Flight Simulator Software
Two possible choices of flight simulator software were
considered, FlightGear and Microsoft Flight Simulator
2004. The FlightGear flight simulator is an open-source,
multi-platform, cooperative development project [1].
Microsoft Flight Simulator 2004 is a proprietary flight
simulator developed by Microsoft Corporation [2]. The
features of both flight simulators were researched and it was
concluded that both simulators provided all the necessary
features to meet the objectives of this project. However it
was also concluded that the documentation provided with
Microsoft Flight Simulator 2004 was more comprehensive
and understandable than that provided with FlightGear.
Given the limited timeframe that was available to complete
this project Microsoft Flight Simulator 2004 was chosen.

FlightGear does however provide greater flexibility than
Microsoft Flight simulator since it is an open-source
project, and likely to be a better choice for a more in-depth
project.

Data Pipe Application
In order to drive Microsoft Flight Simulator with external
data from the UAV a small Windows application was
written. This application reads in the flight data from a
selected source (either from a log file or from the serial
port), converts the data into the format required by
Microsoft Flight Simulator, and sends this data to the
simulator via a pipe.

Input data formats
The application was required to input flight data stored in
two different formats. The first format is a text log file
produced from a MicroPilot MP2028 autopilot [3]. The
second format is a binary data stream, which is sent via the
serial link in real-time. As well as being able to receive this
data stream from the serial port in real-time, the application
was given the functionality to read this data stored in a
binary file. This allows a flight to be recorded and played
back at a later time.

A

The data, which is sent by the ground station via a serial
link, comes in the form of three C data structures. The set of
data structures are sent once every second.

Reading data from the serial port
The data from the serial port is read in-between sending
frames to Flight Simulator. It is essential that the program
execution does not wait at the serial port because Flight
Simulator requires a new frame every 50ms or so (depending
on the frame rate), and if it doesn’t receive the next frame in
time the simulation will just hang there until it does.

The serial port operates at 4800 baud and each packet is of
about 200 bytes long, which gives a transmission time of
about 330ms. Thus, a complete packet cannot be received
in-between sending a frame to Flight Simulator. Instead,
only the data already in the serial port buffer is read before
sending the next frame to the simulator. Then, when the
complete packet has been received the data is copied into the
data structures and the relevant data is extracted and
converted to the format required by Flight Simulator.
An alternative approach would have been to have a
multithreaded program, one thread to read data from the
serial port and one thread to pipe data to Flight Simulator.
This however would have added unnecessary complexity to
the design.

The overall scheme for reading real-time data is shown in
Figure 2.

Read byte from
serial port buffer

Bytes read
= 0?

Calculate new
data frame

Pipe frame to
Flight Sim

Process byte

Complete
packet?

Copy packet to
data structures

Extract relevant
data from structs
and convert to
Flight Sim units

Yes

No

No

Yes

Figure 2. Algorithm for reading data from the serial port.

The Flight simulator recorder file format
In Microsoft Flight Simulator, the “video” recorder captures
data about the simulation and stores it in a .fsr file. When
piping external data to Microsoft Flight Simulator the same
file format must be used. A .fsr file is organized around
frames of data representing a snapshot of the simulation and
environment at a moment of time. The data recorded in each
data-frame is indexed into a dictionary of properties and
objects specified at the top of the data file.

Microsoft Flight Simulator internal parameters
The names of all the internal Flight Simulator parameters
are provided with the Panels SDK , available from the
Microsoft Flight Simulator website [2]. These names must
be used when defining the parameters in the properties
section of the .fsr file. There is no way to add new
parameters.

Some of the UAV flight variables such as battery voltages
and temperatures had no equivalent parameters to use in
Microsoft Flight Simulator. To pass such variables to

Flight Simulator, and hence be able to display them on the
panel, other unimportant Flight Simulator parameters had to
be found to represent these variables. Although there are
hundreds of internal Flight Simulator parameters, it was
found that only a very limited number of them could be
modified externally, mostly only those that directly relate to
the simulation. For example, airspeed and aircraft position
could be modified whilst next waypoint position could not.
This presented a problem, as there were a limited number of
parameters in which to store all the UAV flight data. To
overcome this problem the many Boolean variables were
stored bitwise within the one variable.

Creating a pipe to Microsoft Flight Simulator
Included with the Netpipes SDK, available from the
Microsoft Flight Simulator website [2], is sample code for
collecting data from one instance of Flight Simulator and
playing it back in real time in another instance of Flight
Simulator, to drive views of the same flight on two
computers. Thus, the classes from this sample were used to
create a pipe to Microsoft Flight Simulator and play the
simulation.

Data interpolation and smoothing
When the data is read from a file a moving average
technique is used, with two data points behind and two data
points ahead being stored to calculate the values for each
data frame. Between each data point a number of
interpolated points are calculated equal to the number of
frames sent to Flight Simulator per second. Then, from
these interpolated points, a moving average curve is
calculated using a specified number of points either side.
When the data is read from the serial port in real-time a
moving average technique is again used but only those
points preceding the current point are used, otherwise an
unnecessary delay in the simulation would be introduced.

Graphical user interface
A graphical user interface (GUI) was designed for the data
pipe application by using the Microsoft Foundation Class
Library (MFC). It allows selection of the input source
(either a log file or the serial port), selection of an input file
(if the source is a log file), and the option to save the
simulation as a Flight Recorder File or save the data stream
if reading from the serial port. It also provides dialog boxes
to set the initial altitude and serial port parameters (Figure
3).

Figure 3. Graphical user interface for the data pipe application.

The initial altitude is required because the altitude on the
UAV is initialized to zero before takeoff, whilst the flight

simulator requires an altitude above sea-level. Hence the
initial height of the UAV above sea level must be known
and set with this dialog box; otherwise the UAV is likely to
be placed under the terrain’s surface.

When the View Data Structures button is pressed a property
sheet is created which displays the current values of all the
fields contained in the data structures sent from the UAV.
This provides a means of viewing the less important data
fields, which are not displayed on the graphical instrument
panel.

3D Model of The UAV
To add to the realism of the simulation a graphical model of
the UAV was created and converted to a Microsoft Flight
Simulator aircraft (Figure 4). The model was created using
the 3D modeling package gmax from Discreet [4]. This
software package was chosen as Microsoft Flight Simulator
provides an SDK with an application to convert a model
created within gmax to a Flight Simulator aircraft. The SDK
also provides details on how to design aircraft within gmax.

Textures
Taking photos of every surface of the UAV and mapping
these to the model as textures improved the realism of the
model. To be used within Flight Simulator the textures
were converted into mipmaps. A mipmap is a sequence of
textures, each of which is a progressively lower resolution
representation of the same image. The height and width of
each image, or level, in the mipmap is a power of two
smaller than the previous level. A high-resolution mipmap
image is used for the UAV when it appears close. Lower
resolution images are used, as the UAV appears further
away. Mipmapping decreases the time required to render a
scene and also improves the scene’s realism [5]. However
they do require more memory.

Animations
Two animations were also added to the model; a spinning
propeller, and moving wing flaps. For Microsoft Flight
Simulator to recognize these animated parts it uses a naming
convention which is described in the gmax Aircraft
Creation SDK, available from the Flight Simulator website
[2]. The speed of the propeller is determined from the
throttle parameter. Likewise the position of the wing flaps is
controlled by an internal parameter.

Model scale
It was found that with the model at the correct scale (approx
1.5 m wingspan) it would not display in the aircraft preview
window, and would also partly disappear in the simulation
window at certain view angles. The graphics generator
within Flight Simulator is just too crude for models of that
small a scale to display correctly.

To overcome this problem the scale of the model was
increased to have a wingspan of about 5 meters, which
resulted in the model displaying correctly. It was not
important to have the model at the correct scale, as it is
simply a visual of the aircraft’s position and orientation
during flight.

Figure 4. 3D graphical model of the UAV whilst in flight.

Instrument Panel
A large amount of information is captured by the UAV
during flight. Some of this data is very useful to the person
piloting the aircraft, whilst other information is not
immediately relevant. The objective of this part of the
project was to consult with pilots to determine which data
would be useful and how this data would best be displayed.

Programming the panel gauges
Microsoft Flight Simulator has traditionally used gauges
programmed in C. However, in Flight Simulator 2002 a
new kind of gauge was introduced, the XML gauge.
Currently, in Flight Simulator 2004, both C gauges and
XML gauges are supported, although the majority of the
standard panels still use C gauges. The shift is however
towards XML gauges and thus the panel for the UAV was
built using XML gauges to increase the chances that it will
be compatible with future versions of Microsoft Flight
Simulator.

Figure 5. Graphical instrument panel for the UAV.

An XML gauge in Flight Simulator consists of three parts:

1) The first part provides generic information about the
gauge: its name, its background image, and its size.

2) The second part of the XML gauge is a list of elements
of the gauge (marked by <Element> tags). Each element
describes a part of the gauge, be it a needle, a switch, or
a display with numbers. Each element is a bitmap
image or a text string. The gauge elements are
transformed by further child elements. For example,
<Visible> specifies when the element is visible and

<Rotate> rotates the element.
3) The third part of the XML gauge describes the gauge’s

mouse rectangles, which can be used to display tool
tips or to obtain user input from a mouse click.

Designing the graphics for the panel

The graphics of the panel and its gauges (Figure 5.) were
designed using the drawing tools in Adobe Photoshop to
create vector shapes (mathematically defined lines and
curves), which could be easily manipulated and resized as
desired. Once designed the images were converted to 8-bit
bitmap images as required by Microsoft Flight Simulator.
When transparency was required the background color was
set to true black (0,0,0 RGB value). True black is made to
appear transparent in the simulation.

Custom Terrain
To improve the realism of the terrain in the simulation,
satellite images and aerial photos of some of the areas in
which the UAV is flown were collected and mapped to the
terrain. This was done using the re-sampler tool provided
within the Terrain SDK, available from the Microsoft
Flight Simulator Website [2].

Image requirements
The raw image required by the re-sampler must be either a
24-bit per pixel Windows .bmp or a 32-bit per pixel Targa
.tga file. The latitude and longitude of the northwest corner
of the image must be known as well as the spacing (in
decimal degrees) between the image pixels. The spacing
between pixels however can be calculated from the
latitude/longitude values of the image corners and the image
size. The extent of each terrain texture pixel is 4.75 meters
in Flight Simulator. The re-sampler process will filter the
raw image to the right size. If the raw image is less than
4.75 meters per pixel, some detail is lost. This is
unfortunate as much of the detail from a high quality aerial
photo is lost during the re-sampling process; major
landmarks such as roads and buildings are still clearly
visible at this resolution however.

Digital elevation models
As well as providing a tool to map images to the terrain,
Microsoft Flight Simulator also provides a tool for using
Digital Elevation Models (DEMs) to create a more accurate
terrain mesh. A DEM provides a digital representation of a
portion of the earth’s elevation points over a two-
dimensional surface. Currently, in Australia, accurate 3-
second models are only available with the payment of a
licensing fee [6]. For this project it was considered
unnecessary to obtain these models, the standard elevation
model of the simulator was considered to be adequate.

Conclusion
A visualization tool for a UAV has successfully been
designed and implemented using Microsoft Flight
Simulator. The Flight Simulator instance flew according to
the data that it received and gave the correct position and
orientation.

The system includes an application to receive data from the
UAV and pipe it to the simulator, a graphical instrument
panel which was designed using Flight Simulator’s XML
gauge system to display important information about the
state of the UAV, a 3D model of the UAV, and a set of

customized terrain textures obtained from satellite and aerial
images.

Further testing is being conducted in real-time whilst flying
the UAV.

This project has demonstrated the feasibility of using an
existing flight simulator platform to provide a visualization
of a UAV's position and orientation, as well as displaying
crucial flight information, to the pilots on the ground.

Acknowledgment
We wish to thank the members of the Aerobotics

Research Group at Monash University [7] and, in particular,
the Chief Test Pilot Mr. Raymond Cooper for conducting
the test flights and his general advice on human factors.

References
1. FlightGear, [online], Available: http://flightgear.org ,

September 2005, (Accessed September 2005).
2. Microsoft Corporation, “Microsoft Flight Simulator

SDK”, [online], Available:
http://www.microsoft.com/games/flightsimulator/fs200
4_downloads_sdk.asp, 2005, (Accessed April 2005).

3. MicroPilot, [online], Available:
http://www.micropilot.com , 2005, (Accessed April
2005).

4. Autodesk, [online], Available:
http://www.discreet.com , 2005, (Accessed May 2005).

5. Microsoft Corporation, “Texture Filtering with
Mipmaps”, [online], Available:
http://msdn.microsoft.com , 2004, (Accessed June
2005).

6. Australian Government Geoscience Australia, [online],
Available: http://www.ga.gov.au , July 2005, (Accessed
September 2005).

7. Monash Aerobotics, [online], Available:
http://www.ctie.monash.edu.au/hargrave/aerobotics.htm
l , 2002, (Accessed February 2006).

