IR A T e R L o A R St ER
Exhibition on Robotics,1984,
Melbourne, 20-24 August

Manipulator Control Using a Data-driven Multi-processor
Computer System

G.K. EGAN

Senior Lecturer, Department of Communication & Electronic Engineering, Royal Melbourne Institute of Technology

C.P. RICHARDSON

Department of Computer Science, Victoria University of Manchester

1 INTRODUCTION

Manipulator systems of the near future can nct rely
on conventional Von Neumann computer architectures
for unlimited computaticnal power. In spite of this
substantial increases in computing power will be
necessary if manipulator systems are to support
adequately higher 1levels of decision making,
sensers and centinuous path contrel [1].

2 number of schemes employing several conventional
computational elements or a conventional processor
augmented with special purpose transform processors
to c¢ontrol manipulator systems 2] have been used.
The c¢omputational model underlying venventional
computing architectures is itself inadeguate and
not very useful [371. Certainly the data
communication mechanism in systems using several
conventional computational elements is difficult to
integrate with the sequential computing model. The
systems engineer iz thus faced with basing
thecrstically sound distributed control solutions
on unsound computing systems.

The study described in this paper applies a
computing system based on the Data-fleow model of
computation to the task of manipulator contrel.

2 RPATA=FLOW

The Data-flow model of computation was originally
developed by KXarp and Miller at IEM's Thomas J.
Watson Research Centre [4] and subsequently

expanded by Adams to include conditional evaluation
[53.

The Data-flow model uses a finite directed-graph to
describe a ccmgﬁtation. The edges or arcs of the
graph are queués of data directed from one node to
another. The nodes represent functions which map
input data onto cutput data or results.

Data flows down the arcs as packets or tokens, each
node requiring a specific number of tokens to
trigger the node function's evaluation. The
evaluation or firing consumes tokens from the input
arcs and places result tokens on the cutput arcs.
The number of nodes eligible to fire at any instant
depends only on the availability of data. Node
functions include the normal arithmetic,
mathematical, logical operators and functions which
conditionally control the path of data through the
graph.

The models of Xarp and Miller, and Adams have the
Property of determinacy: it does not matter in what
order eligible nodes fire or how long the node-
functions take to be evaluated; the result of the
Computation 4is always the same. This makes thb
Data-flow model well suited to a computing system
of loosely coupled processing elements.

R-AR

Figure 1 Firing Example
2.1 A Control System Example

Data-flow computations are expressed in a graphical
form which closely resembles the traditional block
diagrams of contrel engineering. As with a block
diagram, the overall data-flow graph may be
decomposed into more manageable sub-graphs; this
process is continued until scome desired level of
functional complexity is reached. Eventually the
deconposition process will lead to sub~graphs which
are the node functions recognised by the computing
system. '

A3 an example, which may cccur some way down the
overall decomposition process, we take the case of
a PID compensator [6] imbedded in a single-loop
controller.

fg‘ . —[ZOH HProceE‘————
ar=1

Ve

Figure 2 Digital-PID Based Controller

The PID block can be decomposed into sub-blocks for
the propertional, integral and derivative
components of the compensator.

Proportional

L i o

_ R -

Derivative

Figure 3 Bleck Diagram Decomposition

Similarly the PID data-flow graph can be decomposed
into sub-graphs.

Proportional

Integral

Derivative

?r0portiona1| Integral!

)

i

€y
@

Derivative
> : - *K%mwﬁ>
vy

Figure 4 Data-flew Graph Decomposition

Placing an initial token on an arc has the
of delaying subsequent tokens on that arc by dT.
Initial or priming tokens placed on arcs give the
state of the graph at t=0.

effect

2.2 Dpata-flow Computing Systems

Several computing systems directed at general
purpese computations and based on the Data~-flow
model have been propeosed [7,8,9,.10]. The computing
system wused in the study described in this paper
was developed specifically for distributed control
and advanced autcmata applications {11,12,13,
14,15,16]. A prototype machine has been constructed
{17} with some structures being implemented as VLSI
circuits [1B,19]. The computing system consists of
a number of connected computational elements. The
communication of data between elements is described
fully by the model. Computation is driven solely by

the availability of data and therefore maps readily

onto the stimulus-response environments of real-
time control.

3 MANIPULATOR CONTRCL

For this study the data-flow computing gsystem,
manipulator and task environments was simulated on
a large conventional computing system [20}. The
tUnimation VAL language [21] was used to describe
manipulator tasks; our cuwrrent studies use the

16

Pascal Language. The VAL lanquage is a
language similar to BASIC. Data

restricted to real, integer and two
location variables which are used to
manipulator positions. All variables are
there are no procedure parameters and recursive
structures are not allowed. The control structures
are very rudimentary consisting of conditienal and
unconditional c¢ontrol transfers (jumps) to integer
statement labels. VAL programs describe a seguence
of actions with some sequences being conditional on
external stimuli or the result of a computation.

primitive
types are
types of
specify
glohal,

While VAL dces not provide language
to describe parallel or concurrent
evaluation o©f single high level statements may
involve tasks which do exhibit exploitable
concurrency .. a statement specifying cartesian
motion with fixed toel tip orientation to a new
locatien.

. constructions
actions the

VAL task descriptions were interpreted by a pregran
written in Pascal executing on a conventional
computing system. Some VAL statements such as
incrementing counters were performed directly by
the interpreter., For cother more complex tasks the
interpreter +{ransmitted data or command tokens to
the data~flow computing system. The data-flow
system then performed the computations, including
thogse associated with serve actions, necessary to
implement the VAL statement.

11

Conventicnal
System

Data-flow
System

-

A

Manipulator

Figure 5 Simulated System

The graph within the data-flow system contained all
the necessary sub-graphs for manipulating joint
solutions and transformations. f“There were three
types of location variable kmown to the graph; each
type of variable represented a different level of
abstraction. The wariable types were:

1} Joint Solutions which specified the setpoint of
each servo,

2) Transformations which specified the
co-ordinates and orientation in a
three matrix and

tocl~tip
three by

3} Descriptions which were records containing the
tool-tip co~ordinates and orientation angles
O,A and T.

The sub-graph structure used for translating a
description into the servo getpoints is shown in
figure 6. It is important to note that, given
sufficient computational elements, all sub-graphs
may be active simultanecusly when computing
golutions for say cartesian motions.

ot

Intepreter

]

LOADDESC

~

DESCTRAN

Trangformation

TRANSOLU

Joint Solution

:

i

Figure & Description-—

several

X {(mm)

200 4

Consider the simple task of de-palletising,
such tasks studied.
arranged in an eorthogonal pattern on a
pallet. The task was to remove the work-pieces from
the pallet and deliver them to a machining point.

Interpreter

Solution Sub-graph

Machining Point ® L] 1]
fmp(aea,o,c}
& o *
4 IINC{200m}

CORNER(300,=500, 100}
3 . .
JINC(200mm)

~Y {rm)

the de-palletising task are
routine is
transformation

Subroutine *NEXTPIECE’
SETI I=I+1
I¥ 1.GT.3 THEN 100
SET NEXT=IINC:NEXT

GOTO 300

100 sETI I=1
SETI J=J+1
IF J .GT. 3 THEN 200
SET NEXT=JINC:ISTART

SET ISTART=NEXT
360 RETURN

200 RETURN 1

Subroutine 'CLEARPALLET'
READY
BETI I=1

called NEXTPIECE

Figure 7 De-palletising Task Layout

The two main routines of the VAL program describing
The first
and computes the
of the next work-piece to be moved
and assigns it to the location variable
second routine is called CLEARPALLET and describes
the order in which the work-pieces are to be moved.

sghown below.

{*transform to next
{*item

{*transform current
{*item to next row

{*£inighed return
{*skip one statement

{(*reset arm

one of
Nine work-pieces were
rectangular

NEXT. The

BETIL J=1

SET ISTART=CORNER
SET NEXT=ISTART (*£irst piece
184G APPRO NEXT, S0 {*joint interpolated
(*to 50mm from piece

MOVES NEXT (*cartesian to piece

CLOSETL O (*grasp

DRAW 0,0,100 {*cartesian vertical
(*100mm

DEPART 100 {*along gripper axis

MOVES MP {*cartesian to machine
{*point

CUPENT 100 {*release work-piece

GOSUBR NEXTPIECE
GOTC 160

{*location of next

RETURN

Figure 8 shows motion plots of the manipulator
and tool tip descriptions for two VAL statements.

X Y 4 4] A T
Start 600 ¢ 0 k] 0 1]
Finish 300 -85¢ 100 0 4} 0
buration 0.638S

RPPRO NEXT,50
Joint Interpolated Motion

X b4 z o F:y
Start 300 -800 200 -0 [
rinish 600 0 0 20 0
Duration 1.302s

ool

MOVES MP
Cartesian Motion

Figure 8 Manipulator Motion Plots

‘tasks

4 RESULTS

Interpretation of VAL statements reqguiring
computation of djoint solutions from tonl tip
descriptions used the LOADDESC subgraph. A plot of
computational element activity for the LORDDESC
sub-graph is shown in figure 9. An average of &
elements were active with peaks of 30. If Ffurther
descriptions for a continuous metion are sent to
the LOADDESC sub-graph before the computation for
the previous descriptions are completed the elemant
activity is much higher as shown in figure 10. fThe
data-flow system exploits the task parallelism
easily.)

569

‘%m'ﬁ

Elements Active
1

! M_,M_waﬁyd,ﬂ

8.0

Time (nsg.}

Figure 9 LOADDESC Parallelism

50

I WL |
| MM&“\

irl\;i!rtiilll|l(lllirr

Elements Active
1]

Time {(mg.} 8.2
Figure 10 LOADDESC Continuous Path Parallelism

5 CONCLUSIONS

A computer system which uses the data-flow model
has been successfully applied in two major studies:

1} object recognition using a laser
[12,14] and

range-£finder

2) manipulator control [15].

The second study, described in this paper, used the
Unimation VAL language to describe the manipulator
which invelved Joint interpolatad and
cartesian continucus path motion. The VAL task
descriptions were interpreted by a conventional
processor which sent task data and commands to a
data—-flow computing system. The data=-flow system
computed the trangformations and generated the low
level sgerve commands for the modelled TUnimation
series 6000 manipulator {22].

Manipulator control tasks exhibited substantial
parallelism particularly for c¢artesian motions
where the computation of the next joint sgolution

could be commenced before computation of the
praevious solutien was completed. The data-flow
computing system is not constrained to execute only
one task and may for example support object
recognition tasks and manipulator control tasks
gimultaneously. The study showed that the
parallelism in typical manipulator tasks can be
exploited easily using the data~flow computing

18

system.

6 ACKNOWLEDGEMENTS

The authors wish to thank Professor T. Kilburn for
the use of the computing facilities at the
Department of Computer Science at the Victoria
University of Manchester. C.P. Richardson wishes to
tnank the Government of Barbados for its financial
support.

7. REFERENCES

[1] Coiffer, P., et al., 'Real Time Problems in
Computer Control of Robots', Proceedings of
the 7th. International Symposium on Industrial
Robots, ppid5-13%32, Cct. 1877.

21 d'auria, A and Salmon M., TSIGMA ~-An

Integrated General Purpose System for

Automatic Manipulation', ¥Proceedings of the

5th International Symposium on Industrial

Robots, ppl185-202, Sept. 1975,

{31 Backus, J., "Can Programming be Liberated from
the Von Neumann Style? A Functional Style and
Its Algebra of Programs', CACM Vol.21 Xo.8,
pp613-641, Rug. 1978.

{4] Xarp, R.M., and Miller, R.E., 'Properties of a

Model for Parallel Computations: Determinacy,
Termination and Queueing', 8IaM J. BApplied
Mathematics, WVol.11 No.§, ppi390-1411, Nov.
1966.

{51 Adams, D.A., ‘A Model for Parallel
Computations', in Hobbs { ed) Parallel
Processor Systems, Technolegies and

Applications, pp311-333, Spartan Books, 1970.
P b B

[6]1 o©Ogata, X., Modern Control Theory, Frentice-
Hall Inc., Englewced Cliffs, N.J., 1970.

[7] bpavis, A.L., Tarchitecture of DOMT: A
Recursively Structured Data Driven Machine’,
Technical Report, University of Utah, 1977.

[8] pennis, J.B. and Misunas, D.P., 'A Preliminary
Architacture for a Data Flow Processor’,

Proceedings of the 8econd Annual IEEE
Symposium on Computer Architecture, pl26-,
1975.

[9] syre, J.C., 'Pipelining, Parallelism and

Asynchronism in the LAU System', Proceedings
of the IEEE International Conference on
Parallel Processing, pp87-92, Aug. 1977.

[10] Gurd, J. and Watson, I., 'Data Driven System
for Data-flow Computing', Part 1 and Part 2 in
Computer Design, Vol.19, No.6 and 7, 1980.

{11] Egan, G.K., 'Aa Study of Dpata~-flow: Its
Application to Decentralised Control, Ph.D.
Thesis, Department of Computer Science,

Victoria University of. Manchester, 1979.

{12] Richardson, C.P., 'Object Recogniticn Using a
Data=flow Machine: Algorithms for a taser
Range~finder’, M.Sc. Dissertation, bDepartment
of Computer Science, Victoria University of
Manchester, 197%.

G.K., ''A Decentralised Computing System
Based on Data-flow', Proceedings of the
I.E.E.E. Industrial Control and
Instrumentation Conference, Philadelphia,

[13] Egan,

o e

(141

[15]

{18}

(17]

Department

March 1980.

Egan, G.XK. and Richardson, C.P., 'QObject
Recognition Using a Data-flow Computing
system®, BurcMicre Microprocessing and

Microprogramming 7, North-Holland, 1981%.

Richardson, C.P., "Manipulator Control Using a
pata-flow Computing System', Ph.D. Thesis,
pepartment of Computer Science, Victoria
University of Manchester, 1981.

Walkington, M., 'A
compiler', Design 2 Report,
communication and Electronic
Royal Melbourne Institute of Technelogy,

Graphical Data~flow
bepartment of

Engineering,
1983.

M.W., and Zuk, E.A., 'A Data-flow
Element', Design 3 Report,
of Communication and Electronic
Engineering, Royal Melbourne Institute of
rechnology, 1982.

Rawling,
Processing

£18]

[19]

[26]

f21]

{22}

'An NMGS VESI Queue for the pata-
Design 3 Report,
and Electronic

Institute of

Biggs, I.,
flow Multiprocessor',
pPepartment of Communication
Engineering, Royal Melbourne
Technology, 1983.

A., 'An NMOS VLSI Communication Switch
the Data-flow Multiprocessor, Design 3
Report, Department of Communication and
Electronic Engineering, Royal Melbouwrne
Institute of Technology, 1983,

Siow,
for

Morris, D. and Ibbett, R.N., 'The MUS Computer

Bystem', Computer Science Series, MacMillan
Press, 1979.-
Unimation Inc., "User's Guide ¢to VAL',

Unimaticn ¥nc., Danbury, Conn., Feb. 1972.

Rssembly Experiment Using
Froceedings of the
Industrial

punne, M.J., ‘An
Programmable Robot Arms',
7th international Symposium on
Robots, Tokyo, Qck. 1977.

