PARALLELISATION AND PERFORMANCE OF THE BURG
ALGORITHM ON A SHARED MEMORY MULTIPROCESSOR

AL. Cricenti and G.K. Egan:

Abstract

This paper describes the implementation of a signal processing algorithm,
specifically the Burg Algorithm, using both a high level al parallel langnage SISAL
and Encore Parallel FORTRAN. The Burg Algorithm is an estimation technique
for fitting an autoregressive model to a time series data set. This algorithm
contains a time shift/inner product operation which is used in a number of other
important signal processing algorithms such as convolution. The paper describes
the results obtained using both the high level parallel language SISAL and EPF, on
both an ENCORE Multimax multiprocessor machine, and a single processor IBM
RS6000/530 machine.

1. Introduction

Signal Processing Algorithms are widely used and of vital importance in areas such as
biomedical engineering, seismic data analysis, speech analysis and spectral estimation. The
demand that signal processing algorithms place on computing system performance is
increasing as more complicated algorithms are made to function in real time. As the
limitations of current uniprocessor systems are being reached, many computer
manufacturers are turning to multiprocessor configurations to obtain increased
performance. In addition to hardware limitations, current computer languages must be
evaluated for performance and ease of use with reference to their suitability for parallel
machines.

The purpose of this paper is to describe the implementation of a signal processing
algorithm, in this case the Burg Algorithm(1], using both a high level parallel language
SISAL (Stream and Iteration in a Single Assignment Language)[2] and EPF (Encore
Parallel FORTRAN). The Burg Algorithm is an estimation technique for fitting an
autoregressive model to a time series data set. This algorithm contains a time shift / inner
product operation which is used in a number of other important signal processing
algorithms such as Convolution.

It is claimed that the optimising SISAL compiler (OSC) from Colorado State University
yields performance competitive with FORTRAN [5][8]. Also the maximum concurrency of
a SISAL program is theoretically only limited by the data dependencies. However, the
OSC compiler on a shared memory machine, only exploits parallelism from the parallel
loop construct.

The results obtained using an optimising SISAL compiler are compared to those obtained
using the EPF (parallel FORTRAN) annotator. The comparison is made both on a 6 XPC
processor (4 Mips per processor) based Encore Multimax Multiprocessor machine and a

-AL. Cricenti is a member of Faculty in the School of Electrical Engineering and a
Researcher in the Laboratory for Concurrent Computing Systems at the Swinburne
Institute of Technology, John Street, Hawthorn 3122, Australia, Phone:+61 3 819 8322, E-
mail: alc@stan.xx.swin.oz.au.

GX. Egan is Professor of Computer Systems Engineering and Director of the Laboratory

for Concurrent Computing Systems at the Swinburne Institute of Technology, John Street,
Hawthorn 3122, Australia, Phone: +61 3 819 8516, E-mail: gke@stan.xx.swin.oz.au.

35

single processor IBM RS6000/530 (30 Mips) system. The performance of the IBM
processor is representative of processors in next generation medium cost multiprocessors.

2. The Burg Algorithm

The Burg Algorithm is a method of generating an autoregressive model from a set of data
samples, that is it gives estimates for A(Z) in:

H(z) = A(z)

There are several ways of obtaining an AR model, the Burg algorithm is based on
minimising the forward and backward prediction errors, assuming a lattice filter structure
as shown in figure 1.

-+
e,y (K)o }(T)—o €, (k)
<+
4
bn_l(k)o._E . i\zj 0 bﬂ (k)
Figure 1 Lattice filter structure
where:
en(k) = €p.1(K) + ¢y by.1(k-1) forward prediction error (6))
bp(k) = ¢j ep.1(k) + by.1(k-1) backward prediction error (¥))

and ¢, are called the reflection coefficients.

The Burg Algorithm involves the choice of reflection coefficients such that the error
energy is minimised, when only a finite number of data samples is available.

The optimum value of the reflection coefficients can be easily derived[7] and is given by:
M
cn_l(k) *bn_l(k-l)

c, = -2 3

22 2
E ¢, 1 (b, (k1)

where M is the number of data samples.

The autoregressive coefficients can then be estimated from:

ap =¢p @
an() = ap.1() + cpap.1(n-j) forj=1.n-1 ®

36

A sequential implementation of the Burg algorithm is outlined in {1] and is reproduced in
figure 2a with individual tasks labelled Typ (1), Ty (1), Tpp(2), Tip(2), Tin(3). Tasks Tjp(1)
are computations of the inner products in both the numerator and denominator of (3)
above. Ty (1) is the calculation of the division needed to compute c. This task cannot
proceed in parallel, since it depends on the results of task Tj,(i). This data dependency
can be also be seen from the maximally parallel graph for m=5 and max=3 reproduced in
figure 2b. T;,(2) updates the autoregressive coefficients and task Tj,(3) updates the
forward and backward prediction errors (equations 1 and 2), the graph of figure 2b shows
that each of the loops corresponding to tasks Ty (1), Tjp(2), Tip(3) can be computed in
parallel.

1. INITIALIZATION

FOR i=1TO m DO
e()=x(1)
b(i) =x(1)

2. THE MAIN LOOP

FOR n=1TO max DO

sl=s1+e(i)*b(i-n) Tin(1)

s2=s2+e(i)**2+b(i-n)**2
c(n)=-2.0*s1/s2 Tn(1)
IF n>1 THEN DO

FOR i=1TO n-1 DO

al(i)=a(i) +c(n)*a(n-i) Tin(2)

FOR i=1TO n-1 DO

a(i)=al(i)

a(n)=c(n) Tnn(2)
FOR i=n+1TO m DO

temp=e(i) +c(n)*b(i-n) Tin(3)

b(i-n) =b(i-n) +c(n)*e(i)

e(i) =temp

Figure 2a Sequential Burg Algorithm for m data points and max reflection coefficients from
aj

2] [To] [To®] [Te(]

@] (6] [@6] [uo] foo]
|T_;'(1)| [T{m] [T,,.,J‘a)]
[=@] [fza] [Tak@l [Fet9] [

[Ts@] [T20] [To2] [e@] [te©)]

Figure 2b Maximally parallel graph for m =5 and max=3 from [1]

37

3. Language Considerations

3.1 Encore Parallel FORTRAN

The Encore Parallel FORTRAN compiler (EPF) is the UMAX f77 implementation of
FORTRAN with enhancements which allow parts of a program to be executed in parallel.
These statements are PARALLEL, DO ALL, CRITICAL SECTION, BARRIER,
LOCK WAIT, LOCK SEND, and EVENT.

The EPF compiler consists of analysis and transformation tools, a parallelising compiler,
parallel runtime libraries, and a code generator. Whilst programs can be written directly
in EPF, EPF can also be used to convert a standard FORTRAN program into a source
which is annotated with the parallel statements outlined above. During compilation, EPF
first detects possible concurrent parts of the source programs, these are shown in a .LST
file. The annotator then generates the EPF program , .E file, by inserting the appropriate
EPF statements.

The EPF annotator may require user intervention to produce the most efficient code for a
particular program; useful speedup can be achieved by fine tuning output of the
annotator. However, for the simple code presented here, it is sufficient to rely on the
annotator alone.

3.2 SISAL

SISAL is a functional language which has been targeted at a wide variety of systems
including current generation multiprocessors such as the Encore Multimax and research
dataflow machines[2][3][4]. The textual form of SISAL, in terms of control structures and
array representations, provides a relatively easy transition for those familiar with
imperative languages, since it has a PASCAL like syntax. The advantage of SISAL is that
codes written in SISAL are portable to a variety of parallel architectures. SISAL also
insulates programmers from the underlying machine architecture, and allows concurrency
to expressed implicitly, thus removing the burden of processor synchronization and job
scheduling.

* 4, Parallel Implementation

4.1 EPF

The simplest parallel implementation of the Burg algorithm is obtained by coding the
sequential algorithm in FORTRAN and then using the Encore Parallel FORTRAN
compiler (EPF) to produce the parallel code suitable for the Encore Multimax
Multiprocessor. This process requires that the programmer knows very little about the
underlying architecture of the machine, thus code may be generated very easily. This
method is also attractive since it allows existing software, written in FORTRAN, to be
implemented on parallel machines without any translation. There are two main
disadvantages of this method. Firstly the optimum speedup is usually not obtained, since
the original program may be sequential in nature. Secondly the annotated code produced
by the EPF compiler is machine dependent.

The annotator has identified that all loops, in figure 2a, except the outer loop can be
parallelised. Thus the annotator can successfully identify the parallel loops. The
maximally parallel graph suggests that tasks Tj,(2), Tpn(2) and Tm(3) could be
performed at the same time; unfortunately EPF can only slice loops, and since the outer
loop is sequential, due to task Ty, (1), EPF cannot make these tasks parallel.

38

4.2 SISAL

The second implementation of the algorithm is in SISAL. The "disadvantage” here is that
existing codes need to be re-expressed in the SISAL language, to expose the possible
parallelism. The SISAL implementation of the Burg Algorithm as presented in [1], was
directly transliterated from the FORTRAN version, excepting the loop which updates the
autoregressive coefficients shown in figure 3a, which was transformed into a parallel
format to ease the coding.

%calculate auto regressive coefficients

a:= forkimloldn
returns array of
ifk = old n then ¢
else old a[k] +c*old afold n-k]
end if
end for;

Figure 3a Implementation of the calculation of the autoregressive coefficients in SISAL.

The loop which updates the forward and backward errors was also changed, figure 3b.
The original FORTRAN loop has been split into two loops. This was done so that the
indexes of b change in manner which is suitable for the parallel for loop.
e=
forlinold n+1,m
refurns array of
old e[1] +c¢* old b[l-old n]
end for;
b:=
forjinlm-oldn
returns array of
old b[j] +c*old e[j+o0ld n]
end for;

Figure 3b Implementation of the updating of the forward and backward errors, in SISAL.
SISAL expresses concurrency naturally, therefore it is not possible to write a sequential

loops in the parallel form. In order to achieve useful speedup, it is necessary to reorganise
the computation, and rethink the algorithm in a parallel manner.

39

5. Results

The SISAL and FORTRAN versions of the program were run on both an Encore
Multimax and IBM RS6000/530 system using the standard £77 FORTRAN compiler, the
EPF compiler, where appropriate, and the optimising SISAL compiler (OSC v12.7).

For comparison purposes the number of data points was set to m=10000 and the model
size to max=100. This model size was chosen so as to obtain run times which could be
measured accurately.

The run times obtained for both the FORTRAN and SISAL implementations of the
algorithm on the Encore Multimax multiprocessor with six XPC processors are
summarised in table 1.

T
Note that Speedup =2 and Efficiency = SEeIuR(®)

n procs n
Processors | Time (s) Speedup | Efficiency

1 29.6 1.00 1.00

2 172 1.72 0.86

3 12.7 233 0.78

4 9.7 3.05 0.76

5 82 3.61 0.72

6 7.8 3.79 0.63

Encore Parallel FORTRAN

Processors | Time (s) Speedup | Efficiency

1 31.02 1.00 1.00

2 15.49 2.00 1.00

3 13.46 230 0.77

4 11.03 2.81 0.70

5 9.43 3.29 0.66

6 8.32 3.73 0.62

SISAL

Table 1 Experimental results on the Encore Multimax

As can be seen from the run times, speedup is achieved with the EPF compiler without
significant programmmg effort. The EPF compiler converts DO LOOPS to parallel code.
However, in some cases the annotator is fairly conservative, and further speedup may be
obtained, in some instances, by manually annotating programs. In this study no manual
annotation was performed as the speedup obtained for this simple code was satisfactory.

As can be seen, from the results, the FORTRAN and SISAL implementations achieve

similar speedup, but the FORTRAN implementation has a lower run time for the single
processor run, refer to table 1 and figure 4a.

40

Speedup

Run Time (s)

0 ;
1 2 3 4 5 6
Processor
Figure 4a Run time vs processors Figure 4b Speedup vs processors

It should be noted that initially no speedup was achieved with the SISAL implementation
of the Burg Algorithm. Speedup was achieved by forcing the SISAL compiler to slice all
for loops, by setting the -h pragma to 500; the cost estimator in SISAL had deemed the
low complexity loops not worth slicing. The value of 500 was arrived at by trial and error.
As this pragma is applied globally in the current version of the SISAL compiler there may
be a risk of over parallelisation of some loops [6].

Speedup for the SISAL implementation is dependant on the size of the model, as can be
seen from the graph shown in figure 5. Speedup increases as the number of data points
increases, this is because for larger amounts of data, the processors spend relatively more
time on useful computation, than on overheads computation.

The droop in the speedup curve, of figure 5, for six processors is due to other processes
competing for the limited machine resources.

55 -
51 —e— 1024
45 ¢ —o— 2048
41
5351
= —x— 8192
o] 3 1
&=
25 1 —a—— 16384
21 —e— 32768
15 4 —m—— 65536
1 } } } + y
1 2 3 4 5 6
Processors

Figure 5 Speedup vs number of data points.

Speedup for the SISAL implementation increases beyond six processors as can be seen
from the speedup curve shown in figure 6. These results were obtained on a slower 20
APC processor Encore Multimax. Only 16 processors were used so that interference from
other users was minimised.

41

The graph shows the effect of Amdahl’s law that forces the tail of the speedup curve to
flatten. This limitation is due to the sequential part of the algorithm but good speedup is
still achieved. The parallel FORTRAN (EPF) compiler was not available on this system.

11-
9l
2 7/
=)
@ I
a 54
m -
31
1-4.:::1-:::::;::::
12345678 910111213141516
Processors
Figure 6 Speedup vs processors

The run times for a single processor (RS6000) machine are summarised in table 2. These
times are for a model size of m=10000 and max=100. The time for the SISAL
implementation is comparable with the FORTRAN! implementation.

User +System (s)
SISAL 1.05
FORTRAN 4.96
FORTRAN -O 0.97

Table 2 Times for the IBM RS6000/530 (m = 10000, max=100)

The results for the IBM RS6000/530 and Cray Y-MP are shown in table 3 for
comparison with the results from [1}, these results were obtained by tailoring the
algorithm to the architecture of the target machine. The parameters for this study were
m =16384 data points and model size max=10.

Machine HEP iPSC/2 MPP X-MP/48 RS6000 Y-MP

Execution L1679 0.24 0.5522 0.016887 0.19 0.009

Time (s) (1p)
Times from [1]

Table 3 Comparison of Burg Algorithm execution ﬁ'me (m = 16384, max= 10).
Note the times for the Y-MP and RS6000 are for SISAL implementations.

6. Conclusions

The Burg filter was implemented both in FORTRAN and SISAL. Significant speedup is
achieved with the SISAL implementation, suggesting that SISAL may be a useful language
for signal processing algorithms. SISAL is useful since it allows parallelism to be
expressed without considering processor synchronization and the underlying machine
architecture. FORTRAN annotators such as the EPF annotator are useful in that speedup
is obtained for little effort, and existing FORTRAN implementations of some simple
algorithms need not be recoded, this is desirable since several digital signal processing
FORTRAN programs already exist. Run times on modern single processor machines such
as the IBM RS6000/530, are comparable to some existing parallel architecture machines,
and give an indication of possible computation speeds of future generation
multiprocessors.

1 XLF RS6000 FORTRAN Compiler

42

Acknowledgements

The authors thank the members of the Laboratory for Concurrent Computing Systems at
the Swinburne Institute of Technology, in particular P.S. Chang, for their assistance in
this research.

The authors thank Cray Research Australia for the use of the Cray Y-MP facility.
The Laboratory for Concurrent Computing Systems is funded under a special research
infrastructure grant for parallel processing research by the Australian Commonwealth

Government.

Note both the EPF and SISAL codes for the Burg algorithm are available from the

principal author.

References

1] N.M. Sammur and M.T. Hagan. "Mapping Signal Processing Algorithms on
Parallel Architectures.” Journal of Parallel and Distributed Computing, Issue
no.8 1990 pp180-185.

.[2] McGraw et al., "SISAL: Streams and Iteration in a Single Assignment
Language.” Language Reference Manual, M146, Lawrence Livermore National
Laboratories.

[31] ° APW.(Wim) Bohm and J. Sargeant, "Efficient Dataflow Code Generation of

SISAL", Technical Report UMCS-85-10-2, Department of Computer Science,
University of Manchester, 1985.

[4] G.K. Egan, N.J. Webb and A.P.W. (Wim) Bohm, "Some Features of the
CSIRAC II Dataflow Machine Architecture”, in Advanced Topics in Data-Flow
Computing, Prentice-Hall 1990,

5] D.C. Cann, "High Performance Parallel Applicative Computation”, Technical
Report CS-89-104, Colorado State University, Feb.1989.

[6] P.S. Chang, and G.K. Egan "Analysis of a Parallel Implementation of a
Numerical Weather Model in the Functional Language SISAL" Technical
Report 31-012, Laboratory for Concurrent Computing Systems, School of
Electrical Engineering, Swinburne Institute of Technology, March 1990.

(7 R.A. Roberts and C.T. Mullis, "Digital Signal Processing” Addison - Wesley
1987
(8] D.C. Cann, "Retire Fortran? A Debate Rekindled", Technical Report UCRL-

JC-107018, Lawrence Livermore National Laboratory, Apr.1991.

43

