FFT Algorithms on a Shared-Memory Multiprocessor

AL. Cricenti and G.K. Egan.*
oo
Abstract Fw) = | fored®tar @

This paper deals with the coding of some FFT
algorithms in the functional language SISAL, to exploit
the available concurrency, on a shared memory
multiprocessor (Encore Multimax). Run times and speed-
up are presented for two conventional array based and
two pipeline stream based FFT algorithms. The
performance of the stream based algorithms is compared
with that of the array based algorithms.

Introduction

The Discrete Fourier Transform (DFT), and other
related transforms, are of key importance in the field of
digital signal processing. Calculation of the DFT from
its definition is computationally expensive requiring
O(N2) multiplications and a similar number of
additions. However much effort has been put into
developing fast methods of calculating the DFT, since
efficient calculation of the DFT makes much of discrete
signal processing possible. Several good algorithms now
exist for the efficient calculation of the DFT, these
algorithms are generally known as Fast Fourier
Transforms (FFT).

To speed up the calculation of the DFT further,
either faster algorithms need to be developed, or any
concurrency in the algorithm be exploited. Some
researchers have been looking into the parallel
implementation of the FFT. Pease [Pea68] pioneered
work in this area by suggesting a parallel FFT algorithm.
Norton and Silberger [NS87] have presented results for
a FORTRAN implementation of the Cooley-Tuckey
FFT on a shared memory architecture (IBM-RP3
machine) while Cvetanovic [Cve87] presents methods
for performance analysis of two FFT algorithms on
shared memory machines. Adams et. al.[ABC*91]
present results for parallel FFT algorithms on a
connection machine and a Cray 2. Recently the
performance of some FFT algorithms coded in SISAL
have been presented by Cann[Can91] and
Bollman[BSS92].

This paper deals with the coding of some FFT
algorithms; and is also concerned with the use of the
SISAL data type stream to implement pipeline FFT
algorithms. The performance of these pipeline
algorithms is compared with that of the standard ones.

Algorithm derivation

Calculation of the Fourier Transform of a signal
involves the evaluation of the following integral:

91

Q0

In many cases the signal of interest is not a
continuous time signal, but a discrete time signal.
Discrete time signals are therefore sequences of
numbers and therefore lend themselves for
implementation and analysis on digital computers.

In the case of discrete signals the integral above
becomes a summation:

N-1
F(n) =Y f(k)*e =N o _01.N1
k=0

@
The above summation is called the Discrete Fourier
Transform (DFT).
Calculation of the DFT is computationally expensive

requiring order N2 multiplications and a similar number
of additions.

Many approaches for improving the computational
efficiency of the DFT, rely on the properties of

the eikn/N term, which is periodic and symmetric.
Exploitation of these properties has led to several fast
algorithms for evaluating the DFT,

Although there are several FFT algorithms, most are
based on the principle of decomposing the computation
into successively smaller DFT computations, this
method was re-discovered by Cooley and Tuckey
[CT65].

One common FFT algorithm is called the Cooley-
Tuckey Radix Two Fast Fourier Transform. This

-algorithm is based on the successive partitioning of the

data sequence into even and odd indices (note N must
be a power of two hence the name Radix two).

The Radix Two algorithm can be derived by either
separating the input sequence f(k) into two N/2 point
sequences, Decimation in Time (DIT), or by dividing
the output sequence F(n) into two N/2 point sequences,
Decimation in Frequency (DIF). The number of
operations in each algorithm is the same, however the
DIF algorithm accepts data in natural order, and
outputs the data in scrambled order, while the DIT
algorithm accepts data in scrambled order, and outputs
it in natural order. These features can be advantageous
in convolution or correlation, as unscrambling (bit
reversing) can be avoided by using an DIF algorithm to
transform to the discrete frequency domain and a DIT
to transform back to the discrete time domain.

As previously stated the Radix 2 DIT algorithm, for
N=2M can be obtained by splitting the input sequence
into two N/2 sequences consisting of the even elements
and odd elements of the input sequence. The Radix 2
Cooley-Tuckey algorithm can be conveniently expressed
in tensor notation {BSS92] as:

Fak= 11 (k-1 ®F OLi- YLk-1 ST JREY)
3)

where: ® denotes the tensor product.
R(2k) is the bit reversal permutation.

2 represents the twiddle factors.

F,® Iyi-1 is a two point transform (butterfly).

Alternatively the FFT algorithm can be conveniently
expressed as a signal flow graph as shown in figure 1.
The signal flow graph has an advantage in that it shows
up possible concurrency, and aids in the coding of the
algorithm This algorithm is termed fast since it requires
order NlogyN multiplies rather than order N2 multiplies

to calculate the DFT of a sequence.

As evident from the signal flow graph this FFT
algorithm has a high level of symmetry as well as
potential concurrency, this was recognised early by
Pease [Pea68] and Gold [GB73). The concurrency can

be observed by noting that the input data to each
butterfly in a stage depend only on the previous butterfly
or the input. Since there are no data dependencies for
each butterfly in a particular stage, the calculation of all
these butterflies could proceed concurrently. Although
the signal flow diagram of the FFT is quite elegant,
coding the algorithm to exploit the available
concurrency is not as simple as it would seem. One must
partition the FFT graph into segments and assign each
of these to a processor. Proper synchronisation must be
assured so that the data at the end of each stage is valid..

Sequential algorithm

A FORTRAN program to implement of the above
FFT, due to Cooley, Lewis and Welch, adapted from
[RGT75), is shown in figure 2.

The program is divided into two sections; the first
part is devoted to performing the bit reversal on the
input sequence, such that it is in the order required for
the FFT. Note bit reversal is not essential in some cases,
such as computing a convolution, thus it will not be
considered further. The second part of the program is
concerned with the computation of the FFT. This part
consists of three nested loops, the most outer loop steps
through each stage of the signal flow graph, another
loop performs the indexing on the powers of W as
required by the butterflies, while the third loop keeps
track of which butterfly calculation is being performed.

x(0)
x(4)
x(2)
X(6)
x(1)
X(5)

x(3)

X(0)
X(1)
X(2)

X(@)
a a+Wb
X(4)

X(5) ”
b a-Wb

X(6)
DIT Buttefly

X(7)

Figure 1 DIT signal flow graph for 8 point FFT.

92

SUBROUTINE FFT(A,M,N)
COMPLEX A(N),U,W,T
N=2**M
NV2=N/2
NM1=N-1
J=1
DO 71=1NM1
IF(LGEJ) GO TO §
T =A(J)
A=A
AM=T
5 K=NV2
6 IF(KGEJ)GOTO7
J=JK
K=K/2
GOTO 6
7 J=J+K
PI=3.141592653589793
DO20L=1M
LE=2*L
LE1=LE/2
U=(1.00.) ,
W =CMPLX(COS(PI/LE1),SIN(PI/LE1))
DO 20 J=1,LE1
DO 101=JN.LE
IP=I+LE1
T=A(IP)*U
AQP)=AQ)-T
10 AM=A®D+T
20 U=U*'W
RETURN
END

Bit Reverse input

For cach stage

Calculate the new e'jz"kn/N term
Do each butterfly

Computation of the butterflics

Update the e 32 50/N oy

Figure 2 FORTRAN Radix 2 FFT Decimation in Time Algorithm.

The program of figure 2 if compiled to run on a
shared memory multiprocessor, such as the Encore,
shows no speed-up because of the way the "Twiddle

Factors”, (c'jz *kn/ N) terms are calculated, that is an
initial cosine and sine term is computed, then on each
iteration of the outer loop (label 20) the twiddle (W
term) is updated by a recursion relation, this method of
calculation is economical in terms of machine
instructions, but it makes the program sequential. Since
the new W value depends on the its value on the
previous iteration, a data dependency exists which is not
evident in the signal flow graph. The translation from
FORTRAN to SISAL is quite straight forward since
most of the FORTRAN control structures map directly
to SISAL. One major problem in the translation is that
SISAL lacks a complex number type and complex
operations. This deficiency was overcome by defining a
set of functions for handling complex numbers, and
declaring a "type complex" as a:
Record[Realp, Imaginaryp : Double Real].

Although this record construct overcomes the
problem it leads to clumsy programming, since all

93

operations involving this data type must be performed
explicitly.

A pre declared type complex is essential for signal
processing as complex data is often manipulated. The
need for the complex type has previously been noted by
Chang [CED90] and will be implemented in SISAL 2
[COBGF].

As expected, the SISAL program shows no speed-up.
The main outer loop is sequential as can be seen from
the signal flow graph, however the computation of the
butterflies is also sequential, while the signal flow graph
suggests that this process could be parallel. There are
two reasons that make this process sequential. The first
is the way the W terms are calculated. To remove this
loop iteration data dependency all the W terms can be
precalculated and stored in an array for access by the
program. The second reason for the sequential
behaviour of the loop is in the way SISAL exploits
parallelism from loops. SISAL does not allow one to
express a sequential process in a parallel form, since it
cannot be written as a product for form loop. One
expects that the loop which would step through each

butterfly calculation can be expressed in a parallel
fashion, since there are no data dependencies between
butterflies in the same stage.

When the data operated upon is stored as an array,
then SISAL requires that the elements of that array are
processed in order, if the product form for loop is to be
used. Thus SISAL can only slice loops such as the
following array build statement

A:=foriin 1,10
returns array of i
end for

This loop is considered concurrent by OSC since the
elements of A are created in order, ie A[1],A[2]...A[10],
thus the concurrency of this loop can be exploited by
loop slicing, Note OSC achieves concurrency by loop
slicing, on a shared memory multiprocessor.

The Cooley-Tuckey FFT algorithm is not easily
expressed in SISAL in a way that achieves useful speed-
up. The problem with this algorithm is that the elements
of the array output from each stage are not produced in
order. An alternative algorithm is required which can be
expressed in SISAL in a parallel form.

Constant geometry algorithm

As seen from the signal flow graph the output vector
of each stage of the FFT is not produced in order, but
the elements of the vector come out in a different order
for each stage. This implies that the sequential SISAL
non product for loop must be used. To overcome the
limitation of arrays in SISAL being built in a strict sense
for parallel loop constructs, the FFT algorithm must be
modified so that the elements of the output of each FFT
stage, are produced in order. The reason for the
elements being produced out of order is because the
Cooley-Tuckey FFT program is based on a so called "In-
place algorithm". This means that each butterfly output
is put back into the index where it came from. This is
desirable since it means that only one array is required
to implement the program. In a SISAL implementation
this is not an advantage since a copy of the old array
may exist, (old) when using a non product for loop. If
the restriction of in-place computation can be relaxed
then the indexing can be kept constant from stage to
stage and in order. This allows the inner loop, which
performs each butterfly for a given stage, to be
expressed in the product for form loop. This algorithm is
termed "Constant Geometry" [RG175] and the signal
flow diagram is shown in figure 3. Note the signal flow
graph below represents a DIF algorithm, the DIT
version would have the powers of W in the bottom wing
of the input to the butterfly. Since each stage of the
constant geometry algorithm is the same, refer to signal
flow graph, the program is simple to express.

94

Pipeline algorithms

The FFT algorithms presented thus far rely on the
data being fed into the algorithm in a parallel fashion,
that is as an array. In practice the data would arise from
sampling a signal at discrete time intervals, In this case
the data would arrive in a sequential fashion.

Inspection of the signal flow graphs shows that the
butterflies in a particular stage could be processed in
any order. In fact it is not necessary to fully complete a
stage before commencing the next stage, subject to the
availability of the appropriate data for the next stage.

When using arrays, data cannot, in general, be output
from each stage of the algorithm until each stage has
been completed, that is all of the elements of each array
must be computed. Arrays therefore restrict the amount
of exploitable concurrency in the FFT algorithm.

In some situations, it is desirable to pass the data in a

. serial fashion to the FFT and have it output in a serial

fashion. This scheme is attractive since it is possible
have data output at the sampling rate, once the FFT has
been primed with data. An algorithm which achieves
this is a pipeline algorithm. Several pipeline Fast
Fourier Transforms have been presented in the

literature, some of these however are usually
implemented with special purpose hardware
[GBT3)[GWT70][SJ90).

A pipeline algorithm [GB73] can be derived by
considering the FFT signal flow graph of figure 4, this is
the graph of an 8 point DIF algorithm, note input data
are normally ordered, output data are bit reverse
ordered The DIF version is chosen as it is assumed that
the input data are in natural sequential order.

It can be seen from the graph that to cor ute the
X(0) and X(4) output points only three butterflies need
to be evaluated, as shown in figure 5. A similar situation
exists for the other output points.

The input to the first butterfly stage is:

x(t) = x(k)
x(b) = x(k+N/2)

that is two points separated by N/2 where N is the FFT
length. Therefore the first N/2 input samples to the
pipeline are routed to the top arm of the butterfly while
the next N/2 samples to the bottom. A delay of N/2 is
used in the top arm of the butterfly to ensure that the
data at the butterfly are synchronised. The appropriate

WP must be used at the butterfly output. The data
leaves the butterfly in parallel pairs. The input to the
second butterfly stage is:

k=0.N/2-1 (4
k=0..N/2-1

x(0) X(0)
x(1) X(4)
x(2) X()
x(3) X(6)
x(4) X()
x(5) X(5)
x(6) X(3)
x(7) . X(7)
Figure 3 Constant Geometry FFT Algorithm.

x(0) X(0)

x(1) X(4)

x(2) X(2)

x(3) X(6)

x(4) X(1)

x(5) X(5)

x(6) X(@)

x(7) X(7)

Figure 4 DIF Signal flow graph.
x(0) x'(0) X(0)
X(4)
x(4)

Figure 5 Butterflies for computation of X(0) and X(1).

95

x(t) and X(t+N/4) t=0..N/4-1
¥(b) and *(b+N/4) b=0..N/4-1

)
©)

where x'(t) is the output of the top arm of the first
butterfly and x'(b) is the output of the bottom arm of

the first butterfly. Again the appropriate WP must be
applied. The argument can be continued for the third
and following stages of the pipeline and the results this
shown in figure 6.

The elements of the data sequence must be routed to
the appropriate arm of each butterfly, this is achieved by
the switches and delay lines in the pipeline. Each switch
in the pipeline switches at twice the frequency of its
predecessor, and the delay lengths in a given stage are
half that of the previous stage. The first switching block
works as follows:

-The data samples are routed straight through for the

first N/4 elements.

-The samples are crossed over for the next N/4

samples.
SISAL has an appropriate data type for pipeline
algorithms, that is the type STREAM

[Can89][MSA*85). A stream is a sequence of values of
uniform type that allows pipeline concurrency to be
expressed directly by their use. Streams differ from
arrays in that the elements of the stream can only be
accessed in sequence, no subscripting or random access
is possible. This form of access allows the use of
elements from the stream without having to produce the
complete stream as would be required with an array. By
definition SISAL streams require a non-strict

implementation. A problem occurs with the use of
streams in OSC because OSC implements streams
strictly [CO]. As a consequence of this implementation,
pipeline concurrency is not exploited. In addition
parallel loops are difficult to write with streams because
only the first element of the stream can be accessed.

The switch blocks of the pipeline are nnplemented by
a function stream_switch. This function is complicated
since the sthchmg period is stage dependent. Another
problem arises because the two streams that enter the
function stream _switch are not processed
simultaneously, that is the part of top stream is
processed before the bottom stream. The delays in the
pipeline are meant to cope with this problem. The
software implementation uses the SISAL when & unless
masking clauses to filter out the unwanted values from
the retumns part of the for loop.

The pipeline algorithm could be made simpler to
express if the switching block could be simplified. To
achieve this aim the switching should be made
independent of the stage of the pipeline. Again a
constant geometry algorithm could be used to achieve
this. A pipeline implementation of the constant
geometry algorithm is shown in figure 7.

It can be seen that each stage of the pipeline is
identical. This feature makes the expression of this
pipeline algorithm straight forward.

The switch blocks for this algorithm are very simple
since they are composed of two switches. The first
switch switches the sample rate, while the second switch
switches at a rate of N/2 samples.

24
xk) &% o 4
QNP S ———
-2

-2

2-1

X(n)

z-1

Figure 6 Pipeline 8 point FFT algorithm.

wef A O

—@ X(n)

e

Figure 7 Constant Geometry Pipeline.

96

Results

The various algorithms presented in the previous
section were all run on an Encore shared memory
multiprocessor, using OSC as the compiler. The OSC -
h500 switch was used to ensure that the compiler
considered all concurrent loops for slicing. The value of
500 was arrived at by trial and error. Run-times were
obtained using the SPEED-UPS routine from the OSC
library. All times are in seconds and the longest wall
time was chosen when multiple processors were used.
Generally in cases where there was a significant
difference between the wall time and the CPU time the
results were discarded (CPU utilisation <95%). When
multiple processor run-times showed a significant
difference for cach processor the results were also
discarded.

All input data were generated internally by each
program, therefore the run-times reflect this. Output
data from the programs was suppressed by using the -z
switch.

Speed-up is defined as Tq proc / T, procs.

Various FFT sizes were used in the study to check
the performance of the algorithms against model size.

Sequential algorithm

Tables 1 and 2 present the results for run-time and
speed up for the Sequential FFT algorithm.

As can be seen from table 2, the Sequential FFT
algorithm shows no significant speed-up. This is to be
expected since the algorithm is sequential.

Constant geometry algorithm

Tables 3 and 4 present the results for run-time and
speed up for the Constant Geometry FFT algorithm.

The constant geometry algorithm achieves good
speed-up, refer to table 4 and figure 8. The single
processor run-times are longer than the sequential
algorithm (table 1), as is to be expected because of the
less efficient calculation of the indexes of the W factors
used in the butterflies. However because of the speed-
up obtained, this code becomes faster than the
sequential algorithm.

The droop in the speed-up graph for 10 -16
processors is due to other processes competing for
resources. The speed-up improves with the size of the
FFT and high efficiencies are obtained for N > 4096.

Processors 1024 2048 4096 8192 16384 32768 65536
1 0.6 13 2.78 6.240 13.140 28.620 59.640
2 0.58 1.28 2.74 6.140 13.000 28.400 59.140
3 0.58 1.28 2.74 6.120 12.960 28.380 59.180
4 0.6 13 2.78 6.100 12.980 28.420 59.040
5 0.58 13 2.76 6.120 13.000 28.420 59.480
6 0.58 1.26 2.78 6.140 13.020 28.680 59.160
Table 1 Run-time vs FFT length for the Sequential FFT.
Processors 1024 2048 4096 8192 16384 32768 65536
1 1 1 1 1 1 1 1
2 1.03 1.02 1.01 1.02. 1.01 1.01 1.01
3 1.03 1.02 1.01 1.02 1.01 1.01 1.01
4 1.00 1.00 1.00 1.02 1.01 1.01 1.01
5 1.03 1.00 1.01 1.02 1.01 1.01 1.00
6 1.03 1.03 1.00 1.02 1.01 1.00 1.01

Table 2 Speed-up vs FFT length for the Sequential FFT.

97

Processors 1024 | ~ 2048 4096 8192 16384 32768 65536
1 0.82 1.8 39 8.700 18.000 38.100 80.860
2 0.44 0.96 2.02 4.480 9.280 19.680 41.540
3 032 0.64 136 2.940 6.200 13.140 27.820
4 0.24 0.5 1.06 2300 4.680 9.900 20.940
5 0.2 04 0.86 1.800 3.780 8.020 16.860
6 0.18 036 0.74 1.520 3.180 6.720 14.160
7 0.16 032 0.64 1.340 2,780 5.800 12.560
8 0.14 0.28 0.600 1.200 2.440 5.160 11.140
16 0.1 0.2 0.440 0.740 1.440 2920 6.200

Table 3 Run-time vs FFT length for the Constant Geometry FFT.

Processors 1024 2048 4096 8192 16384 32768 65536
1 1 1 1 1 1 1 1
2 1.86 1.88 1.93 194 194 194 195
3 2.56 281 287 296 290 290 291
4 342 3.60 3.68 378 3385 385 3.86
5 4.10 4.50 453 483 4.76 4.75 480
6 4.56 5.00 527 572 5.66 5.67 5.1
7 513 5.63 6.09 6.49 6.47 6.57 6.44
8 5.86 6.43 6.50 7125 738 738 7.26

16 8.20 9.00 8.86 11.76 12.50 13.05 13.04
Table 4 Speed-up vs FFT length for the Constant Geometry FFT.
134
11 4
9]
£
R, 7 4
s
3]
1 ottt
12345678910111213141516 B— 65536
Processors
Figure 8 Speed-up vs FFT length for the Constant Geometry FFT.
its performance. The OSC compiler warns when array
Pipeline algorithms copying may occur.

Tables 5 and 6 present the results for run-time and
speed up for the Pipeline FFT algorithm.

The pipeline algorithm shows poor speed-up, mainly
because the implementation of this algorithm introduces
a large amount of array copying, which severely affects

98

Tables 7 and 8 present the results for run-time and
speed up for the Constant Geometry Pipeline FFT
algorithm.

The constant geometry pipeline code performs better
than the previous pipeline algorithm, but still suffers
from array copying.

Processors 1024 2048 4096 8192 16384 32768 65536
1 045 1.22 311 935 25.44 63.06 181.83
2 0.44 1.20 251 736 20.79 5754 160.45
3 043 1.16 245 7.10 20.10 53.82 153.59
4 0.44 1.05 2.57 7.14 19.54 52.03 150.77
5 043 1.06 251 7.09 19.23 5226 150.02
6 043 1.10 2.46 7.16 27 56.14 159.57
Table 5 Run-time vs FFT length for the Pipeline FFT.
Processors 1024 2048 4096 8192 16384 32768 65536
1 1 1 1 1 1 1 1
2 1.04 1.02 124 127 1.2 1.10 113
3 1.07 1.05 127 132 127 117 118
4 1.04 117 121 131 130 121 121
5 1.06 1.15 124 132 132 121 121
6 1.05 111 1.26 131 1.12 1.12 114
Tabie 6 Speed-up vs FFT length for the Pipeline FFT.
Processors 1024 2048 4096 8192 16384 32768 65536
1 1.16 2.28 6.1 14.600 35.800 87.940 214.400
2 0.76 1.88 3.96 10.060 25.720 63.540 170.820
3 0.6 1.56 328 8.580 22420 56.500 156300
4 0.54 144 2.96 7.820 20.780 53340 149.640
5 0.5 134 2.74 7.420 19.820 52.040 145.820
6 0.46 1.26 2.6 7.140 19.440 50.800 144.900
Table 7 Run-time vs FFT length for the Constant Geometry Pipeline FFT.
Processors 1024 2048 4096 8192 16384 32768 65536
1 1 1 1 1 1 1 1
2 134 134 1.45 1.44 136 132 130
3 143 1.50 161 1.63 1.50 1.46 139
4 1.58 1.60 1.73 1.82 154 1.48 139
5 1.66 1.74 1.88 1.81 1.59 153 143
6 1.60 1.86 1.84 1.86 1.66 1.55 1.46

Both pipeline algorithms require a function to
implement the switch that switches with a period of N/2
samples. This function must separate the input stream
into two streams, one containing the first N/2 samples
the other the rest of the stream. An obvious way of
expressing this switching function in SISAL is as:

Table 8 Speed-up vs FFT length for the Constant Geometry Pipeline FFT.

for aelement in input at i

retums stream of aelement when i< =length
stream of aelement when i>length

end for

Figure 9 *Product form for loop’ for switch.

99

This approach has two problems when OSC is used
to compile it. The first problem is that OSC will not
slice this loop as the compiler considers it sequential
because of the when clause. Thus using the product for
form loop is not an advantage.

The second problem with this approach is that this
loop introduces copying. To overcome some of the
copying, the loop can be expressed as the non product
form for loop as shown in figure 10. This
implementation of the loop is much faster as some array
copying is eliminated. Note this was verified using the
OSC -time switch.

Jor initial
i=1
bottom: =input
until i>length repeat
ir=oldi+1;
bottom: =stream_rest(old bottom);
retums stream of stream_first(bottom) unless i>length
% This introduces copying
value of bottom
end for

Processors 1024 16384 65536
1 1 1 1
2 1.73 1.77 177
4 2.74 292 291
6 325 342 3.67

Figure 10 '"Non product form for loop’ for
switch

The array copying which results from this loop is still
significant both in terms of run-time and speed-up
performance. This is particularly noticeable for large
FFT lengths. If the unless clause is removed from the
above loop, the execution time is reduced considerably,
and the speed-up performance is improved, refer to
table 10. Removal of the unless clause, is not practical
since the code produces incorrect results. The speed-up
improvement implies that the array copying due to the
unless clause is of a sequential nature.

Processors 1024 16384 65536
1 1.04 252 1014
2 0.60 12.70 57.22
4 038 7.70 34.84
6 032 6.58 27.66

Table 9 Run-time vs FFT length for the Constant

Geometry Pipeline FFT without unless.

Table 10 Speed-up vs FFT length for the Constant
Geometry Pipeline FFT without unless.

The shared memory machine and the OSC code do
not exploit the available pipeline concurrency. Therefore
to better compare the pipeline algorithm with the array
based (non pipeline) algorithms, it was coded using
arrays rather than streams.

Performance of the array based pipeline algorithm is
much better than the stream version since the array
copying is eliminated. By eliminating the array copying
one can then express the function switch as a parallel
for construct, thereby improving the speed-up
performance.

Run-time and speed-up results, for the array based
pipeline algorithm, are given in tables 11 and 12. The
results show that the use of arrays in OSC gives better
performance than the use of streams. The performance
of this pipeline algorithm is similar to the constant
geometry algorithm, refer to tables 3 and 4.

Note a dataflow machine would possibly achieve a
better result for the stream based pipeline algorithms as
pipeline concurrency could be exploited assuming a non
strict implementation of the streams. However at the
time of writing a dataflow machine that implements
SISAL streams was not available. It is expected that the
CSIRAC II simulator will eventually support the stream

type.

Processors 1024 2048 4096 8192 16384 32768 65536
1 0.9 1.94 4.22 9.080 19.280 41.360 86.680
2 0.48 1 2.16 4.600 9.820 20.980 43.960
4 0.26 0.54 112 2380 _ 5.000 11.100 2520
8 0.18 0.32 0.680 1.340 2.820 5920 12.380
16 0.16 0.26 0.520 1.000 1.960 4.060 8.540
Table 11 Run-time vs FFT length for the Constant Geometry (Array) Pipeline FFT.
Processors 1024 2048 4096 8192 16384 32768 65536
1 1 1 1 1 1 1 1
2 1.88 1.94 1.95 1.97 1.96 1.97 1.97
4 346 3.59 3.77 3.82 3.86 3.73 385
8 5.00 6.06 6.21 6.78 6.84 6.99 7.00
16 5.63 7.46 8.12 9.08 9.84 10.19 10.15

Table 12 Speed-up vs FFT length for the Constant Geometry (Array) Pipeline FFT.

100

Spesdup
o

12345678 910111213141516 | —&— 65536

Processors

4+
]

v Tt

+ 4

Figure 11 Speed-up vs FFT length for the Constant Geometry Pipeline (Array) FFT.

Conclusions

The paper has presented several FFT algorithms
which have been coded in SISAL. The Cooley-Tuckey
FFT algorithm is difficult to code in SISAL in a way that
exploits the concurrency which seems to be present in
the algorithm. This is due to the order in which the
output elements of each butterfly stage are produced.
Useful speed-up has been demonstrated, for the
constant geometry FFT algorithm, without significant
programming effort. However SISAL's lack of a
complex number type and operations, leads to clumsy
and long code.

For signal processing the data type stream is of key
importance as the data in this field occurs naturally as a
stream. Here SISAL could have an advantage over other
languages. However the strict implementation of
streams is inefficient making the writing of code difficult
if copying is to be avoided. The use of strict streams
limits the possibility of real time signal processing as the
whole of the input data, must be in memory before
processing can commence.

References
_[ABC*91] Adams D.E., Bronson E.C,, Casavant T.L.,
Jamieson L.H., Kamin R.A., "Experiments
with Parallel Fast Fourier Transforms",
Parallel Algorithms and Architectures for
DSP Applications, pp 49-75 Kluwer
Academic Publishers 1991,

[BSS92] Bollman D., Sanmiguel F., Seguel I,
"Implementing FFI’s in SISAL"
Proceedings of the Second Sisal Users’
Conference. pp 59-65, December 1992.

[Can89] Cann, D.C. "Compilation Techniques for
High Performance Applicative

101

[Can91]

[CED9]

[CO]

[COBGF]

[CT65]

[Cve8T)

[GBT3]

[GWT0]

Computation” Technical Report CS-89-
108, Colorado State University, pp 12-13,
May, 1989. '

Cann D.C. "Retire Fortran? A Debate
Rekindled", Technical Report UCRL-JC-
107018, Lawrence Livermore National
Laboratory, April 1991.

Chang P. and Egan GXK, "An
Implementation of a Numerical Weather
Prediction Model in SISAL" Technical
Report 31-017, Laboratory for Concurrent
Computing Systems, Swinburne Institute
of Technology December. 1990.

Cann D., Oldchoeft R.R., "A guide to the
Optimising SISAL Compiler" p32.

Cann D., Oldehoeft R.R., Bohm AP.W,,
Grit D.,, Feo J., " SISAL Reference
Manual, Language Version 2.0, Colorado
State University and Lawrence Livermore
National Laboratory, 1990.

Cooley J.W., Tukey J.W,, "An Algorithm
for the Machine Calculation of Complex
Fourier Series", Math. Comput., Vol. 19,
pp 297-301 April 1965.

Cvetanovic Z., "Performance Analysis of
the FFT Algorithm on a Shared-Memory
Parallel Architecture", IBM J. Res.
Develop. Vol. 31 No. 4, pp 435-451 July
1987.

Gold B, Bially T., "Parallelism in Fast
Fourier Transform Hardware", IEEE
Trans. Audio Electroacoust., Vol. AU-21
No 1, pp 5-16 February 1973.

Groginski H.L., Works G.A., "A Pipeline
Fast Fourier Transform", IEEE Trans.
Comput. Vol. C-19, pp 1015-1019
November 1970.

[MSA*85]

[NS87]

[Peat8]

[RG75]

[RG175]
[SJ90]

McGraw J., Skedzielewski S., Allen S,
Oldehoeft R., Glauert J.,, Kirkham C,,
Noyce B. and Thomas R. "SISAL:
Streams and Iteration In a Single
Assignment Language, Language
Reference Manual, Version 1.2, Lawrence
Livermore National Laboratory, March
1985.

Norton V.A,, Silberger A., "Parallelization
and Performance Prediction of the
Cooley-Tuckey Algorithm for Shared
Memory Architectures’, IEEE Trans.
Comput. Vol. C-36, No 5, pp 581-591 May
1987.

Pease M.C., "An Adaptation of the Fast
Fourier Transform for Parallel
Processing”, J. Ass. Comput. Mach., Vol
15, pp 252-264 April 1968.

Rabiner L.R., Gold B. "Theory and
Application of Digital Signal Processing”,
Prentice-Hall 1975 p 367.

Ibid, pp 575-576.

Sapiecha K., Jaroki R, “"Modular
Architecture for High Performance
Implementation of the FFT Algorithm",
IEEE Trans. Comput. Vol. C-39, No 12,
pp 1464-1468 December 1990.

102

Acknowledgements

The authors thank the members of the Laboratory
for Concurrent Computing Systems at the Swinburne
University of Technology, for their assistance in this
research. \

The authors thank the Royal Melbourne Institute of
Technology (RMIT) for the use of the Encore facility.

The Laboratory for Concurrent Computing Systems
is funded under a special research infrastructure grant
for parallel processing rescarch by the Australian
Commonwealth Government.

Note all FFT codes are available from the principal
author.

* - A.L. Cricenti is a member of Faculty in the School
of Electrical Engineering and a Researcher in the
Laboratory for Concurrent Computing Systems at the
Swinburne University of Technology, John Street,
Hawthorn 3122, Australia, Phone:+61 3 819 8516, E-
mail: alc@stan.xx.swin.oz.au.

GK. Egan is Professor of Computer Systems
Engineering and Director of the Laboratory for
Concurrent Computing Systems at the Swinburne
University of Technology, John Street, Hawthorn 3122,
Australia, Phone:+61 3 819 8516, E-mail
gke@stan.xx.swin.oz.au.

