THIRD
AUSTRALIAN
SUPERCOMPUTER
CONFERENCE

THE UNIVERSITY
of MELBOURNE

DECEMBER 3-6, 1990

Parallelising an Australian Region NWP Model

P.S. Chang
pau@stan.xx.swin.oz(.au)

G.K. Egan
ghe@stan.xx.swin.oz(.au)

Laboratory for Concurrent Computing Systems
School of Electrical Engineering
Swinburne Institute of Technology

John Street, Hawthorn 3122, Victoria, Australia

Abstract

In this paper, we report the progress of a research project in parallel computing for an
Australian Region Numerical Weather Prediction (NWP) model, which is conducted under a
collgboration between the Laboratory and the Australian Bureau of Meteorology Research
Centre. Presently, work is conducted on a shared-memory Encore Multimax multiprocessor.
The intention is to parallelise the model for its eventual efficient execution on multi-CPU Cray
supercomputers. The parallelisation has been successful with encouraging proven results and
with negligible parallelisation overhead.

Introduction

A pumber of weather models are being studied under a collaboration bhetween the
Laboratory and the Australian Bureau of Meteorology Research Centre. In this paper,
parallelisation of an Australian Region Numerical Weather Prediction model will be
deseribed.

Originally intended for ETA-10, the model is under development at the Australian
Bureau of Meteorology Research Centre in Melbourne, by Leslie and Dietachmayer?. It will
replace the model developed by Leshie et al.2 for short-term forecasting {up to 36 hours) over the
Australian region. Presently, the model consists of only the dynamics components. The
physics components will be added in further development.

The mathematical aspects of the model will be outlined briefly. The computation and
parallelisation of the model in EPF?, a UMAX 77 implementation of FORTRAN, will be
described.

About the Model

As described in Equations 1 to 7, the model solves the basic NWP equations, which are
those of Miyakoda?, for wind velocity, temperature and surface pressure in a nested
environment. First, we define the model variabies.

Iet wandv = Thorizontal wind speeds,
w = vertical wind speed,
8 = temperature,
¢ = geopotential height,
P = pressure,
p, = surface pressure, and
m = map factor

in the Cartesian (x,y) and g-coordinates, where ¢ is defined as

p = PS-U
and w o= gt—c

Incorporating surface pressure . the continuity equation is

8PS p.u
& s s dw
Tl m?[g;(—m) + 3 (o)] + g3 =0 (1)

The equations of motion are

du

Tl = -m(3), @)
%E“ -ulf+f,) = m() (3}

where f and fx are the Coriolis and the metric parameters, and

d 8 S & 3
ax T st m(“ax”*' v sy)c + Wi (4)

wi @), - @), B ®

S

The thermodynamic equation is expressed as

'de 59 39 50
@ = 5 +m(“5x+"5y + W (®)

where 8 = T(%)K, ¥ = —

Py being 1000mb, T the absolute temperature, R the gas constant and Cp the specific heat at
constant pressure. Equation 6 is transformed to

8 _
dt"o

Finally, the combination of the equation of state and the hydrostatic equation is expressed as

8¢ _ RT

% -~ o
or o = RT + §%§l (D
Model Computation

The flow chart in Pigure 1 shows the simple structure of the computational model which is
implemented in Arakawa-A non-staggering grids’. In the initialisation section, the field
storage inputs for model variables are read in and initialised in Fsin while model constants
are defined in Const.

‘ Start)

“YInitialisation. ' ‘Se

Fsin P Const

Next Time Step .

Figure 1: Flow chart showing the mechanism of the model

-3-

in the time looping section, the adiabatic equations are integrated in Tstep using split-
explicit method. There are two parts in Tstep. The first part performs semi-Lagrangian
treatment of the horizontal advection of u, v and 0 using polynomial interpolation of arbitrary
order. The second part is an adjustment step which computes the new values of the model
variables. The adjustment step is basically forward or backward with some modifications.
The Coriolis term may be optionally forward, centred or backward, the vertical advective flux
across the layer interfaces is calculated using first-order upwinding and spatial derivatives
are evaluated to fourth-order accuracy. Tstep thus forms the most computationally intensive
part of the model. The new values of the model variables are then blended with the external
nesting data in Nests. The integrated diagnostic quantities such as kinetic energy, potential
energy, total energy, mean vertical motion and mass are evaluated in Intl to ensure their
conservation. Finally, noise accumulates at high frequencies as integrations proceed.
Therefore, low pass filtering must be performed in Hrfilt and Hfilit, every few number of
time loop iterations to eliminate aliasing.

Parallelisation Aspects

The field variables of the model, except surface pressure, are three dimensional i.e.
horizontal x-y space and a vertical ¢-coordinate. The codes have been slightly restructured so
that parallelism is readily visualised. One may parallelise at any of the three dimensions in
most cases. In some specific cases, however, where summations are performed along the ¢
layer interfaces, the easiest path of parallelisation is at the ¢ dimension although one can still
base on the other dimensions with some effort.

The model was originally written in FORTRAN, the language commonly used by
weather modelers at the Research Centre. In order to sustain and ease software maintenance of
the models in long term by these researchers, it was decided that paralielisation should be
performed in FORTRAN rather than re-translating the codes to other languages such as C and
SISAL. While unnecessary code restructuring was avoided, an important guide-line has been
that code restructuring for parallelisation should be minimal, so that future model updates
would be easy for the researchers.

EPF

EPF is the UMAX f77 implementation of FORTRAN-77, enhanced with parallel
programming primitives to provide a parallel environment in a pregram and to synchronise
the explicitly intended parallel executions. These primitives are PARALLEL, DOALL, LOCK
WAIT, LOCK SEND, BARRIER, EVENT and CRITICAL SECTION.

The EPF compiler consists of analysis and transformation tools, a code generator, a
parallelising compiler and a parallel runtime library. Thus it can be used to convert a
standard FORTRAN program into a source annotated with parallel primitives. In the
compilation process, it first evaluates the possible concurrencey of program parts in .LST files.
It then annotates those parts and generates the corresponding EPF programs (.E files).

As often do other automatic parallel annotators, the EPF annotator also requires user
intervention to produce the most efficient codes for large programs. One may need to
reorganise the code parallelism in the .E files generated by the EPF compiler; however, as in
the case of this project, the parallelisation effort has already been usefully reduced by the
compiler's annotation pass.

The form of annotation used by EPF, although similar to other parallelising FORTRAN
compilers, are specific to the Encore Multimax multiprocessors on Unix BSD 4.3 (UMAX 4.3)
and System V (UMAX V). This makes the EPF codes non-portable. However, the parallel
structures of the model have been established. Thus if the codes were to be executed on other
shared memory multi-CPU machines, only translation to the syntax of the new parallel
environment is required.

A Simple Example

The following is an example of parallelising a standard FORTRAN code to EPF's .E
form. Extracted from Tstep, this code attempts to compute an adjustment step for u and v
described by the following equations:

du du 8 8
n v(f+ 1) - w 55 - m[a—f +R“I‘g(ln n)]

dv dv 3 8
m u(f+ £} -w 55 - m[—éf +RT 5 (Inp)]

il

This example has been specifically chosen because it clearly shows how a code can be
parallelised and the form of the annotation used by EPF. Most codes in the model are actually
much more complicated and require significant tuning to achieve the fastest execution time.

In the standard FORTRAN form, the code may be programmed as:

DO 620 K = 1,KMAX
DO 620 I = I2+NDNS, ILM-NDNS
DO 820 J = J2+NPNS, JLM-NPNS
&u v

C Vertical advection Wg and w%

UADV
VADV

(WADU(K+1,I,J) - WADU(K,I,J) = U(K,I,J)*{W(K+l,I,J)-W(K,I,J)) }*DQI(¥}
(WADV{K+1,I,J) - WADV(K,I,J) = V(K,I,J)*{(W{K+1,L,0)~W{K, I,J}} }*DQI(X}

b

¢ Corielis and map-factor termf andfy.

UGCORME = (1.0-CORCNT)*({ F{I,J)+DUMI(K,I,J}) })*VIK, I, J}
VCORME =-{1.0-CORCNT) *¢{ F{I,J)+DUMI(K,I,J} }*U{K,I,J)
8 8¢ 3 5
C Pressure gradient terms T, 8y * By (in ps) ' 3x (kn pS)'
DPHIDX = -TWDSI*PHI(K,I+2,J) + THDSI*PHI(K,I+1,J)
X ~THDSI*PHI (K, I-1,J) + TWDSI*PHI(K,I-2,J}
DPHIDY = ~TWDSI*PHI(K,I,J+2) + THDSI*PHI(K,I,J+1}
X ~THDSI*PHI(K, I,J-1) + TWDSI*PHI(K,I,J-2)
DLESDY = —-TWDSI*DUM2{l,I+2,J) + THEDSI*DUMZ{(1,I+1,J)
x ~-THDSI*DUMZ (1, I-1,J} + TWDSI*DUMZ(1,I-2,J}
DLPSDY = -TWDSI*DUM2(1,I,J+2) + THDSI*DUM2(1l,I,J+1)
* -THDSI*DUM2 (1, I,J-1) + TWDSI*DUM2(L,I,J-2}
C RT == RGAS*TP

DPTDX = DPHIDX + RGAS*T?(K,I,J)*DLPSDX
DETDY = DPHIDY + RGAS=*TP{K,I1,J) *DLPSDY
Caleulate the right hand side of the momentum equations.
RU = U{K,I,J) + DTA*(=-UADV + UCORMF - EM{I,J)*DETDY)
RV V{K,I,J) + DTA*{ =VADV + VCORMF - EM(I,J)*DPTDY }
C Update U and V.
FACT = CORCNT*DTA*{ F(I,J) +DUMIA{K,I,d))
UP{K,I,Jd) = { RU + FACT*RV)/{ 1 + FACT**2)
VPR, I,J) { RV - FACT*RU }/(1 + FACT**2)

(@]

it

620 CONTINUE

The modified version of the corresponding .E code generated by EPF is:

PARALLEL

INTEGER I,J,k

REAL UADV, VADV, UCORMF, VCORMF , DPHIDX, DPHIDY, DLPSDX, DLPSDY
® DPTDX,DPTDY,RU, RV, FACT

PRIVATE I,J,K,FACT, UADV,VADV, UCORMF, VCORMF, DPHIDYX, DEHIDY, DLPSDX,
X DPLPSDY,DPTDX, DPTDY, RU, RV

DCALL {K=1 : KMAX)
DO 620 T = I2+NPNS, ILM-NENS
DO 620 J = J2+NPNS, JLM-NPNS

C Vertlical advection,
UADV = (WADU(K+1,I,J) — WADU(K,I,J} ~ U{K,I,J)*(W(K+1,I,J) -W(K,I,J)))*DOI (K}
VADV = { WADV{E+]1,I,J}) - WADVIK,I,J) =~ VUK, I,J)*{W({K+1,I,T)-W(K,I,J})} }*DCIL{(K}

C Corieclis and map-factor term.
UCORME = {1,0-CORCNT)*{ ¥(I,J)+DUML(K,I,J})*V(K, I,
VCORMFE =={1,0-CORCNT)} *(F(I,J}y+DUML({K,I,J} }*U(R,I,D

C Pressure gradient terms,

DPHIDY = -TWDSI*PHI(K,I+2,J) + THDSI*PHI(X,I+1,J}

X —THDSI*PHI(K, I-1,J) + TWDSI*PHI({K,I-2,J)
DPHIDY = -TWDSI*PHI(X,I,J+2}) + THDSI*PHI(K,I,J+1}

X ~THDSI*PHI(K,I,J-1) + TWDSI*PHI(K,I,J=-2}
DLPSDX = —-TWDSI*DUMZ (1,I+2,Jd) + THDSI*DUM2({1,I+1,J)

X -THDSI*DUM2 (1, I-1,J) + TWDSI*DUM2(1,I-2,J)
DLPSDY = -TWDSI*DUM2(1,1,J+2) + THDSI*DUM2(1,I,Jd+1)

X -THDSI*DUM2(1,TI,J-1} + TWDSI*DUM2(1,I,J -2}
DPTDX = DPHIDX + RGAS*TP{K,I,J}*DLPSDX

DPTDY

DPHIDY + RGAS*TP(K, I,J;*DLPSDY

C Calculate the right hand side of the momentum equations.
RU = U(K,I,J} + DTA*{ -UADV + UCORMF =~ EM(I,J}*DPTDX }
RV = V(K,I,J} + DTA*(-VADV + VCORMF - EM{I,J}*DPTDY)

C Update U and V,
FACT = CORCNT*DTA* ({ F{I,J} +DUML{K, I,)
UP{K,I,J} = { RU + FACT*RV })/{ 1 + FACT**2)
VP(K,I,J) = { RV - FACT*RU)/{ 1 + PACT*=*2)

620 CONTINUE

END DOALL
END PARALLEL

In the EPF version, the parallel environment is bounded between PARALLEL and END
PARALLEL statements. The parallelised section, in this case, is the loop driven by DOALL (.. .)
and closed by END DOALL statements. Loop slicing is performed along the range of X (o-
coordinate}, the number of loop slices being dependent on the number of processors available.

Execution Performance

A four XPC-processor Encore Multimax running under UMAX 4.3 has been used to
investigate the execution performance of the parallelised model in EPF. The various runtime
results as tabulated in Table 1 are for the model size of 65 by 40 grid (approximately 150km
between grid points) by 12 o-levels. On a single processor, the execution time for the EPF
version is only fractionally longer than the original unparallelised version (both fully
optimised). This shows that the overall overhead contributed by parallelisation in EPF is
negligible. When multiple processors are used simultaneously to share the work load, Figure 2
shows that the execution time curve is close to the ideal.

-6-

#Processors | Time (seconds) Time {seconds) | Time (seconds)} Speedup Speedup
Original FORTRAN] EPF FORTRAN EPF Ideal S Sco
1 577 58.6 58.6 1.00 0.98
2 - 30.5 29.3 1.92 1.89
3 . 20.9 19.5 2.80 2.76
4 - 16.2 14.6 3.62 3.56

Table 1: Execution performance of the model in a Multimax multiprocessor environment

fxec Time vs # Processors (Encore) ‘arpe’
1o T T ROy S ey
so.od N T Criginal FORTRAN
-~ EPF FCRTRAN
o ideal
Time{sec)qo'O*
30.0
20.0
10.04
0,0 r v
1.0 2.0 3.0 4,0

Number of Processors

Figure 2: Reduced execution time in a multiprocessor environment

Seo is defined as the speedup of the EPF version over the standard FORTRAN version of
the model while S is the speedup of the EPF version over the single processor run time of the
same version. In the speedup plots in Figure 3, the s curve indicates that EPF gives very good
parallel processing support to the implementation and the Sco curve shows that the speedup
gained in runtime resulting from the parallel implementation is also as desirable. The two
curves are almost coincident, indicating an efficient and encouraging result with 91% system
utilisation in a four processor environment.

Speedup ve # Processors {Engore) ‘arpe’

Speedup ’

1.0 2.0 3.0 4.0

Number of Processcrs

Figure 3: Speedup curves

Future Work

Work is underway at the Bureau to add the physical components into the model. Their
impact to the model's parallel performance will be investigated once the full version is
available.

Our research in a parallel implementation of a spectral barotropic NWP model® resulted
in various recommendations of performance critical changes’ to the functional parallel
programming language SISALS and the Optimising SISAL Compiler OSC%. These
recommendations are being implemented by the SISAL committee and the developer of OSC for
the new version of SISAL namely SISAL 2.0. When the new compiler is available, the
Australian Region NWP model will be used to investigate the performance of SISAL 2.0 and
the new compiler.

Conclusions

The encouraging results obtained with the Australian Region NWP model in EPF, a
UMAX 77 implementation of parallel FORTRAN, have shown that the model has been
successfully parallelised. The results show that EPF introduces little or negligible
parallelisation overhead.

Acknowledgements

We are indebted to Dr. Lance Leslie and Dr. Gary Dietachmayer of the Australian
Bureau of Meteorology Research Centre for their invaluable support to this project. They have
built and supplied the original FORTRAN version of the model, and have been helpful in
explaining its mathematical aspects and functions. This project is conducted under a
collaboration between the Laboratory for Concurrent Computing Systems at Swinburne
Institute of Technology, and the Australian Bureau of Meteorology Research Centre.

References
1. Leslie L.M. and Dietachmayer G., personal communication, September 1990.

2. Leslie L.M. et al., "A High Resolution Primitive Equations NWP Model for Operations
and Research”, Australian Meteorological Magazine, No. 33, March 1985, pp. 11-35.

3. Encore Computer Corporation, "Encore Parallel Fortran Manual”, December 1988.

4. Miyakoda K., "Cumulative Results of Testing a Meteorclogical-Mathematical Model",
Royal Irish Academy Proceedings, July 1973, pp. 99-130.

5. Arakawa A. and Lamb V. R., "Computational Design of the Basic Dynamical Processes
of the UCLA General Circulation Model", Methods of Computational Physics, Vol. 17,
Academic Press, 1977, pp. 174-265, 337.

6. Chang P.S. and Egan G.K., "An Implementation of a Barotropic Numerical Weather
Prediction Model in the Functional Language SISAL", Proceedings of the Second ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, SIGPLAN
Notices, Vol. 25, No. 3, March 1990, pp. 109-117.

.8-

Chang P.S., "Implementation of a Numerical Weather Prediction Model in SISAL",
Master's Thesis, Technical Report 31-017, Laboratory for Concurrent Computing Systems,
Swinburne Institute of Technelogy, June 1990.

McGraw J. et al., "SISAL: Streams and Iteration in a Single Assignment Language,
Language Reference Manual Version 1.2", Memo 146, Lawrence Livermore National

Laboratory, March 1985,

Cann D., "Compilation Techniques for High Performance Applicative Computation”,
Technical Report CS-89-108, Colorado State University, May 1989.

