FOURTH AUSTRALIAN
SUPERCOMPUTER CONFERENCE

"VISUALISE THE POSSIBILITIES”

UNIVERSITY PARK HOTEL - BOND UNIVERSITY - GOLD COAST
AUSTRALIA 2 -5 DECEMBER 1991

"ONFERENCE HANDBOOQOK
AND PROCEEDINGS

Sponsored by

Hasted by

TECHQUAD

Promaoted by

Thinking Machines Corporation

Exploiting Parallelism
in a Numerical Weather Model

Pau§. Chang
Greg K. Egan

Laboratory for Concurrent Computing Systems
Swinbume Institute of Technology
John §t, Hawthorn 3122, Victoria

pau@stan.xx.swin.oz.au
Tel: 03 8198681
Fax: 03 8196443

Abstract

This paper reports our continued attempt in exploiting parallelism in the dynamics of an
Australian region numerical weather prediction model. Reported in [2], parallelisation was
performed for the original FORTRAN source, using an EPF (Encore Parallel FORTRAN)
compiler, with good performance results after some manual fine tuning. Conrinuing that work,
we also transliterated the FORTRAN source to SISAL, a functional language claimed to be
suitable for exploiting program parallelism on shared memory multiple processor machines.
Despite the presence of some known overheads, the initial results show that the SISAL code
also performs competitively.

Introduction

Under a collaboration between the Laboratory for Concurrent Computing Systems and
the Australian Bureau of Meteorology Research Centre, we are currently studying a number of
numerical weather prediction (NWP) models in terms of their inherent parallelism. One of these
Is an Australian Region NWP model. Originally intended for an ETA-10 supercomputer, this
model is under development at the Australian Bureau of Meteorology Research Centre in
Melbourne by Leslie and Dietachmayer [1] for short-term forecasting (up to 36 hours) over the
Australian region. Presently, the model consists of only the dynamics components.

In [2], we parallelised the model in the machine specific EPF FORTRAN (3], using an
EPF compiler. Good performance results were achieved after some manual fine tuning. Now
we have also transliterated the FORTRAN source to SISAL, a functional language claimed to
be suitable for exploiting program parallelism on shared memory multiple processor machines
[4]; the SISAL code can be ported to uniprocessor systems such as the SUN and IBM RS6000,
as well as multiple processor machines such as Encore Multimax, Sequent Balance, Alliant,
multiple processor Vax, CRAY supercomputers and dataflow machines. In our experiments,
dummy datasets were used because the model was still not completely developed. In the SISAL
version, therefore, we had to explicitly include an array bound check routine to make the code
run smoothly. Nonetheless, the SISAL code still yielded competitive performance compared to
the performance of the EPF FORTRAN code.

35

About the Weather Model

The mathematical and computational aspects of the model have been shown and described
in [2]. Briefly, on the mathematical side, the model performs integrations of adiabatic equatons
using split-explicit method. It solves basic NWP equations, which are those of Miyakoda [5],
for wind velocity, temperature and surface pressure field variables in a nested environment: the
former two are three dimensional matrices representing horizontal x-y space and a vertical o-
coordinate (pressure levels). The model is implemented in Arakawa-A non-staggering grids [6].

On the computational side, the code spends most of its time in the time stepping section,
which also is the focus of our parallelisation efforts. And the most computarionally intensive
parts of the model are in subroutine Tstep which computes a forward time step. It first
performs semi-Lagrangian treatment of the horizontal advection of u, v and 8 using polynomial
interpolation of arbitrary order. Following that, it computes the new values of the field variables
in an adjustment step. The adjustment step is basically forward or backward with some
modifications. The new values are then blended with the external nesting data. In other features
of the model, the Coriolis term may be optionally forward, centred or backward, the vertical
advective flux across the layer interfaces is calculated using first-order upwinding, and spatial
derivatives are evaluated to fourth-order accuracy. The integrated diagnostic quantities such as
kinetic energy, potential energy, total energy, mean vertical motion and mass are evaluated to
ensure their conservation. Also, noise accumulates at high frequencies as integrations proceed;
low pass filtering is therefore performed, once in every few time loop iterations, to eliminate
any resultant aliasing. On the whole, the model has a simple computational structure.

Parallelisation Aspects

Parallelisation has been attempted previously at the EPF FORTRAN level [2], and now at
the SISAL level.

At the FORTRAN level, the code was first automatically parallelised using an EPF
(Encore Parallel FORTRAN) compiler; the compiler is capable of converting a standard
FORTRAN program into a source annotated with parallel primitives. However, as with other
automatic parallel annotators, the EPF annotator also requires user intervention to produce more
efficient codes. In this case, we had to reorganise the code parallelism in the EPF FORTRAN
version generated by the compiler. Fortunately, this fine tuning effort was already usefully
reduced by the compiler's annotation pass. However, the parallelised EPF FORTRAN code has
a drawback in contrast to the SISAL source, in that it is machine specific to Encore Multimax
multiprocessors.

In the SISAL implementation, as we did in the EPF FORTRAN implementation, we
targeted exploiting the most common source of parallelism, which is the for loop expression.
The code was.first transliterated from the original FORTRAN version, then all loops were
transformed to-SISAL's parallel loop form wherever possible. Qur previous experience in the
parallel implementation of a spectral barotropic weather model in SISAL [7] was valuable, in
that we had learnt to cope with SISAL's single assignment rule, its unique way of exposing
inherent parallelism, which at times causes clumsiness in programming. Constructing SISAL's
parallel loops was simple using the loop transformations method described in [8], and even
more so in this grid model. At compile time, SISAL's compiler for multiprocessors, OSC
(Optimizing SISAL Compiler) [9], evaluates the parallel costs of these loops, and will
slice/parallelise them accordingly if the costs are desirable.

However, as this model is not yet complete in development, dummy data sets have been
used for the main field variables in our experiments. In the time stepping section, there are
some parts which computationally depend on these field variables, and as a result inevitably
access out of bound elements in some arrays. While this is allowed in FORTRAN, SISAL's
OSC compiler is unforgiving; so in our current SISAL implementation, we have deliberately
included a routine to check array bounds so that the SISAL program could run smoothly, but

36

this unfortunately has also resulted in quite significant performance overheads. Nonetheless,
this problem will become trivial when appropriate data sets are used in a fully developed model
in the future.

Experimental Results

The codes have been run on an Encore Multimax multiprocessor consisting of six XPC-
processors, running UMAX 4.3, at Swinburne Institute of Technology, and a four CPU
CRAY XMP/48 at Lawrence Livermore National Laboratory. The various runtime and speedup
results, as tabulated in Table 1 and Table 2, are for the model size of 65 by 40 grid
(approximately 150km between grid points) by 12 g-levels, and for one time step.

Encore Multimax

I cpyg || Original EPF FORTRAN SISAL
FORTRAN Speedup | Speedup | Efficiency Speedup |Efficiency
P Time(sec) || Time(sec) S Sco (5/P) Time(sec) Ss (Ss/P)
1 577 584 1.00 0.99 100% 58.5 1.00 100%
2 - 285 1.98 1.96 9% 326 1.79 %0%
3 - 20.9 2.79 2.76 93% 232 2.52 84%
4 - 16.2 3.60 3.56 0% 18.1 3.23 81%
5 - 154 3.79 3.73 76% 18.0 324 65%
6 - 12.7 4.60 4.54 77% 14.9 3.92 65%

Table 1: Results obtained from an Encore Multimax multiprocessor

7.00 4

6.00

S

Sco

Ss

Ideal Speedup

5.00

| ¢4 ¢

4.00
3.00

i Speedup

2.00

1.00 T L

CPUs

Figure 1: Various speedup curves

The results of executing the codes on the Encore Multimax machine are tabulated in Table
1. On a single processor, the execution time for the EPF FORTRAN version is only fractonally
longer than the original non-parallel FORTRAN version (both fully optimised). This shows that
the overall overheads contributed by the parallelisation in EPF is negligible. When multiple
processors are used simultaneously to share the work load, the execution times are close to the
ideal.

37

The values of Sco (the speedup of the EPF FORTRAN version over the standard
FORTRAN version of the model) show that the speedup gained in runtime resulting from the
parallel implementation is desirable. On the other hand, the values of S (the speedup
performance of the EPF version) indicate that the EPF compiler gives very good parallel
processing support to the implementation. The curves of Sco and S in Figure 1 almost
coincide, indicating an efficient and encouraging result with good system utilisation (efficiency)
in a multiple processor environment.

The SISAL compiler used for this experiment is OSC Version 8.5. Although the speedup
performance of the current SISAL code is not as good as that of EPF FORTRAN, their single
processor runtimes are, nonetheless, close. The results indicate that the functional language
SISAL, and its compiler, can also provide very good parallel processing support. There are two
known major overheads in this case. One is the deliberately added array bound check routine
which was mentioned above. The other is due to the OSC generated code which allocates and
deallocates arrays. The compiler currently does not optimise this code, which automatically
reclaims memory between cycles of execution. For our SISAL implementation, these repetitive
operations are unnecessarily costly. The allocation of storage could take place once, before the
loop begins execution, and storage could be freed after the loop completes; hence an aggregare
preconstruction optimiser is desperately needed [10]. This problem is not new [7], and is being
attacked in the hope of achieving substantial improvements in both sequential and parailel
performance of SISAL programs [10].

The speedups gained in the SISAL version, $s, and the EPF version, S, indicate that
there is a large amount of inherent parallelism 10 be exploited in the dynamics of this weather
model, and that scalable speedups could be expected if more processors are added.

CRAY XMP/48

Having carried out our experiments on an Encore Multimax machine, it is useful to test
the same codes on a multiple CPU supercomputer. Unfortunately, we could only manage some
very limited access to a CRAY XMP/48, running UNICOS 5.1, located at the Lawrence
Livermore National Laboratory; and we only managed to obtain results for the SISAL version
(Table 2), and not for the standard FORTRAN version.

CPUs CPU Time | | WallClock Time|| Percentage CPU || Speedup
(sec) (sec) Utilization (CPU Time)
1 3.8867 4.5575 85.3% 1.0
14 1.3931 6.8203 20.4% 279 1
1.3740 6.8203 20.1%
1.2554 6.8167 18.4%
1.2885 6.8207 18.9%

Table 2. Results of the SISAL version on a CRAY XMP/48

The XMP systemn was heavily loaded at the time the code was run, as indicated by the
low figures of percentage machine utilisation. However, with 4 CPUs, the parallelism in the
SISAL code offers a speedup (based on CPU times) of nearly 3, or 70% of the ideal. These
results show that the model can potentially achieve good parallel performance on a multiple
CPU CRAY machine through exploiting parallelism in SISAL.

38

Conclusions

A large amount of parallelism in the dynamics of this grid weather model has been
realised. While the exploitation of parallelism in the machine dependent EPF FORTRAN is
efficient, SISAL as a functional language also allows parallelism to be effectively expressed to
achieve good speedup in addition to code portability. The parallel performance of our SISAL
implementation of the weather model so far has been encouraging and competitive compared to
the implementations in the original FORTRAN and the EPF FORTRAN, and is expected to
improve substandally when an aggregate preconstruction optimiser is included in OSC.

Acknowledgements

The original standard FORTRAN version of the weather model was developed and
provided by Dr. Lance Leslie and Dr. Gary Dietachmayer of the Australian Bureau of
Meteorology Research Centre. The runtimes of the SISAL code on a CRAY machine were
obtained from the CRAY XMP/48 at Lawrence Livermore National Laboratory with the
invaluable assistance of Dave Cann. This project is conducted under a collaboration between the
Laboratory for Concurrent Computing Systemns at Swinburne Institute of Technology, and the
Australian Bureau of Meteorology Research Centre.

References

[1] L.M. Leslie et al., "A High Resolution Primitive Equations NWP Model for Operations
and Research”, pp. 11-35, Australian Meteorological Magazine, No. 33, March 1985.

(2] P.S. Chang and G.K. Egan, "Parallelising an Australian Region Numerical Weather
Prediction Model", Third Australian Supercomputer Conference, December 1990.

[3] Encore Computer Corporation, Multimax Technical Summary.

[4] J. McGraw et al., "SISAL: Streams and Iteration in a Single Assignment Language,
Language Reference Manual Version 1.2", Memo 146, Lawrence Livermore National
Laboratory, March 1985.

[5] K. Miyakoda, "Cumulative Results of Testing a Meteorological-Mathematical Model”, pp.
99-130, Royal Irish Academy Proceedings, July 1973.

[6] A. Arakawaand V. R. Lamb, "Computational Design of the Basic Dynamical Processes of
the UCLA General Circulation Model", pp. 174-265, 337, Methods of Computational
Physics, Vol. 17, Academic Press, 1977.

[7] P.S. Chang and G.K. Egan, "An Implementation of a Barotropic Numerical Weather
Prediction Model in the Functional Language SISAL", pp. 109-117, Proceedings of the
Second ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
SIGPLAN Notices, Vol. 25, No. 3, March 1990.

[8] P.S. Chang, "Implementation of a Numerical Weather Prediction Model in SISAL",
Master's Thesis, Technical Report 31-017, Laboratory for Concurrent Computing
Systems, Swinburne Insttute of Technology, June 1990.

[91 D. Cann, "Compilation Techniques for High Performance Applicative Computation”,
Technical Report CS-89-108, Colorado State University, May 1989,

[10] D. Cann, "Retire FORTRAN? A Debate Rekindled", Technical Report UCRL-JC-107018,
Lawrence Livermore National Laboratory, April 1991.

38

40

