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Abstract

Computational stress analysis is now widely used in geomechanics for back analysis of
observed rock mass behaviour around surface and underground excavations, and as a 100l for
excavation design in mining and civil engineering. Program SDEM is a two-dimensional
distinct element code which models the mechanical behavior of systems of simply deformable
blocks, for example highly jointed rock. The data structures of SDEM are comprised largely of
linked list structures, making effective implementation on vector and array processors difficulr.
This paper details the analysis and refinement steps used in the initial parallel implementation of
SDEM on an Encore multiprocessor system, using Encore Parallel Fortran (EPF ) compiler.

1. Introduction

Computational stress analysis is now widely used in geomechanics for back analysis of
observed rock mass behaviour around surface and underground excavations and as a tool for
excavation design in mining and civil engineering. The distinct element (DE) method, which
Tepresents a rock mass as a discontinuum of separate blocks, has been shown to be more
realistic than finite element (FE) or boundary element (BE) methods in which rock mass is
modelled as a continuum, for systems such as subsiding strata over underground coal mine
excavatons [CD88] [CD91]. However, whereas even 3D FE and BE analyses can now be
performed readily on engineering workstations or the more powerful personal computers, the
DE method may require an order of magnitude more of computer processing time for analyses
of comparable complexity. This has so far prevented the DE method from being applied widely
in excavation design in industry.

Most DE codes are based upon an explicit time integration of Newton's second law of
motion for each DE, usually involving many thousands of timesteps or solution cycles in a full
analysis. The explicit numerical method implies that, within each cycle, calculations for each
DE are independent and so could be carried out in parallel. The potential therefore exists for
creating muche faster DE codes, which would run on moderately priced multi-processor
computers, and therefore more accessible machines, through the use of parallel processing.

This paper describes several parallelisation techniques on SDEM [CMBLA78] and
presents the run time results on an Encore Multimax multiprocessor, using Encore Parallel
Fortran (EPF) compiler. It is prepared as a result of the work conducted to reach the final
summarised results of the research (parallelisation of SDEM) for the presentation in [ETCO0L.
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2. About SDEM

SLEM is a distinct element code which was originally developed by Cundall
[CMBT;AZ8], and has been modified subsequently by Lemos [LHC85] and Coulthard
[Coultd®7}. In DE programs such as SDEM, the individual blocks in the rock mass are
represented by a set of distinct elements or blocks. In addition to its rigid body translational
and rotational degrees of freedom, each block is allowed 3 modes of deformation internally.
Analysis of the mechanics of the system of blocks is based on force-displacement relations
describing block interactions, and Newton's second law of motion for the response of each
block to the unbalanced forces and moments acting on it.

The problem space is divided into boxes as shown in Figure 1. The comners of all the
blocks are mapped into the corresponding boxes. For example, box 6 contains C(3,1) and
C2.1), and box 3 contains C(3,2). The use of boxes is to enable easier search of corners in the
detection of contacts. The box entries need to be constantly updated as the blocks move.
Reboxing is triggered if a corner crosses an integer boundary, i.e. if the integer part of either x
or y coordinates of a corner changes.

During the calculation process, blocks may move and touch different blocks, and hence
new contacts may be formed. Therefore, contact data needs to be constantly updated.

All the arrays (data array for blocks, the box array, and the contact array) in SDEM are
stored in a single memory partition. They are one-dimensional arrays. The data structure
[LC86] is a number of linked lists in which pointers are used to link the various data items.
The pointer is a memory location whose content is an address of another memory location. In
linked list structure, a value which will not occur is used to indicate the end of the linked list
{endmark). In SDEM, a ‘0 is used as the endmark.
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Figure 1: Subdivision of problem space into boxes

2.1 Originali SDEM Code

The original computational structure of the SDEM code is shown in Figure 2. The major
computation takes place in subroutine CYCLE which in turn calls subroutines UPDAT,
MOTION, STRESS and FORD.

Subroutine MOTION determines the motion of a block by using Newton's law of
motion. It updates the rigid body velocities of the block using known force sums acting on
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centroids. It also updates the internal strain rates from known applied and internal stresses.
Then, the coordinates of block corners are updated from the strain rates and rigid body

velocities: e

Stbroutine MOTION calls REBOX if the integer part of either x or y coordinates of a
corner changes. Then, subroutine REBOX re-maps the comer into a box.

The internal stresses upon each block are updated in subroutine STRESS using an elastic
constitutive law,

Contacts are checked by subroutine UPDAT when cumulative displacements have
exceeded a given limit. For each contact, subroutine FORD computes the normal and shear
forces developed using constitutive laws. If these forces exceed the specified shear or tensile
strength of the rock joints, the contact can slip or open. The forces contributed by the contact
are then added to the force sums for centroids of both blocks involved in the contact. Likewise,
the applied stress calculated is added to the applied stress sum of both blocks.

The calculation cycle in subroutine CYCLE is performed once per timestep. The iteration
within subroutine CYCLE continues until the number of imesteps specified (ncyc) is reached.
This may bring the DE system to an equilibrium state or to a state of steady collapse, or it may
simply be a convenient point at which the user can assess the status of the computation.

MOTION
(call REBOX if

% comer moved)

Figure 2: Original Computarional Structure of the SDEM model
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3. Cgmgger Used: EPF

“Zhe Encore Parallel Fortran compiler (EPF) is the FORTRAN77 compiler enhanced
with plraliel programming constructs (ECC88]. Standard FORTRAN programs can be
directed to EPF to produce parallelisation optimizations. EPF determines that some loops can
be executed in parallel and converts them into parallel FORTRAN statements, and produces
annotated (.E) output files. Listing files (.Ist) can also be generated by specifying -¢ list option.
Parallelised loops are indicated in the listing files. Non-parallelised loops and data
dependencies which limit loop parailelisation are also shown in the listing files.

The parallel execution is initiated by the parallel statement and terminated by the end
parallel staternent. The number of processes that are created in parallel block is determined by
the environment variable EPR_PROCS. The processes created are then distributed to the
available processors; there are four processors on the Encore Multimax used in our experiment.

EPF was used to automatically annotate and compile the original SDEM code in
FORTRAN. Unfortunately, the resulting performance did not improve with the increase in the
number of processors used.

3.1 Manual Annotation in EPF

Examination of the .Ist listing files produced by EPF apparently indicated that most of
the significant program parts were not parallel. It was immediately obvious that EPF did not
perform interprocedural analysis. It was then decided that the level of concurrency could be
improved by manually augmenting the annotated codes in the .E files, with additional parallel
directives such as parallel, doall, barrier and critical section.

The initial parallelisation achieved by EPF was enhanced by focusing upon the non-
parallel sections with major attention being devoted to do loops as almost all parailel compilers
exploit loop concurrency. When there are nested loops, the normal approach is to tackle the
outer loop if possible since less overhead is incurred. If parallelisation of a large loop is limited
by 2 small section in the loop, then better performance could be achieved if the small loop could
be extracted and executed sequentially outside the original loop. The objective is to achieve the
best possible performance but minimise code modification.

The fundamental of all parallelisation efforts lies in identifying and eliminating data
dependencies. In this code, data dependencies are usually not able to be removed easily.
Minor code restructuring is necessary in order to resolve data dependencies and enable loop
parallelisation. However, there are times when a section in a parallel block has to be executed
sequentially.= In such cases synchronisation mechanisms such as wait lock, send lock,
barrier are needed so that partial parallelisation in the loop can be achieved. It should be
noted, however, that it may not be advantageous 10 parallelise small loops as the time needed in
creating and terminating a parallel block may result in an increased runtime,
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4. Parallel Implementation

-;melisation attempts were concentrated on time critical subroutines which were
identified By the UNIX utility, gprof. The major loop in the subroutine CYCLE could not be
parallelised because information in one timestep (cycle) was passed on to the next timestep.
Therefore, the attempt at loop parallelisation was shifted one loop level inward. This inner level
consists of loops that call subroutines MOTION, STRESS and FORD. While the profile
showed that subroutines MOTION and FORD were runtime significant, the loops which call
these subroutines were not parallelised at EPF's automatic pass.

Therefore, the following subsections discuss the non-concurrency factors in the major
loops and explain the solutions of these limiting factors to parallelisation. The subsections are
in the order of run time contribution.

4.1 Subroutine Ford: Memory Contention Problem

The do loop which calls subroutine FORD finds the contacts between each block and its
immediate neighbours, and for each contact accumulates the applied stress and the sum of the
forces of both blocks. In practice, it will normally be quite common for blocks to have direct
contact with several others, as illustrated in Figure 3.

update blocky & ¢

|| contact point

/ 7
update block x & ¢ UPdate block z & ¢

Figure 3: Contacts between adjacent blocks

Therefore, if the do loop calling subroutine FORD is executed in parallel, there may be
multiple non-deterministic writes to the same memory locations as forces are accumulated.
Hence, if the original algorithm is maintained, then update of applied stress and the sum of
force in subroutine FORD has to be executed sequentially. A solution to this non-determinacy
is 10 "lock” the data structures of the interacting blocks while accumulating the forces. EPF
synchronisation mechanisms wait lock and send lock were implemented initially as follows:

wait lock (lok_nb(nbc)) (lok_nb(nb))

send lock (lok_nb(nbc))
send lock (lok_nb(nb))
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where all elements in lok_nb are of type lock, and nbc is the block in contact with block nb.
In theory, the above should lock the two lock variables, lok_nb(nbc) and lok_nb(nb),
simultanecusly. _

towever, it was discovered that the EPF compiler did not implement the required
double-lock correctly, planting only the first of the two locks. It was therefore necessary to
implement the locks using calls to the Encore primitives: spinlock and spinunlock. In the
implementation, we ensured that the code immediately released the first lock if the second lock
was not acquired. This is necessary to avoid a deadlock. The locking scheme was
implemented as follows:

2 call spinlock(lok_nb(nb))
if (espinlock(lok_nb(nbc))) goto 1
call spinunlock(lok_nb(nb))
goto 2

1 continue

call spinunlock(lok_nb(nbc))
call spinunlock(lok_nb(nb)}

4.2 Loop calling subroutine Motion

The parallelisation in the loop which calls subroutine MOTION is limited by udmax, a
variable in subroutine MOTION, and the problem of race condition in subroutine REBOX.

4.2.1 Subroutine Motion: Data Dependency

udmax in subroutine MOTION keeps track of the maximum velocity of all blocks by
comparing the current maximum velocity with the velocity of the current block. Therefore,
subsequent loop iterations cannot proceed until the value of udmax is computed in the current
loop iteration. Since udmax is not used in the loop, the data dependency due to udmax can be
removed by storing the velocities of each block in two arrays and then the maximum velocity is
determined sequentially outside the loop which calls MOTION.

Alternatively, the algorithm can be modified slightly so that the determination of udmax
will not be necessary. udmax is used to check if UPDAT call is necessary. However, the calls
to subroutine UPDAT can be made by comparing the displacement of each block with a major
displacement. This method was not implemented because it did not conserve the original
algorithm.

4.2.2 Subroutine Rebox: Disruption of Linked Lists Search

Subroutine REBOX re-maps a corner into a box. It determines the correct box which

the comner should be in. If the corner is not found in the correct box, then REBOX will seek
the corner in the neighbouring boxes, and then relocate the corner to the correct box. An error
will result if the corner cannot be found in the determined neighbouring boxes, and this will
cause the program to halt. Such rapid movement of a block corner usually implies that the
explicit ime integration has become unstable.
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‘ If subroutine REBOX is included in the parallel section, the problem of corner search
will emerge. For example, consider the linked list structure of Box P in Figure 4a; the search
of corngL.X# box P may be disrupted as illustrated in Figure 4b.

! e I! 1] 1 7
BoxP!  fl v c!rner * co?ﬁer * * 'gi
Y X
Box pointer comer's linked list

Figure da: Linked list structure of Box P

Processor a Processor b
Searching for corner X in Searching for corner Y.
Box P, where it should be in. Corner Y is not found in Box Q,

where it should be in.
Now, scanning a neighbouring
box (also Box P) for corner Y.

Tl Obtain the address of corner Y.

& T2 Found corner Y in Box P.
g
= T3 Relocate comner Y to the correct

box, which is box Q.

T4 | Current corner being searched
{corner Y) is not corner X.

Y T5 | Getnextcomer.
_ But an endmark is found.

Figure 4b: An example of corner search problem in subroutine Rebox

At T3, corner Y has been appended to the corner's linked list in Box Q by Processor b.
Therefore, when Processor a searches the next corner in Box P at TS, it cannot find the correct
‘next corner’, but the endmark of Box Q list. Corner x which exists in Box P was missed in
the Box P search. Processor a, in searching the neighbouring boxes, will fail to find corner x.

So, this code section must be properly synchronised. An atternpt was made to include
spinlock in REBOX, but the performance was unpredictable. For a system of smaller size,
¢.g. 105 blocks, performance of SDEM was acceptable. However, for a system of larger size,
e.g. 3000 blocks, the performance was significantly degraded. The body within the critical
section is considerably long and the cost of implementing spinlock became visible with larger
system size. Therefore, it is not suitable to include subroutine REBOX in the parallel section.
Call to subroutine REBOX was therefore removed from subroutine MOTION, so that it could
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be executed separately but sequentially in subroutine CYCLE, and enable the loop calling
MOTION 4 execute in parallel.

4.3 Subroutine Updat: Relocating sequential code section

The subroutine UPDAT is called conditionally, but not frequently. It is important for
cases in which sudden collapse of the system occurs, which triggers frequent calls to the
subroutine. This subroutine detects the contacts of each block. If there is a new contact
detected, storage space for contact data is grasped from an empty list. For those old contacts
which no longer represent the present contacts of a block, their data storage space is released to
the empty list. In the original implementation, the release of contacts to the empty list was made
after the detection of contacts for each successive block, as illustrated in Figure 5.

; ;I*i*l* :;i*i;

block 1 |block 2} et |7 P Y 1V b

I contact pointer ! contact data and empty list

(a) Original data struture

f l!CIFCIICIIC ‘\16“__5_"
¥ vi *I *i #‘ * E+l+

block 1 {block2%.voeeeeeest LT 4T 1T

I contact pointer [ comtact data and empty list

(b) New Contact for block 1 is allocated

nempt e
i_ - 1 £ 1 < ] Fy < 3 n ¢ 1l g 1
T ; y . T 11 T
block 1 [block 2] .eneee. vy % v Yy * + .....
| contact pointer l contact data and empty list

{c) An old contact of block 1 is released to the empry list

Figure 5: Dara structure of block contacts. { ¢ = contact data list, e = empty list )
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There are 4 nested loops in subroutine UPDAT, as follows:

For each block
Do each edge
Do each box in j direction
Do each box in 1 direction

End boxes i scan
End boxes j scan
End edges scan
Scan next block

The initial parallelisation approach was to attempt to parallelise the outermost loop (For
each block). However, as the release of the old contacts of each block was embedded in the
loop which scanned the blocks, scanning of blocks was thus forced to be sequential. Less
memory space was needed using this method. However, some amendment of the algorithm is
necessary if the scanning of blocks is to be parallelised. The old contacts can be released after
all detection of contacts has been performed. As a result, in the new implementation, all blocks
are scanned in parallel foliowed by the sequential release of the old contacts.

In the ‘Doall blocks' loop, more than one contact may try to acquire space from the
empty list. Therefore, a lock’ is required during the update of nempr, the pointer to the start of
the empty list, while acquiring new contacts.

5. Further Fine Tuning

The primary objective of parallelising codes is to reduce computation time. Other
tuning, such as inlining short subroutines and fusing loops with identical bounds and no inter-
loop dependencies have also been performed because EPF does not have inlining options, nor
does it fuse loops.

For example, in subroutine CYCLE , the do loops which call subroutine MOTION and
subroutine STRESS had the same bounds and there were no data dependencies between the
two i00ps, so the loops were fused. Also, the short subroutine STRESS was inlined into
subroutine CYCLE .

In EPF, there is no automatic barrier at the end parallel statement, in other words, the
parent does not wait at the end parallel statement for the children to be destroyed. Therefore,
it is possible for the parent process to finish its job and go on to execute statements following
the parallel region while the child processes are still performing their jobs. Problems may occur
if these statements which are executed by the parent process, require the completion of the
execution of child processes. Care should therefore be taken to include a barrier before end
parallel directives when performing manual annotation.

In FORTRAN programs, there are a number of error checking statements such as
If (error) then stop
If this statement is in a parallel block, the block may never complete. This happens when any
child process executes the stop statement before it reaches end parallel. Then, when the
parent reaches the end of the parallel block, it will wait forever for all processes to arrive. This
condition was avoided by using a shared flag which is set to false if an error occurs. It is
implemented as follows:
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parallel
If-(.éffor) then cont= false.
end paralle}

......

if .not. cont then stop

6. Performance Analysis

The final version of SDEM was run over several data sets on Encore Multimax
multiprocessor. The results, as tabulated in Table 1, indicate that the single processor runtme
of the code produced by the EPF compiler is slightly higher than that produced by the 77
compiler. This is the result of the overhead created by the former in process creation and
termination.

The speedup and efficiency on different system sizes are tabulated in Table 2. Snb.cyup
is a data set with nb number of blocks in the system, iterated over cy cycles and triggering up
calls to subroutine UPDAT. Speedup is defined as the ratio of the execution time on a single
processor to that with n processors sharing the workload, which is

Stn)=Ti1/Tn

Efficency is defined as the average utilization of the n allocated processors. It is related to S(n)
by: ‘

E(n) = S(n)/n

Ideally, speedup increases with the increase in the number of processors.
Unfortunately, along with an increase in speedup there may come a decrease in efficiency. As
more processors are devoted to share the execution of the program, the total amount of
processor idle time may increase due to factors such as contention for shared resources, the
time required to communicate between processors and between processes, and the inability of
the compiler to produce an execution code which would keep an arbitrary number of processors
usefully busy [EZL89]. As aresult, ideal speedup is not achievable although the parallelisation
objective is to bring the actual speedup as close to the ideal speedup as possible.

The speedups on different system sizes are presented in Figure 7. The curves show that
speedup improves when the body of the parallel code section increases in size, in this case by
increasing the size of the systems (number of blocks). As subroutine UPDAT has been
parallelised efficiently, therefore, a run on a data set which triggers frequent calls to subroutine
UPDAT gives an encouraging speedup. The right hand ends of the curves indicate that when
all four processors are used in the experiment, the performance of the code is adversely
affected. This is principally due to the context switching (contention for processors by other
processes) running on the multiprocessor system at the time of the program run.
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No. of S 105, 20000, 2 S 3000, 100, 2 5105, 20000, 20000

Processors | 77 (sec) |EPF(sec) | £77(sec) | EpE (sec) | EPF (sec)

1 2412.7 | 2595.00 907.2 1023.17 17836.00
2 - 1495.70 - 571.41 9288.45
3 - 1078.10 - 403.76 6315.53
4 885.80 - 320.26 4973.17

Table 1: SDEM runtime on Encore Mulimax Multiprocessor

No. of S 105, 20000, 2 S 3000, 100, 2 S 105, 20000, 20000
Processors Speedup | Efficiency | Speedup |{Efficiency | Speedup |Efficiency
1 1.00 1.00 1.00 1.00 1.00 1.00
2 1.74 0.87 1.77 0.86 1.92 0.96
3 2.41 0.80 2.53 0.84 2.82 0.94
4 2.93 0.73 3.19 0.80 3.59 0.90

Table 2 : Speedup and efficiency on Encore Multimax Multiprocessor

“&  Ideal

—* 5105,20k,2
& §3k,100,2
-9 5105,20k,20k

No. of processors

Figure 7: Speedup curve
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7. Conclusions

In this paper, details of the parallelisation of SDEM using EPF were discussed. The
limiting factors in the parallelisation of major loops were explained and ways of circumventing
them were described. Although SDEM does not produce effective automatic parallelisation
using EPF, the performance of the program can be improved by manually optimizing the output
codes after automatic annotation.

The linked list data structures used in the SDEM program and their manipulation
presented the major difficulty in parallelising the code. Access to the structure by a number of
parallel tasks necessitated a significant number of synchronisation points reducing the
obtainable speedup.

The program spends a significant amount of computation time in sequential searches for
data along the linked lists. To further improve performance, it may be possible 10 reorganise
the data structures, replacing some linked list structures with direct access matrices. However,
this would require major modifications to the code and this would be counter to our aim of
minimum code restructuring.
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