Department of Electrical
and
Computer Systems Engineering

Technical Report
MECSE-11-2007

Exploitation of Hashing and Locality for Integral Sorting
iIn Molecular Orbital Computations

T. Ramdas, G. Egan and D. Abramson




MECSE-11-2007: "Exploitation of Hashing and Locality for ...", T. Ramdas, G. Egan and D. Abramson

Exploitation of Hashing and Locality for Integral
Sorting in Molecular Orbital Computations

Tirath Ramdas, Gregory Egan and David Abramson

Abstract— A software-based approach to perform run-time
sorting of Electron Repulsion Integrals, with the aim of SIMD-
fication of the the Hartree-Fock Self-Consistent-Field application,
is presented. A hashing based approach is described. The per-
formance of the scheme on a conventional processor is presented
for various workloads. The results suggest a tradeoff between
hash-efficiency and cache-efficiency. An optimal hash-table size is
identified, which is suitable for various workloads. It is apparent
that a hardware-based solution would be better suited for a
high-throughput special-purpose computer, though some gains
are possible with this generic software-based approach.

I. INTRODUCTION

The Hartree-Fock Self-Consistent-Field (HF-SCF) algo-
rithm is a valuable tool in the field of computational quantum
chemistry. Unfortunately, these and closely related computa-
tions suffer very poor scaling, between O(N?) to O(NT7),
depending on the particular level of accuracy required. In
light of this massive computational requirement, and the
potential gains to be made in fields such as pharmaceuticals
and nanotechnology, we proposed that an application-specific
computer be considered [1].

One of the most successful application-specific computers
is the Protein Explorer [2], which targets large scale Molecular
Dynamics (MD)'. At the heart of the Protein Explorer is the
Gravity Pipe (GRAPE) special-purpose processor [3]. GRAPE
is basically a Single-Instruction-Multiple-Data (SIMD) pro-
cessor. We have observed that application-accelerators in the
bioinformatics field tend to employ the systolic array archi-
tecture [4], which is a form of SIMD processing. Perhaps
the most common SIMD processor today is in virtually every
personal computer and gaming console — the Graphics Pro-
cessing Unit (GPU), which finds widespread use outside the
graphics application domain [5]. The Cell Broadband Engine
also relies heavily on SIMD processing [6]. Traditionally the
most prominent proponent of SIMD processing was vector
processing; although vector processing has lost it’s dominance
in the supercomputing sphere, it is very much still alive [7].

SIMD processing is an attractive architecture because it
is highly efficient for number crunching — the resources of

T. Ramdas {tirath@int19h.com} is with the Center for Telecommunications
and Information Engineering, Monash University.

G. Egan {greg.egan@eng.monash.edu.au} is with the Center for Telecom-
munications and Information Engineering, Monash University.

D. Abramson {david.abramson@infotech.monash.edu.au} is with the Cen-
ter for Distributed Systems and Software Engineering, Monash University.

'Note that (MD) is roughly in the same scope as HF-SCF, however
MD merely approximates electronic quantum behaviour, whereas HF-SCF
accounts for these rigourously — and therefore is much more computationally
expensive, but also much more accurate.

Molecule Basis Funcs. | ERI Threads
Water, HoO 25 48k
Nitrous Oxide, NoO 45 512k
Zinc Chloride, ZnCly 55 1.14M
Butane, C4H1g 110 18.3M
Nicotine, C19H14 N2 250 488M
Caffeine, Cg H190N4O2 260 571IM
TABLE I

BASIS SET SIZE AND THREAD COUNT FOR VARIOUS MOLECULES

the processor are dedicated more towards processing data and
less towards control-oriented operations. However, as a result
of this tradeoff, only certain applications may benefit from
SIMD processing. Technically, applications that benefit the
most from SIMD processing exhibit a substantial degree of
Data-Level Parallelism (DLP). An application rich in DLP
is an application which requires the processing of a large
amount of data, however it is critical that large sets of
data (i.e. vectors of data) be processed by exactly the same
instruction sequence. Effectively, each operation (e.g. floating-
point arithmetic) operates on a vector of data in parallel.

It would be desirable to employ SIMD processing for the
HE-SCF application. Unfortunately, this is not immediately
possible. The kernel of the HF-SCF algorithm, and indeed it’s
computational hotspot, is the evaluation of Electron Repulsion
Integrals (ERIs) which are numerous and individually complex
to compute. Table I lists some sample workloads and the
number of ERIs required. Concurrent SIMD processing of
multiple ERIs is not currently feasible because there are
various classes of ERI, and different ERI classes require a
different instruction sequence.

However, we have observed that for a given workload,
within the entire set of ERIs there exists a significant number
of ERI with identical class. Subsets of matching ERI could
be constructed, and fed to a SIMD processor. The challenge
is to do this sorting in a high-performance manner that does
not negate the performance gains of the SIMD processor. We
previously proposed that this operation be performed with a
specialised memory structure [8].

In this report we investigate the feasibility of implementing
the sorting facility on a conventional 64-bit RISC processor.
We find that the performance does not approach the theoretical
performance of the hardware approach previously proposed.
Some insight into the balance of hash table size, vis-a-vis
hashing efficiency vs. cache performance, is also presented.



MECSE-11-2007: "Exploitation of Hashing and Locality for ...", T. Ramdas, G. Egan and D. Abramson

II. DESIGN

The strategy employed with our software based ERI sorting
solution is to perform early/eager subset creation by placing
ERI quartets into ERI class subsets as soon as they are issued
by the generating nested loop. Each subset is a container which
will contain threads of identical class that may be computed
with an identical instruction sequence. The space for each
subset is pre-allocated for V' threads — this may result in space
wastage, however it avoids the relatively massive expense of
dynamic memory allocation. In addition to each subset being
pre-allocated, the number of subsets is also set a priori and pre-
allocated, with no runtime dynamic memory allocation being
used. Let the number of subsets be S. If one has S subsets and
each subset has capacity for V' quartets, then the system has
the capacity to hold a maximum of S x V' quartets. In order to
mitigate the effects of the memory wall, specifically to increase
the degree of spatial locality in the program, all S subset
containers are allocated in contiguous chunks of memory (and
each subset container is in turn allocated as a contiguous chunk
of memory as well). We have chosen V' = 64.

To achieve good SIMD unit utilisation one has to maximise
the number of threads present in the system, since a larger
population of threads increases the likelihood that there will be
a sufficiently large number of threads with identical class. This
requires a large S — we have found 1024 to be a good value.
Unfortunately, with a conventional processor, this imposes a
worst-case 0(1024) search operation when trying to match a
new thread with it’s corresponding subset. This problem can be
mitigated through exploitation of temporal locality exhibited
by the subsetting process, as well as use of hashing.

We have observed that subset mapping tends to exhibit a
significant degree of temporal locality when the canonical
ERI generation nested loop scheme [1] is employed. Basically,
when a subset has been used, it is likely to be used again within
a short period of time. To exploit this behaviour the history of
subset access is maintained in the form of a queuing structure,
such that whenever a new quartet is to be placed in a subset,
the subset lookup/matching is performed in most recently used
(MRU) sequence which would typically result in most lookups
being completed in < O(S) time.

The next optimisation is incorporation of a hashing function,
which further reduces the lookup time and is particularly
effective at “mopping up” the remaining subset lookups which
do not benefit from exploitation of temporal locality. Hashing
dramatically limits the number of subsets that need to be
checked exhaustively. We propose that the MRU queue data
structure be incorporated with this hashing approach. We use
a CRC hash function. Our proposed system is illustrated in
Fig. 1.

The design is implemented in C++ utilising the standard
template library (STL); specifically, the MRU queues were
implemented with vector containers. Each vector is reserved
with (S/HASH_TABLE_SIZE)+1, though experimentation even
with the most pessimistic reservation — i.e. S — did not affect
performance significantly. Performance with deque containers
instead of vector containers was noticably slower.

/control ™, hash S
%, tuple ’,."key/queue

mapping

MRU queue subset

Fig. 1. ERI Sorting with conventional systems. The control tuple is a token
comprising all the data that expresses the control-flow of the thread — a 64
bit control tuple is sufficiently large for this application.

1.4e-06 e
1.2¢-06 | -
O
© 1le-06 | Zinc Chloride —+— E
£ Butane ---x---
> Nicotine ------
£ Caffeine &
= 8e-07 -
o
2]
4
u
5 6e-07 - .
o
3]
j=2)
g
o 4e-07 I~ —
< g
2e-07 B
0 1 | | P
1 10 100 1000 10000
Hash Table Size
Fig. 2. Average per-thread sorting time vs hash table size.

III. RESULTS

Fig. 2 depicts the average per-thread sorting time for various
workloads on a 1.8GHz AMD Opteron based HP DL145 G3
system. Only a single core was used. The code was compiled
with gcc, with the following switches: -pipe -O3 -ffast-math
-funroll-all-loops -fpeel-loops -ftracer -funswitch-loops -funit-
at-a-time. The best performance is around 120ns per integral
— this is not a good result because 200ns is approximately
the average ERI computation time on conventional cores.
Therefore, a 120ns sorting time would not enable substantial
speedup.

Performance tends to be better with larger workloads, up
to a lower-bound. The more interesting observation is that the
best sorting time is achieved with a hash table of 256 entries.
This inflection point appears to be a consequence of a trade-off
between hash efficiency and cache efficiency.

Perfect hashing would mean that a match/search operation
could be performed in O(1) time. It would also require a hash
table size > S, and in this case S = 1024. Corresponding to
our design, a large hash table implies shorter individual MRU
queues, and a small hash table implies longer individual MRU
queues. A very large hash table would result in greater hash
efficiency — i.e. resolving collisions would only require a very



MECSE-11-2007: "Exploitation of Hashing and Locality for ...", T. Ramdas, G. Egan and D. Abramson

100 T T T
2]
o
o
o
a
o
=
9]
>
]
o]
@
s 10} .
z ]
w
@
aQ
o
o
«
9]
>
<
1 1 1 TN Ht
1 10 100 1000 10000

Hash Table Size

Fig. 3. Average per-thread MRU queue probes. Only the Nicotine workload
is presented.

1le+06 r T T T
n
K]
Q.
£
]
%]
[}
0
S 100000 | .
]
=
Q
]
O
8
]
[a}
10000 L L L
1 10 100 1000 10000
Hash Table Size
Fig. 4. Data cache misses (interval sampling). Only the Nicotine workload

is presented.

short exhaustive search along the corresponding MRU queue.
This is reflected in Fig. 3.

However, a very large hash table may result in inefficient
use of caches in contemporary processors. Traversing the
MRU queue is a spatially-local operation, and would be very
amenable to wide cacheline pre-fetching policies. However,
accesses to a hash table may be random. Furthermore a larger
hash table involves a larger memory footprint, which could
potentially lead to cache capacity misses. Therefore, although
a large hash table would result in fewer memory access
operations, the average cost of each operation increases. This
is reflected in Fig. 4. Note that these results were obtained
through performance counter sampling, and should not be
taken as absolute values.

IV. CONCLUSION

The results have indicated that with high-throughput rapid
sorting, there has to be a balance between hash-efficiency and
cache-efficiency. For this application, with this architecture,
and with CRC hashing — a hash table size of 256 is a
good value. Further work should include repetition of these
experiments on other architectures, and with other hashing
functions.

For the purpose of development of a special-purpose com-
puter system, it appears that a special hardware structure based
on an associative search memory [8] may indeed be warranted.

NOTE

Execution time and MRU queue probing count numbers are
averaged for all threads, cache misses are raw sample count.
All results presented in this report were obtained on marklar
with sources tagged “SOFTSORT-MARKLAR-TR-NOV-07”
(gindy_cell) on 5-6 November 2007.

REFERENCES

[1] T. Ramdas, G. K. Egan, D. Abramson, and K. Baldridge, “Towards a
special-purpose computer for Hartree-Fock computations,” Theoretical
Chemistry Accounts [online first], http://dx.doi.org/10.1007/s00214-007-
0306-6, 2007.

[2] M. Taiji, T. Narumi, Y. Ohno, N. Futatsugi, A. Suenaga, N. Takada, and
A. Konagaya, “Protein Explorer: A Petaflops Special-Purpose Computer
System for Molecular Dynamics Simulation,” in Proceedings of Super-
computing 2003, 2003.

[3] J. Makino, “The GRAPE Project,” Computing in Science and Engineer-
ing, vol. 8, no. 1, pp. 30-40, 2006.

[4] T. Ramdas and G. Egan, “A Survey of FPGAs for Acceleration of
High Performance Computing and their Application to Computational
Molecular Biology,” in Proceedings of IEEE TENCON, 2005.

[5] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krger, A. E.
Lefohn, and T. J. Purcell, “A survey of general-purpose computation on
graphics hardware,” in Eurographics 2005, State of the Art Reports, Aug.
2005, pp. 21-51.

[6] M. Gschwind, “Chip multiprocessing and the cell broadband engine,” in
CF’06: Proceedings of ACM Computing Frontiers 2006, 2006, pp. 1-7.

[7]1 P. A. Agarwal, R. A. Alexander, E. Apra, S. Balay, A. S. Bland, J. Colgan,
E. F. D’Azevedo, J. J. Dongarra, T. H. D. Jr., M. R. Fahey, R. A. Fahey,
A. Geist, M. Gordon, R. J. Harrison, D. Kaushik, M. Krishnakumar,
P. Luszczek, A. Mezzacappa, J. A. Nichols, J. Nieplocha, L. Oliker,
T. Packwood, M. S. Pindzola, T. C. Schulthess, J. S. Vetter, J. B. W.
III, T. L. Windus, P. H. Worley, and T. Zacharia, “ORNL/TM-2004/13:
Cray X1 Evaluation Status Report,” Oak Ridge National Laboratory, Tech.
Rep., 2004.

[8] T. Ramdas, G. K. Egan, D. Abramson, and K. Baldridge, “Converting
Massive TLP to DLP: A Special-Purpose Processor for Molecular Or-
bital Computations,” in CF ’07: Proceedings of the 4th Conference on
Computing Frontiers. New York, NY, USA: ACM Press, 2007.



