
Department of Electrical
and

Computer Systems Engineering

Technical Report
MECSE-26-2006

FPGAs vs Microprocessors

A.P.W. Bohm and G.K. Egan

Abstract—this paper presents some issues when implementing
or re-implementing computational kernels on Field
Programmable Gate Arrays (FPGAs). The class of kernels
considered is those which use data streaming.

Index Terms—microprocessors, FPGAs, streaming,
dataflow.

I. INTRODUCTION

M icroprocessors have taken a lot of the thinking

about programming away from programmers. The increasing
levels of abstraction we use, and the computational
efficiencies these abstractions can bring, have until now
been matched by an apparently unending increase in
computational power offered by contemporary
microprocessors. Unfortunately this growth is coming to an
end. Increased complexity is offering only marginal gains in
performance and this coupled with increased clock rates is
leading to power consumption which is unacceptable for
many important embedded applications.

A conventional microprocessor reads and executes
(strictly interprets) a program using, at its core, the classic
Von Neumann cycle (fetch instruction, decode instruction,
fetch operands, execute, and store operands). The style of
programming formulation tends to be memory centric dating
from a time when memories were generally faster than
CPUs. The order of magnitude difference between the CPU
and memory clock speed is overcome somewhat by using
multi-layered cache structures which relieves us of the effort
required for explicit memory management. Unfortunately it
also makes it difficult to bound execution times, a serious
issue in real-time embedded applications. Managing cache
coherency is becoming of serious concern in the newer
hyper-threaded multi-cored microprocessors. The use of
double precision floating point arithmetic which apparently
relieves the programmer of the need to understand the range
and precision needs of a particular computation, is in some
cases misguided due to the power consumption and chip
area required to implement floating point functions.

FPGAs (field programmable gate arrays) offer

considerable flexibility and provide us with an opportunity
to bypass some of the strictures of contemporary
microprocessors. FPGAs may be used to execute a
computation directly rather than to interpret some
representation of the computation as is the case for Von
Neumann architectures. This is accomplished by turning a
program into a circuit and laying the circuit out on the
configurable logic blocks of the FPGA. FPGAs have no
caches, but they have on chip block RAM. These block
RAMs are under the explicit control, so the time to perform
the computation is deterministic. Because the program is
laid out on the FPGA in the form of a dataflow graph, fine
grain parallelism is exposed. In some cases we choose to
program the FPGAs with a soft processor and augment the
instruction set or add application specific logic to provide
the overall required functionality. We can choose in this
case to add explicit cache management partially overcoming
the criticisms above.

II. THE VON NEUMANN LEGACY

For some time we have been obliged, or is it habit, to
express significant classes of computation, originally
expressed as directed graphs, in some form of textual
language, usually an imperative language. What may have
been simple scalar variables are collected together into
arrays to better fit the machines whose basic interpretation
mechanisms emphasise iteration and indexed data structures.
This has in some cases led us to express computations using
matrix notations where this is not at all necessary. The
temporal validity of these former scalars embedded within
matrices is often lost. Alternative data structures that
preserve the timing semantics of the computation are streams
(flexible size FIFOs) and delay queues (fixed sized buffers
with simple timing characteristics).

As an example large distributed process control systems
may be aggregated and described by a single large system
state matrix. The resulting sparse-matrix problem, and all
the complexities, principally memory addressing and data
locality management, that accompany a memory based
formulation may well have been avoided using the more
appropriate dataflow programming model in conjunction
with streams.

FPGAs vs Microprocessors
A.P.W. Bohm¹ and G.K. Egan²

Department of Computer Science
Colorado State University

Fort Collins, USA.¹

Department of Electrical & Computer Systems Engineering
Monash University 3800
Melbourne, Australia.²

MECSE-26-2006: "FPGAs vs Microprocessors", A.P.W. Bohm and G.K. Egan

The conclusion one may reach is that the very way we
think about and formulate problems has been and is
determined by the nature of what von Neumann himself
viewed as an interim computer architecture given the
technology of the day. Von Neumann's own interests we
know extended to large parallel architectures including self-
replicating architectures.

III. FLOATING POINT ARITHMETIC

Computational scientists may be prepared to program
block RAMs explicitly provided there are very large
performance gains, but they will not give up (e.g. IEEE
standard) floating point arithmetic in general, although there
are particular cases where fixed-point or special purpose
floating point arithmetic can give rise to impressive
speedups on FPGAs.

Some will remember that to perform computations on
analog computers, which preceded digital computers,
required very careful consideration of the maximum absolute
value of intermediate computational variables. If the values
were too large then amplifiers saturated (arithmetic
overflow) rendering the computation invalid. If the
variables were scaled down too aggressively to avoid
overflow the resulting signal to noise ratios could deteriorate
introducing errors (precision). What there is left of the
literature in this domain could give some insight into
appropriate arithmetic implementations for a given
computation.

Microprocessors use floating point arithmetic as they are
expected to perform general purpose computations and to
cope with all possible applications. This is not the case
when we are implementing direct execution kernels on
FPGAs. Are we just lazy or have we forgotten how to
manage range, precision and error propagation in our
computations?

Currently floating point operations take a large amount of
space on FPGAs, because they have to be implemented in
the normal FPGA fabric, i.e., there is no special support for
them, as there is for e.g. integer multiplication. Current
FPGAs allow for about 50 (growing to 200+ in newer
FPGAs) single precision floating point operations to be laid
out on a chip. As FPGAs run at much lower clock rates than
microprocessors, their floating point performance is not
impressive. FPGAs currently often only accomplish
speedups vs. microprocessors in the 3 to 5 range, (although
there are exceptions [1]).

IV. PROGRAMMING FPGAS

FPGAs have until recently been programmed using
Hardware Description Languages such as Verilog and
VHDL. This makes it hard for application experts trained in
more mainstream languages, such as C and FORTRAN, to
take advantage of FPGA technology.

Researchers have been working on algorithmic
(imperative) programming language compilers for FPGAs.

Example developments are Handel-C, Nimble, Defacto, SA-
C, and Mitrion-C. SRC Computer Inc. (SRC) [2] is a very
early adopter of this compiler technology. The SRC MAP
compiler translates standard C and Fortran to FPGAs. SA-C
and Mitrion-C are languages with single assignment
semantics. These languages map naturally to dataflow
graphs. Handel-C has CSP (communicating sequential
processes) semantics. The rest are Von Neumann languages
that require more elaborate analysis and transformation
techniques (e.g. Static Single Assignment analysis) to be
mapped into dataflow graphs.

Even though there is now programming language support
for FPGAs, the programming practice is still hard
particularly for those steeped in contemporary abstract
programming styles. To exploit the fine grain direct
execution model of FPGAs, programs need to be
restructured and often rewritten from scratch. The reason for
this is that in order to exploit the FPGA architecture, the
programmer has to be aware of the amount of parallelism in
the computation, the memory allocation (which relates back
to the amount of parallelism unleashed), the staging of
memory accesses through registers, delay queues, FIFOs,
block RAMs and on board memories (OBMs) external to the
FPGAs but directly coupled. FPGAs typically have very
little on-chip RAM.

Most of the time there are orders of magnitude more
computational parallelism than can be implemented directly
on an FPGA, which means that the programmer needs to
"fold" or "tile" the computation in such a way that the kernel
will fit on the available chip area, the FPGAs bandwidth to
the on board memories is maximized, and the block RAMs
are accessed in parallel as much as possible. This is not
readily expressed in the algorithmic programming
languages.

V. A REPRESENTATIVE FPGA PLATFORM

Currently FPGAs run at frequencies up to ~400 MHz,
usually lower than that (100 - 200 MHz). However, where a
microprocessor has one port dedicated to its memory, an
FPGA has many ports to many parallel on board memories
(OBMs). For example, in the SRC’s SRC7 two FPGAs are
connected to 18 memories. This higher memory bandwidth
in FPGA based machines provides for a more balanced
machine architecture and can be exploited by the fine grain
parallel program laid out on the FPGAs.

1) An example – LU decomposition

Figure 1 gives a straightforward LU decomposition kernel
code fragment.

 for k = 1 to n {
 for i = k+1 to n
 Aik /= Akk
 for i = k+1 to n
 Aij -= Aik*Akj }

Figure 1 Simple LU decomposition code fragment from [3].

MECSE-26-2006: "FPGAs vs Microprocessors", A.P.W. Bohm and G.K. Egan

Restructuring the code for dataflow implementation [4]
requires inverting the data dependencies to create a
stream/process network: instead of taking Akk, Aik and Akj
to Aij in iteration k, the whole matrix A is streamed through
processes, each representing an iteration. Iteration k+1 can
start after iteration k has finished row k+1. Neither row k
nor column k are read or written anymore. Results from
iteration/process k flow to process k+1. Process k uses row
k to update A[k+1:n, k+1:n]. Actually, only a fixed number
(P) of processes run in parallel. After that, data is re-
circulated.

OBM1

00

1

P=12
on

SRC6

P-1

OBM2

OBM2

OBM1

OBM3

S0

S1

OBMS:
 OBM1 -> OBM2 on even sweeps
 OBM2 -> OBM1 on odd sweeps
 OBM3 : siphoning off finished results

Processes are grouped in a parallel sections construct
each process is a section.

 Process 0
 reads either from OBM1 or OBM2
 writes to stream S0
 Process i
 reads from Si-1 writes to Si
 Process P-1
 reads from Sp-1
 writes finished data to OBM3
 writes rest to OBM1 or OBM0

Figure 2 Process pipeline

for(i = (s-1)*P; i < n; i++) {
 for(j = (s-1)*P; j < n; j++) {

 //ping-pong
 if(k&0x1) w= OBM1 [i * n + j];
 else w= OBM2 [i * n + j];
 // if (i < me) leave data unchanged
 if (i ==me) { // store my row
 if (j == i) piv = w;
 myRow[j] = w;
 }
 else
 if (i > me) { // update this row with my row
 // if (j < me) leave data unchanged
 if (j == me) { w /= piv; mul = w;}
 else if (j > me) w -= mul*myRow[j];
 }
 put_stream(&S0, w);
 }}

Figure 3 Inside Process 0

All other processes are similar. The rest of the processes
also read from stream (where P0 reads ‘ping-pong’ style
from the OBMs). Last process writes ping-pong style to
OBM.

The behavior of the restructured LU decomposition
algorithm is not at all obvious at first glance. It requires
significant understanding of the FPGA and in particular its
OBM.

2) Performance

The relative performance for the LU decomposition is
shown in Figure 4. Note the unpredictable behavior of the
Pentium due to its memory hierarchy (cache) performance
and that the FPGA implementation is about 5 times faster for
n=512.

Again the limiting factor is the number of floating point
units that were available at the time. The new generation of
FPGAs have a significant number of embedded floating
point units. The commitment of dedicated FPGA chip area
to floating point units recognizes the previously noted
extreme reluctance of applications programmers to
explore other arithmetic paradigms [5] despite the potential
benefits in speed and power consumption which are critical
in some applications.

Figure 4 Pro Red (jagged peaks): 2.8Ghz Pentium. Blue: SRC MAP6 with
2 FPGAs at 100 MHz.

OBM1

P0P0

P1

P=12 on SRC6

OBM2

MECSE-26-2006: "FPGAs vs Microprocessors", A.P.W. Bohm and G.K. Egan

VI. FPGA PROGRAMMING STRATEGIES

Because of their nature, FPGAs are well suited to
applications where data is streamed into a pipelined
computational kernel with the data being transformed and
continuously streamed out of the FPGA. Most classical
signal processing applications have these characteristics.

Some of the more effective programming strategies
include:

- Delay queuing to avoid re-reading data from OBMs
effectively projecting data forward in time to the
specific point of use. This is often done using windows
in image processing and other scientific codes amenable
to a stencil approach - used in Erode/Dilate pipelines in
Focus of Attention codes.

- Replication of inner loops to exploit fine grain
parallelism and memory bandwidth is a common
compiler technique to reduce control overheads – used
in a Gauss-Seidel iterative solver.

- Avoiding read/write conflicts in inner loop bodies, as
these slow down the inner loop clock rate - used for
inner products (matrix-vector multiply, matrix-matrix
multiply) using hardware macros instantiated in the C
program.

- Turning loop oriented codes into task and stream
oriented codes to exploit data locality. Used in LU
decomposition by inverting the data dependencies.

VII. CONCLUSIONS

There are no silver bullets which will allow us to go
directly from the kernel of an existing program to a high
performance FPGA implementation.

To achieve the promise of direct execution architectures
will require, at least for the foreseeable future, the ability to
juggle significant spatial and temporal relationships in the
formulation applications. These are skills which to a
significant degree have been either hidden or not required
with systems built on the Von Neumann interpretive
execution architecture. While current microprocessor
designers clearly have these skills they are not now routinely
developed within in university courses where abstraction
rules. While some of these skills may be innate and not
teachable there are working principles which we can codify
that do not necessarily require deep insight.

It seems clear that most programming of FPGA based
solutions will depend perversely on dominant existing
imperative languages. These languages are not particularly
well suited to describing stream based algorithms of the
class we may be interested in, but there is a wealth of
compiler knowledge available to translate these programs
into the dataflow graphs which lie directly on the path to
FPGA realization. This is certainly the case where we
adhere to a single assignment discipline and avoid large flat

memory structures and pointers.

Augmentation of these languages will be required to allow
us to better manage the lifetime and location of data. Some
of the new compilers are already addressing this in a
primitive way. Importantly we must have the ability to
project data forward in time (to some future clock cycle)
without the need to explicitly create and manage queues or
tapped queues. In many cases, stencils, which are familiar to
us, can be mapped to quite specific hardware structures
although with current compilers this must be explicit.

To close there may be some merit in the use of engines
which directly interpret the dataflow graphs (dataflow
machines [6]), when our computational kernels exceed
current FPGA capacities, or when we need to support more
than one application concurrently; back to the future
perhaps?

ACKNOWLEDGMENT

We wish to thank SRC Computers Inc. [2] for access to
their facilities and NCSA for holding the Reconfigurable
Systems Summer Institute 2006 [7].

REFERENCES

[1] Kindratenko, V., Accelerating Scientific Applications with
Reconfigurable Computing, NCSA Reconfigurable Systems Summer
Institute 2006.

[2] SRC Computers Inc., www.srccomp.com/default.htm

[3] Cormen, T.H., Leiserson, C.E., and Rivest, R.L., Introduction to
Algorithms, MIT Press, pp 750, 2001.

[4] Bohm, A.P.W., The Power of Streams on the
SRC MAP, NCSA Reconfigurable Systems Summer Institute 2006.

[5] Constantinides, G.A., Cheung, P.Y., and Luk, W., Synthesis of
Saturation Arithmetic Architectures, ACM Transactions on Design
Automation of Electronic Systems (TODAES) Volume 8 , Issue 3,
pp 334-354, 2003.

[6] Egan, G.K., Webb N.J. and Bohm W., 'Some Features of the
CSIRAC II Dataflow Machine Architecture', in Advanced Topics in
Data-Flow Computing, Prentice-Hall, pp143-173, 1991.

[7] NCSA RSSI06, www.ncsa.uiuc.edu/Conferences/RSSI

MECSE-26-2006: "FPGAs vs Microprocessors", A.P.W. Bohm and G.K. Egan

