SIMULATION OF NUMERICAL PETRI NETS USING
DATA-DRIVEN COMPUTER ARCHITECTURES

Report 2
Contract No. 63228
De G.K. Egan
Senior Lecturer, Digital Electronics and
Computing Systems

Numerical Petri Net Report 2 G.K. FEgan 1983

l. Suggested Second Report Tasks

The following tasks were suggested for the second phase of the
study:

1) Propose a suitable graphical language for the description of
NPNs in terms of connected sub-nets,

2) Establish a suitable format for the transmission of NPHN
descriptions from the Clayton Telecom VAX to the R.M.I.T.
computing facilities. '

3) Determine exploitable parallelism in a typical NPN. The T6
protocol nets were to be used for this determination.

4) Propose a data-driven architecture that might be appropriate
to exploit the parallelism of NPN descriptions.

[]
[

Languages

There are many languages for data=-flow architectures and
usually several for each architecture. Some seek to gain favour
for data-flow architectures by emulating textual languages used
on conventional Von+Neumann architectures [Whitelock]. Textual
languages because they are intrinsically one dimensional tend to
obscure any parallelism in the algorithm being described and
worse still may by their sequential nature prevent the full
expression of that parallelism. Textual language examples for
data=-flow architectures are usually illustrated by an informal
graphical language.

Graphical languages for data-flow architectures also come in
many flavours and again there may be several used for any given
data-flow architecture [Wengl [Dennis} {Rumbaugh] [Misunas].
Although graphical languages allow a fuller expression of
algorithm parallelism few data-flow graphical languages have well
defined notations for describing data=flow graphs as nested and
connected sub-graphs,

Some examples of mixed textual and graphical languages are
given below:

Numerical Petri Net Report 2 G.K., Egan 1983

& 3, 2"‘“1 3 z“‘l
x{aT) —_—
ey
i
y{(nT)
y{nT) = kjy{({n=1)T)+koy {((n=2)T}+x{nT)~Lx ({n=1}T)
second Order Digital Filter {weng]

/ﬁwmmmm_mwmm—-m—n—mmmmmm-m%wm

from trigger

cl module (x:imt;y:int)
(=L} * x => y
mend
c2: module (x:int;y:int)
K1 * X => ¥
mend
c3: module (x:int;y:int)
Kp * X => vy
mend
Add,module (%9 : int,xzzint,X3:inth4;int;y:int}

Numerical Petri Net Report 2 G.K. Egan 1983

Xl + %9 + x3 + X5 => vy
mend
F: perform {x:st int; y:st int)

con=s5(0,x) => ty1; ¢y ({ty) => toi
con=s5(0,ty) > Lg; cioltyg) => to;
con+s5{0,ty) => tg; c'3{tg) => tgi
Add'(t(i,tz,}(,t'y} “> ta;
ty => y

pend

TDFL Textual Description of Filtery

module_application actor the module M {8 subatituted for
for M ~ the actor
" notation
x
Y A
M |
w z /

Ml: rmodule (x:st int; z:st int)
if empty{x}) then [} => z
else get(0) =-> head, tail;
Ml(tail} => more;
con=s{Z2*head,more) -> z

end
mend
M2: rmodule (y:st int,z:st int;w:st int)
1f empty (y) or empty(z)
else get(y) =~> yl,y2;
get(z) => zl,z2;
M2{y2,22}) =«> wl;
con*s{yl+zl,wl) => w
end
M: module (x:st int, y:st int;z:st int,w:st int)
Mlix;z2);
M2(y,2z;w)

Recursive TDFL Example and Graphical Representation [Weng]

Numerical Petri Net Report 2 G.X. Egan 1983

o e e

T T T T T T Ty

|
l
#
|
|
|
|
|
|

|
i
1
!
l
|
l
|
E
|
!
|

-

INPUT (W,X)
yi=x; tr=0;

WHILE t<>w DO
BEGIN
IF y>1 THEN
yr=y div 2
SE

ELSE

yr=y *3;
te=t4];
END
OUTPUT vy

Data Flow Schema and Program (Dennis]

Both the examples above are from the Massachusetts Institute of
Technology Computation Structures Group.

Numerical Petri Net Report 2 G.K. Egan 1983

Jtﬁgger

Dup
COMPUTE
CONDITION
BRA
=T
internal
trigger
\\‘ |
‘thgg@r 1 x Ty

IF x>0 THEN
BEGIN
yr=y+2
END;

Compiler Template for IF Statement {Whitelock]

Numerical Petri Net Report 2 G.K. Egan 1983

trigger X

I

COMPUTE
CONBGITION

1 trigger
WHILE =<1000 DO
BEGIN
X:=x*y

END;

Compiler Template for While Loop [Whitelock)

The above examples are from the Manchester Data=Flow Machine Group,

Numerical Petri Net Report 2 G.K. Egan 1983

2.1 FLO Languages

There are four languages available to Support the FLO system:

1) Data~Flow Language 1 (DL1): a block structure textual langquage
[Richardson] .

2} Newspeak: a Lisp like functionatl language [Wathanasin].
3) Graph: a graphical language [Walkington].

4) Intermediate Target language (ITL): a low level textual
language [Egan].

2.1.1 Data=Flow Language 1 (bL1)

DLl was developed to provide language support for research into
object recognition and manipulator control using the FIL0Q system
[Richardson]. It was regarded as a temporary expedient forced by
the absence of suitable graphical editing devices which would
have allowed the direct generation of data=flow graphs. The main
aim in the development of DLI was not to obscure the underlying

graphs and sub=graphs that were being described; this aim was
only partially achieved,

DL1 which has many similarities to Weng's TDFL 15 the current
working language for the FILO system but it will be abandoned when

Graph (Section 2.1.3) is fuilly commissiocned.

2.1.2 Newspeak

Newspeak was developed some time ago to explore the use of
functional languages on data=flow architectures. It remains a
valid tool for that research,

2.1.3 GCraph

Graph is the graphical language for FLO (Egan} [Richardson].
With the availability of appropriate graphical input devices at
R.MJILT. a full interactive graphical compiler is being
commissioned [Walkington] as a thirgd vear design project in the
Communication and Electronic Engineering Department.

Numerical Petri net Report 2 G.K. Egan 1983

The Craph Compiler allows full interactive top down development
of data-flow graphs as connected and nested sub-graphs,

\ [%71)
(AND

|

Primitive Nodes Nodes with Literal bata

B e R Al

Balanced Trees Merge Nodes

Control Functions

[T | s) [

Sub-graph Invocation

Numerical Petri Net Report 2 G.K. Egan 1983

IMACRO] SHARED |

W

+

A
i) / \
(C X) staren”] [starer]
S \ //

Unshared Sub+<-graph Shared Su

L

RESOURCE]
#Hiour)
0

o

Dut

("\,-_‘ Relegse
EAA R
Resource

Resource Sub-graph

Sub-graph Definitions

|
|

b-graph

Numerical Petri Net Report 2 G.K. Egan 1983

shared subgraph factorial{i:integer)->(fac:integer)

begin
if i<2 then
i =>» il
else
i2;
on il then
1 => facl;

merge(facl,iz*factorial(iZwl))

end;

Ll

| FacTonial]

/

subgraph maximum(a,b:real}~>(max:real);

begin
if a>b then

a

else

b -> max
end;

Numerical Petri Net Report 2

G.K.

Egan

1983

¥

MAXIMUM)

A

Examples of Sub=graph Usage in DIl and Graph

The examples and diagrams above are from Richardson's Ph.D.
Thesis., It is allowable to use either the symbolic notation for
node functions or the function mnemonic. The complete node
function set is defined in the Appendix.

The Chill {Cainl suite of programs was considered as a base for
the Graph compiler but while adequate for generating graphs it
was not considered sufficiently well developed for editing
graphs.

2.1.4 Intermediate Target Language (ITL)}

ITL (Appendix) is a low level textual language which is used to
describe data-flow graphs at the machine level. All FLO languaqge
compilers use ITL as their target language, ITL data-flow grph
descriptions can he read directly by the FLO Simulator/ emulator
and or may translated directly to the Target Binary language
{TBL} for FLO hardware.

The ITL is akin to assembly lanquage and its direct use for

Numerical Petri Net Report 2 G.K. Egan 1983

= t
“

SR AG T

D

~J

(A3}

3 1x]

The CL nets [Mazurkiewicz] have much to recommend them., Arcs
are drawn carefully either horizontally or vertically with
transitions between these directions radiused to guide the evye.
Scope of reference data is clearly defined in the textual
language but not so clearly in the graphical language. Some care
has been taken to make the net as planar as possible with the
number of arc crossings minimised.

Numerical Petri Net Report 2 G.K. Egan 1983

developing graphs, while possible, tends to be laborious and
error prone. It is however very suitable for the storage of
compiled data-flow graphs and their transmission between computer

systems,

N1 1 : TF DUP 310 5180
N2 1. TF DUP 311 & 10
N 3 L« FF LT 4 10
N 4 1 : TF DUP 511 &1 1
NS5 1 ¢ FF PIT cas
N & 1 : FF PIF see

Maximum Sub-graph Expressed in ITL

2.2 NPN Languages

NPN notations also vary [Billington]([Symonsi although usually
only in detail. As with data-flow the nets are often drawn free=
hand with each author having his own style; with the absence of
familiar constructions or visual patterns it can be difficult for
others to quickly grasp the algorithm being described {(Section
4.). An informal sub-net notation has been adopted but it does
not include scope rules for reference data,

FHUM

TH RAME SHIE
O PLACE Wt e DTE READY
Vi p

] ,"Lﬁ %]
i OCE

_____ — TH’f..N QLT ION wWiTH

e DIRECTED ARC

LM TORENS s
p 4 o l
¥ Fla g € ENABUING [rig
f CONIITION i ,‘
v FLRING HULE - |
¥ :Fla) THANSITION FIRING |
GREIA O i
(rz k) THANSITION i
ENARLING CONDITIRN !
i TRANSFER]
HIGHETR |
LEVEL
4 e
o 16}
e (TE %25 PACKET (EVEL E
PACKET | l
Ltﬁ‘y%lfi | j Y LINK
o LEVEL
' ¢ SERVICE

NPN Notation Variation

Numerical Petri Net Report 2 G.K, Egan 1983

tzped g i
W
Wz m o=y W
| Y __
< —(%

a,b,c,d,r: SCOPE i;

e, f: SCOPE k;
g,h: SCOPE ny;
P,q9: SCOPE s;
a:r i1:=1 and b;
b: 1f 1<=n then ¢ else r;
C,f: k:=1 and d,e;
d: i:=i+1 and b;
e,h: m:=a) and f,q;
g,p: s:=5+m and h,p;
q: s:=0 and p;

CL Program and Net

It 1s strongly suggested that the CL notation be adopted for
NPN nets, If this is not acceptable then the role of reference
data should be clarified with the following notation:

Numerical Petri Net Report 2 G.K. fgan 1983

< Iy o

The sub-net notation could be of the following form:

a b
rn.m-.-a..&s s e e al - st s,
X77]

The problem of expressing reference data scope is still
unresolved.

3. Transfer of NPN Descriptions

The NPN Dialogue Language [Rillington] is adeguate for
transmission of net descriptions. The Dialogue Language should be
extended to include sub=-net declarations.

5 X775 formal input place names ; formal dummy output places;

c e sub—-net places, transitions and arcs

The 1200 baud line used by the CHILL project team can be used for
transmission.
4. Exploitable Parallelism in NPNs

After several frustrating attempts to encode the T6 protocol

Numerical Petri Net Report 2 G.K. Egan 1983

from the NPN diagrams provided the exercise was abandoned.
Inspection of this protocol however suggests a low parallelism
(<10). Successful transmission of a machine readable version of
the protocol will confirm or refute this estimate.

5. Processing Element Architecture

A Masters student {Rawling]l supporting the project is currently
commissioning a data<flow processing element based on two
Motorola 68000 16/32 bit processors. The element architecture is
similar to the fast processing element structure described in
Report 1 Part 2. This element with the appropriate interpreter
code is expected to satisfactorily exploit NPN net parallelism,

A fourth year student has investigated the implementation of
the processor elements FIFQ structures in VLSI. The preliminary
designs are now at AWA for processing., This effort is part of a
longer term aim to implement major sections of the architecture
and assocliated communication structures in silicon.

The FLO simulator/emulator has been extended to cater for the
fast processing element internal structure and allow time tagging
ol tokens., The time tags allow comparison of acheived and
available parallelism in nets and graphs.

6. Closing Comments

Although progress has been made the project is still greatly
constrained by manpower. FLO simulator code for full NPN as
stated in Report 1 will take 3 months to generate. Simple petri
nets may be interpreted by existing software but the translation
from net to graph is still clumsy. Major changes instigated by
the author in the digital teaching within the Communication and
Electronic Engineering Department in 1981 will bear fruit in 1984
with the availability of design students with appropriate skills
to support this and other research.

Numerical Petri Net Report 2 G.K. Egan 19823

References and Bibliography

fBillington] Billington J. and Gaylard N., '"NPN Analyser Users'
Manual', Telecom Australia, 1981.

Billington J. et al., 'Modelling and Analysis of Communication
Protocols Part 1 and 2', Proceedings of IREECON'81 International,
Melbourne, 1981.

[Cain] Cain G.J. et al., 'Computer—-Aided Chill Code Generation®,
Report 10, Telecom Ceontract 53901, March 1983,

[Dennis] Dennis J.B., 'A Preliminary Architecture for a Basic
Data-Flow Processor', Computation Structures CGroup Memo 102,
Massachusetts Institute of Technology, August 1974,

{Egan] G.K. Egan, 'Data=-flow: Its Application to Decentralised
Control', Ph.D, Thesis, Dept. of Computer Science, University of
Manchester, 1979,

G.K. Egan, 'FLO: A Decentralised Data-flow System Part 2°,
Internal document, Dept. of Computer Science, University of
Manchester, Jan. 1980,

G.K. Egan, 'A Decentralised Computing System Based on bData=Flow',
Proceedings of the IECI*80 Conference, March 1980,

G.K. Egan, 'A Data-~Flow Computing System for Decentralised
Control and Advanced Automata Applications', Proceedings of
IREECON'8] International, AUG, 1981.

G.K. Egan and C.,P. Kichardson, 'Object Recognition Using a Data~
Flow Computing System', Microprocessing and Microprogramming 7,
North-Holland, 1981.

fMazurkiewicz] Mazurkiewicz A., ‘'Invariants of Concurrent
Programs', IFIP INFOPOL'76, North Holland, 1977.

{Misunas] Misunas D.P., 'Deadlock Avoidance in a Data+Flow
Architecture’, Computation Structures Group Memo 116,

Massachusetts Institute of Technology, February 1975.

[Rawling] M.W. Rawling and E.A, Zuk, 'Data=-Flow Processing
Element', Design 3 Manual, Department of Communication and

Numerical Petri Net Report 2 G.K. Egan 1983

Electronic FEngineering, Royal Melbourne Institute of Technology,
1982,

{Richardson (1)} C.P. Richardson, ‘'Object Recognition using a
Dataflow Machine: Algorithms for a Laser Range=finder’, M.Sc.
dissertation, Department of Computer Science, University of
Manchester, 1979,

[Richardson(2)] C.p. Richardson, *Manipulator Control Using a
bata=Flow Computing System', Ph.D. Thesis, Dept. of Computer
Science, University of Machester, 1981,

[Rumbaugh) Rumbaugh J. 'A Data Flow Multiprocessor', IEER
Transactions on Computers’, February 1977.

[Symons] Symons F.J.W., ‘The Application of Petri Nets and
Numerical Petri Nets', Research Laboratories Report 7520, Telecom
Australia, 1982,

[Walkington] walkington M., 'A Data=Flow Graphical Compilery"®,
Design 2 Report, Department of Communication and Electronic
Engineering, R.M.I.T., to be published.

[Wathanasin] s, Wathanasin, 'Proposed Language for the Data=Flow
Multiprocessor', Internal document, Dept. of Computer Science,
University of Manchester, 1978.

[Weng]l K.5. wWeng, 'Stream-oriented Computation in Recursive Data-
flow Schemas', Technical memo 68, laboratory for Computer
Science, Massachusetts Institute of Technology, Oct. 1975,

fWwhitelock] whitelock P.J., 'A Conventional Lanquage for Data=

Flow Computing?, M.S5c. Thesis, Department of Computer Science,
University of Manchester, October 1978,

Numerical Petri Net Report 2 G.K. Egan 1983

APPENDIX

1. Intermediate Target lLangquege (17TL)

Graphical and textual language translators generate Intermediate
Target language (ITL). ITL is accepted directly by the FLO
simulator/ emulator and is translated to the Target Binary Language
{TBL) (Section 2.} for the FLO machine.

1.1 Tokens

*(iéi)“Ldgﬁgzn@;igth~LLLQ§;§11~{:§{>

~~trace node evaluation

v «= one input node
v ~«literal data present
v
{‘ { T H " - [fiterally
; - W

t | E |
"@ fode namel~1 | | |=[EBRE]-mmsmmmsammsssennsmes NI
o b=~ E
@M P) - s

1.3 Token and Node Fields

node name
~[element]--Telem.nodel~
destination

-~ [node ,name} -~ [Input.poink]~

function

ADD SUB MUL DVD DIV MOD EXP NEG ABS SIN COS ATN LNE 50T
AND TOR IMP EQV NQV TSB S5TB CLB NOT

CPT EQ LT GT LE GE HNE

5UC PRE

O

ORD CHR RND TRN
S

pup

PRS PIT PIF PIP SWI
S5TD YLO STC

A R E

D

FLO Data-Flow Computing System (C}) G.K. Egan 1979

literal

{1 - PasEaT iteger] -
(% - (EEseaT veaTI--
>
!
‘

/W.\\ e . R
%)~"~ Téx characterg]——-

ke gy e A L L L A GG A b A e S e A g

ﬁf} i}* [eHatacters] -

O -~ [OCCurrence} -~

-(w:f [destinatignl--~

{Q“‘ Loccurrencel~- [destinatiof] -~

e
0,

The following are not valid literals bur are the representations

sed by FLO when dlrectlng tokens of these types to output files.
Iﬂtw@ﬂ
v

[;g"f1néfloﬁ]umLjhn:]«wflflﬂralj~ﬂ““w***w**m* NL -

@w Ry -

input point
{0,1}

element
{1..65535}

element node

{1..16383}

FLO Data-Flow Computing System (C) G.K. Egan 1979

gCccurrence

1.4

f1.,.255})

Reserved Destinations

Element-nodes 16255 to 16383

following node=names are defined in all elements:

¢.16383

e,.16382

e.163481

e.16380

The node subrange e,16263-16270 is
is reserved for output,

16262

The following node-names are associated with FLO

Tokens
syntax

if present(inp.l),

1.16255
2.16255%
3.16255
4.16255
5.16255
6.16255
7.16255
H.1625%5

for

INPUT

FLOINPI
FLOINP2
FLOINP3
FLOINPAY
FLOINPS
FLOINPG
FLOINEY

e.qg. R

inp,l:?2 =>

inp.0:node <> Node Store

every(inp.i:int ticksy,

Yinputfiany ->

input to FLO from files or INPUT
literals,

[last inp.0:dest]

tyue -

inp.l:eval ~> [last inp.0:dest]

[last

flast inpO:dest)

FLO Data—Flow Computing System {C) G.K. Egan 1979

reserved for FLO system usage. The

inp.0:dest]

reserved for input and e.l16255-

input files:

must conform teo the ITL

The following node-names are associated with FLO ocutput files:

inp.l:any => [last inp.0Odest}, inp.l:any > 'output'
1.16263 ouUTPUT
2.16263 FLOGUTL
3.16263 FEQOUTZ
4.16263 FLOOUT3
5.16263 FLOOUTY
H.16263 FLOOUTS
7.162613 FLOOUTS
B.16263 FLOOUTY

The FLC simulator/ emulator models a laser rangefinder and a simple
object space containing a cone, cylinder and sphere. The laser may
be vectored using output nodes LTHETA:int and LPHI:imt. The range
to an object or the space background is obtained from the input

node RANGE:real.
9,16263 LTHETA
9,16264 LPHI
9,16255% [RANGE

The simulator also models a six axis manipulator. The output nodes
associated with the manipulator all accept real tokens,

10.16263 WAIST
11.16263 SHOULDER
12.162063 ELBOW
13.16263 TWIST
14,.16263 BEND
15.16263 SWIVEL
16.16263 GRASP

The input node-names associated with manipulator status are:

10.16255 WAIST
11.16255 SHOULDER
12.16255 ELBOW
13.16255% TWIST
14.16255 BEND
15.16255 SWIVEL
16.1625%5 GRASP

Null FLO element

Flement 0 is the null FLO element.

FLO Data=Flow Computing System (C) G.K. Egan 1979

2. Target Binary Language (TBL)

This section describes the extended token and node formats for
the FLO machine., Individual node~functions are illustrated using a
simple single-assignment textual language.

2.1 General Token and Node Formats

2.1.1 Tokens

Mormal Form

[_destination field | token data field 1

Shared Sub=Graph Form

[destination field | copy=field [tokén data field)

Data tokens are of the above general forms; the second form is
only used by tokens involved in shared sub=graph usage.

2.1.2 Nodes

Diadic Nodes

[function flelds | destination fields]

Monadic Nodes

[Tiunction flelds | destination fields]

Literal Form

LEfunckion [ields | token data fields | destination fields 7

Node-descriptions are of the above general form, Normally there is
only one destination field, Data fields are usually reserved for
literal node-functicen arguments with the input=point of the literal
being implied by the arriving token.

2.2 Node and Token Field Definitions

The number below each field is the width of the field in bits.

2.2.]1 Function Fields

[_trace T one~input | data-present | function=name]

1 1 1 13
trace set if node operands and node-name
are to be sent to the TR node.
one<input set 1f the node has one input arc.
data=present set if the data field is present.
function=name node~function name,

FLO Data-Flow Computing System (C) G.K. Egan 1979

2.2.,2 Destination Fields

I_element] copy-present | inpit-point [element~node |
16 1 1 14
element processing-element containing destination
node~description. Range is 0=65535,
copy-present copy fields follow the destination,
input~point destination node input-point.
element~node byte address of the node~description.

2.2.3 Token Data Fields

General Form

(_structure 1 Eype] length | data]

4 11 16=>
structure when set indicates that the token carries
a structured object.
type the token data type.
length the length of the token data field.
data the token data.

A brief description of the more unusual token types is given below:
bBon't=know (?2)

The first two bytes of the data field contains the reason for the

token type becoming unknown. The last four bytes contain the
name of the node at which the type became unknown.

Node

The first two bytes of the data field contains the element-node.
The rest of the data field contains the ncde description.

Iink-destination

This token type is generated by return=entry nodes and used by
exit nodes. The data field carries the occurrence number of the
shared sub-graph in the first two bytes, and the destination to
which the exit node should send result-tokerns in the subsequent
four bytes.

Evaluation
This token type is generated when the trace bit is set in a nodes
function fields. The first four bytes of the data field contain the

nodes name, the next two bytes the function fields, and the
following bytes the operand tocken data fields.

FLO Data-Flow Computing System (C) G.K. Egan 1979

2.3.4 Copy Field

[Ccopy 1}
16

copy the copy field is used to distinguish
petween tokens inveolved in different
invocations of the same sub=graph.

2.3 Primitive Nodes

2.3.1 Arithmetic

Diadic Nodes

| * | 0 1 0 | function | destination |
1 1 13 32

inp.0:int,real + inp.l:int,real +«> out.0:int,real

inp.C:int,real - inp.l:int,real <> ocut.0:int,real
* MUL inp.0:int,real * inp.l:int,real => out.0:int,real
/ DVD inp.0:int,real / inp.l:int,real >> out.0:int,real

div DIV inp.0:int div inp.l:int => out.0:int
mod MOD inp.0:int mod inp.l:int ~> out.0:int
EXP inp.0:int,real "~ inp.l:int,real => out.0:int,real

literal form

T T 1T function | Iiferal~token=data | destination |
1 1 13 16 => 32
Function names as above. e.,d.

+E> inp.0:int,real + literal:int,real > out.0:int,real

Monadic nodes

T 10T Tunction T destination)
1 1 1 13 3z

FLO Data=Flow Computing System (C) G.K. Egan 1979

abs ABE
sin SIN
cos Co3
atn ATHN
In LNE

sqt SQT

« ipnp.0:int,real -> ocut.0:int,real
absolute (inp.0:int,real) => out.0:int,real
sine(inp.0:int,real) => out.l:real
cosine(inp.0:int,real) => out.0:real
arc.tangent (inp.0:int,real) => out,l:real
legarithm(inp.0:int,real) -> out.0:real

square.root (inp.0:int,real) -> out.0:real

2.3.2 Logical and Bitsmanipulation

Diadic Nodes

oS

v IOR
- IMP
= EQV
* NQV
tsb TSB

stbh STH

¢lb CLB

[10T T Tunction T destination
i i

I3 iz

inp.0:bits and inp.l:bits => out.0:bits

inp.0:bits or inp.l:bits => out.0:bits

inp.0:bits implies inp.l:bits -> out.0:bits

inp.0:bits equivalent inp.l:bits =~> cut.0:bits

- inp.0:bits eguivalent inp.l:bits => out.0:bits

test.bit{inp.0:int} of inp.l:bits => out.0:bits

set.bit{inp.0:int}] of inp.l:bits => out.0:bits

clear.bit{inp.0:int] of inp.l:bits «> out.C:bits

FLO Data=~Flow Computing System (C) G.K. Egan 1979

literal form

EX 13 1T 1 T function [T Titeral-token~data | destination.
1 1 1 13 16 => 32
Function names as above.

Monadic nodes

[% T 1 1 017 NOT T destination |
1 13 iz

(ja) NOT ~ inp.C:bits -> out.(

2.3.3 Relational

Diadic Nodesg

' * 1 01 0} function | destination |
1 1 1 13 32
\(i;j{ cPhT compare.type (inp.0,inp.l) => out.0:bits

T

< NE inp.0:int,real,char < inp.l => out.0:bits
= EQ inp.0:int,real ,char = inp.l <> out.0:bits

< LT inp.0:int,real,char < inp.1l1 => out.0:bits

> GT inp.G:int,real,chay > inp.l -> out.0:bits

= LE Inp.G:rint,real ,char <= inp.l => out.0:blits
>= GE inp.0:int,real,char >= inp.l => out.0:bits

literal form

L. 1

T T Tunction T Iiteral<~token~data | destination
1 13 16 => 32
Function names as above.

M
1 1

FLO Data-¥low Computing System (C} G.K. Egan 1979

2.3.4 Sequence Position

Monadic nodes

[* 17110 | function [destination |
1 1 1 1 32
suUcC successor (inp.0:char,int) -> out.(0:c¢har,int
pre PRE predecessor {inp.0:char,int) +> cut.0:char,int

2.3.5 Stream

Monadic nodes

71716 T function T destination |
1 1 13 32

[i) BRA inp.C:any | => cut.,0:stream.any

] [UNB inp.0:stream.any except } > ocut.0:any

2.3,6 Explicit Type Conversion

Monadic nodes

[0 function | destination |
1

1
H 1 13 32

(%{%) ORD ordinal(inp.0:int,char) -> out.0:int
T

chr CHR character (inp.0:int,char} => out.0:char
rnd RND round (inp.0:int,real) -> out.0:int
trn TRN truncate (inp.0:int,real) ~> out.0:int

FLO Data-Flow Computing System {(C} G.K. Egan 1879

2.3.7 Storage

Monadic node

f L1 1 0 17810 | destination]
13] 13 32

on inp.l, last inp.0 -> out.0

2.3.8 Duplicate

Monadic node

Ey { 1 I O l DUP i dest,{} ; destol ,..J

/i\\ Dup inp.0 => out.0, out.l

2.3.9 Control

Diadic Nodes

L *F 1O 10 T fTunction |
b3 1 1 13

destination '}
32

if present(inp.0,inp.l) then true +> ocut.0:bits

if inp.l:bits then inp.0 <> out.D

M%Z%;> PIF if = inp.l:bits then inp.0 => out.0
*ﬂéj:) PIpP 1f present{inp.l) then
]

U U SWL T HESEL U EETEe Y T destL I frue))
1 11 13 32 32

inp.0 =>» ocut.0

- SWI if inp.l:bits then inp.0 => cut.l else out,0

Switching and passing of conditional
significant bit of the bit-string

token on
internal convention adopted 1s all bits set for
clear for false.

tokens 1is on the least
input=point=1., The
true and all bits

FLC Data=Flow Computing System

{C) G.K. Egan 1979

literal form

X T L T 1 1 function | Titeral-token-data | destination(s) |
1 1 1 13 16 => 32-48
Function names as above.,

2.3.10 Shared Sub=graphs

P*17T 1T 71T TR [occurrence | dest,]
1 1 L 13 16 32
(;i) A inp.0 (with new copy) => out.0
L L L Y T R Tink~déstination [dé85E.]

‘ 1 1 1 13 64 32
(ﬂi) R on inp.l, literal (new copy) *> out.0:link.dest

|

L L8 1-0° 7 "B
1 1 1 13

inp.0 (with new copy) => [inp.l:link.dest]

Argument tokens for the sub-graph are provided by arg—-entry
nodes., Return—-entry nodes provide the destinations to which exit
nodes send sub-graph result tokens.
On entering a sub-graph the token's copy number is computed as:
newcopy = {oldcopy * maxoccurrence) + occurrence
On exiting the copy number is computed as:
newcopy = (oldcopy ~ occurrence) div maxoccurrence
Maxoccurrence, in the initial implementation, is set to 250 at
graph=level 0 and 8 at subsequent levels, If the computed copy
number 18 not zero then the copy bit is set in the token's

destination and the copy number is appended.

2.3.11 Token Structure

P 1T 1 1T 0T T destination
1 1 1 13 32

(;D D decode (inp.0) -> out.O:stream.any

:

FLO Data~Flow Computing System (C) G.K. Egan 1979

The fields of the Input token are returned as a stream of
A specific use of this node is to decode
function, which may be used when
implemented,

tokens,
? tokens, The inverse
forming graphs, has not been

2.4 Restricted Organisational Nodes

As these nodes change the connectivity of the graph dynamically,

and thus introduce non-determinacy, they should be used with some
care.

L
y£9 YL € inp.0: any (copy 0} =-> dest.0
S {copy of) inp.0:any -> dest.l:copy

tEj 5TC inp.0rany (copy inp.l:copy) -> dest.0
.-

STD inp.lO:any -> [inp.l:dest]

2.5 Bystem Nodes

Diadic Nodes

N\
e.n <:1 on inp.0, device.token: dev.dep =-> [last inp.l:dest]

e.n 0 inp.0: dev‘dep -» device, {last inp.l:dest]

e ? inp.0: ? => {last inp.l:dest |

e S every{inp.0:int Yticks, trwe «> [last inp.l:dest]
e TR inp.0:eval => {last inp.l:dest }

Monadic Nodes

e (?%) inp.0:node ~> Node-Store

All system node-names are reserved with their node-descriptions

FLO Data-Flow Computing System (C) G.K. Egan 1979

existing in specific processing-elements; e is the processing=
element name and n is the element node-name. Although a particular
system=-node may be referred to at a number of places in the graph,

it represents a single~resource. Multiple referencing therefore,

implies non-deterministic merging on the node's input=points.

Unless this is intentional, the node should be referenced once

within an encapsulating resource manager. As input=token and

cutput=-token nodes have physical devices associated with their

node-names, there will be rectrictions on the type of tokens

produced or accepted by these nodes. Type and length information is

preserved in all input/output operations.

2.6 Non-deterministic Merge

inp.0, inp.l => out,l

This node does not appear in object graphs but should be used to
enforce explicit non-~deterministic merging of arcs in source
graphs. Two or more arcs which are directed at a single input-
point should be treated as errors by language translators.

FLO Data=Flow Computing System (C} G.K. Egan 1979

