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1.8

Introduction

This is the third report from the SDL-VLSI team and its main aim

is to outline a system for automatically generating VLSI circuits

given an initial behavioral description specified in SDL and to

perform some assessment of the effort reguired to implement such

a system.

With this in mind the report has been divided into

six main sections:

(i)

(ii)

(iii)

{iv)

(v)

(vi)

a system overview and the rationale Dbehind the
approach taken;

a guideline for the specification of the interfaces
to {and between) each of the processes;

an outline of how each of the processes work:

an estimate of the time, cost and eguipment required
for the specification and implementation of the

proposed system;

a summary of the options available for the major

example to be given in the next report;
conclusions and a list of research areas which

require further study.
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2.8 System Overview

This report will endeavour to outline the major portions of a
system for automatically translating CHILL code to a VLSI
circuit. In conjunction with Melba, which translates 8SDL code to
CHILL, a full SDL to VLSI system 1is proposed. At present
elements of the system are still in a state of flux, with many
secondary detalils remaining to be established. The current view
of thé system will be presented in this report - it will
undoubtedly change as problems become apparent and new concepts
are developed. An example application, to be presented in the
next report, should prove to be useful for the developmen£ of the

system.

2.1 The Rationale

Solutions to problems in such areas as placement and routing are
computationally expensive to produce. It is generally impossible
to derive optimal results, except in trivial examples, because
the potential sclution set is extremely large. The search for
gsclutions can be constrained to the more productive paths using
heuristics (or rules of thumb) producing good, although not
necessarily optimal, results in reasonable time. In the past
these heuristics have generally been embedded into the program
generating the solutions but the current trend is to keep the
rules separate from the preogram. Such systems are called rule

based systems. i

A silicon compilation system (or a system for the automatic
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2.9 System Overview cont.

production of the physical layout of a circuit from an initial
high level behavioural description) usually contains several
translation steps in which the solution set increases
exponentially with search depth. The brute force approach to
optimization in these areas is often not successful [63]. The
use of rules (even very simple ones) can drastically reduce the
search space. This is the major justification for using a rule

based system.

2.2 Standard Cell vs. Cell Generators

The current investigation by the SDL-VLSI project team has been
centered on a discussion of the wvarious methods of silicen
compilation, which were covered in the first 2 reports. The
techniques covered to date are based on a 'standard cell’
building block which uses either a library of standard logic
cells or a ‘'generator' which draws on a description of the

standard cell to derive the reguired logic function.

The library structure 1is a major stumbling block in the standard
cell appreoach. The information stored has to be both created and
maintained and as the data base becomes larger, and therefore
more flexible, it becomes more difficult to use. Standard cells
are usually technology dependent. Hence t¢ cater for many
different classes of technology there will be a need for _large

and varied data base.

The behavioural or structural descripticn of the design is

moulded to fit the available hardware structures that are
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2.0 System Overview cont.

described within the library. The solutién limits the
transformation of the description to only those structures
available. The translation process 1s constrained by its cell
base within the 1library, which automatically limits design

flexibility.

Up to now the translation process has usually ignored the
application of top-down design experience when c¢reating the
floorplian. Within the standard c¢ell approach a common
implementation involves the use of specialized compilers. These
compllers have a fixed notion of floorplan in which the designer
has limited freedom to explore the design space. Some are
categorisea as 'specialist' standard cell systems and take into
account a particular architecture and floorplan style to automate
the design process e.g. 'MacPitts' optimized for signal

processing.

If there is no predefined floorplan strﬁcture, a great deal of
effort can go into computing the placement and routing between
cells. These tasks are further complicated by the lack of
ability to manipulate the structure of the individual cells, e.g.
making them long and thin or short and fat. These compilation
systems, once constructed, are quite inflexible and do not allow
large changes to the method used in determining the sclution to
he made easily. They have usually been created for a rigid
environment, which is in itself what the library structure leads

to.

One solution to the above problems 1s to employ a system that

uses a set a rules to determine the path of translation. This is
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2.8 System Overview cont.

commonly known as a knowledge based system. The environment
created by such a system would be much more flexible than a
standard cell system. Instead of forcing the structure tc use
existing bells within the library, it would enable the
description to help create the neccessary silicon structures.
The rules would also enable the description of the module
generators to utilize technology independent algorithms. The same
rules would then be used to generate the specific technology
structures of the modules thus reducing the physical size of the

library.

Such a system would have a different rule base for the
translation of behavioural or structural descriptions to silicon.
This library of rules gives the system much more fexibility to
handle variations in technology. A further advantage is that
in the development stages of the system the designer can add
rules which change apprcaches in order té sdlve problems that may
occur. Thus, once the system has been developed, the solutions
generated are then solely dependent upon the knowledge base,

which is a dynamic environment.

The rule based system is not an expert system, it is simply a set
a rules to tell the system how to go about the translation. The
main advantage in the translation of SDL to VLSI is that the
domain of each process within the system is well defined and thus
should be able to support the neccessary translation. In this
context, it will use the previously defined subset of CHILL and

T

Zeus.
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2.9 System Overview cont.

2.3 The Hardware/Software Interface

Although the main thrust of this project at present is to
synthesize Thardware components from a description in CHILL, it
is envisaged that integration of hardware and software elements

of a CHILL program will be necessary in a large system design.

One method for hardware and software to co-exist in a system is
to attach the hardware units as I/0 devices. However, as noted
by Rattner [64], this approach was found to be unnatural and
complicated by operating system issues especially when these
hardware units were not meant to provide I/C functions.
Therefore, it is more appropriate to view these units as hardware
processes. These hardware processes can communicate with
software processes by exchanging messages. Amongst the
interprocess communidation mechanisms available in CHILL, the
SIGNAL would appear to be the most suitable in this case. The
hardware processes would be constrained to use the same semantics
and interfaces as the original software processes. In addition,
each hardware process should not contain any globally accessible

objects in order to preserve a 'clean' interface.

An example of such a system is the Intel 432 microprocessor. Its
obiject-oriented architecture provides interprocess communications
via 'communication ports' with all communications being pased on
messages. The use éf-this type of system would appear to reduce

the complexity of the hardware/software interface.
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2.8 System Overview cont.

2.4 The Translation System

Figure 2.4.1 presents an overview of the entire system. The main
input is a segment of CHILL code which may consist of several
CHILL processes. The code may be hand crafted or it may be
obtained from the Melba system. The other input is a set of
design constraints which physically limit the type of circuit
that may be constructed. The principle constraints are power,
area and speed but others are possible. The Flow Control and
Constraint Propagation block (FPCCP) manufactures more detailed
constraints using a rule base (and perhaps, past experience).
These are passed to the CHILL to Zeus ccompiler to be used as a
pasis for the architectural design of a piece of hardware capable
of performing functions equivalent to those performed by the

segment of CHILL code.

The architectural design is expressed in Zeus while the temporal
behaviour of the design 1s specified in a separate control
language. This language could be an extension of Zeus. When a
trial design 1s completed, the CHILL to Zeus compiler
communicates details about the design to the FCCP to allow it to
fabricate detailed constraints to be used as guidelines by the

lower levels of the translation process.

The Zeus description is expanded into an Intermediate Temporary
Yianguage {(ITL) which effectively consists of a list of blocks and
their interconnections. The ITL to CIF process subsequently uses

-

this 1ist of blocks and their corresponding constraints

(obtained from the FCCP) to produce a trial physical design.

This is the only technology dependent level.
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2.9 System Overview cont.

If the design does not meet specifications then fules within the
FCCP are invoked to make power/area/speed tradeoffs. These
tradeoffs are used to derive a new set of constraints which are
used to guide the CHILL to Zeus compiler towards a design which
has a greater likelihood of meeting specifications. This
iterative process is repeated until the specifications are met or
until all the design possibilities capable of being created by
the system are exhausted. In the latter case the designer must
reformulate the specifications or redesign the segment of CEILL

code.
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3.0 Interface Specification

Any significant project without concrete specification and
sufficient planning is unlikely to succeed. One authority
estimates that a complex project would typically consist of one
third planning and specification, one third implementaﬁion and
one third testing and commissioning [46]. For this reason a

chapter is presented with guidelines for the specification of the

interfaces to and between each of the processes.
3.1 Design Constraints

The CCITT Specification and Description Language was designed to
allow for the behaviocural description of telecoﬁmunications
systems. However, it does not contain constructs for the
specification of physical constraints (such as power, cost and
size) - presumably these attributes are specified by other means
when contracts are tendered. Since SDL provides no method for
specifying such constraints and guidelines are reguired to help
the SDL-VLSI system generate reasonable solutions, then some
method must be provided to enable theilr specification. There are
at least two possible methods - the first is in the form of a
speclialized language and the second is in the form of an
extension to SDL. Useful constraints which could be imposed are:

- the number of I/0 LINES

— the POWER consumed

- the AREA used

~ the CYCLE TIME of each control step
Each of these constraints could be specified for every process
within a module. Other more specific constraints could alsc be

impesed if greater control over the generation process was
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3.1 Design Constraints cont.

desired. Note that the last. constraint is cycle Qime rather than
absolute time. Cycle time relates to the maximum delay through
any path in.any given state. Assuming a synchronous clocked
system, then this delay time determines the maximum frequency at
which a process may be clocked. An exception to this is the case
in which individual clock cycles can be shaved to the critical
path delay during that cycle. It is not possible to determine
the absclute time a process will take because, in general, this
will depend on the specific data to be processed. It may be
possible to run the process on some 'typical' data and thereby
determine which sequence of operations is the most beneficial to
optimize. However, this would be a major task in itself and is
beyond the scope of this report.

3.1.1 Design Constraint Language

Cf the two suggested methods for specifying design constraints,
the specialized language is probably the easiest to implement.
Such a design constraint language can be fairly simple. It
should allow for selective optimization of parameters within
specific modules and should be directly related to the SDL code.
The syntax of one possible language is presented in appendig 1.1,
Fig. 3.1.1 shows a typical use of this language for a
hypothetical module which contains three processes - Stack,
In_Buffer and Out_Buffer. In this figure the process identifier
names (Stack, etc.) refer directly to the corresponding SDL
process names. The dimensions are specified in some standard
units i.e. AREA in lambdaz, POWER in mW and CYCLE TIME in nS.
The MAXIMIZE/MINIMIZE statement is used to maximize/minimize some
parameter given that all other constraints are not exceeded.
Only one MAXIMIZE/MINIMIZE statement is allowed per block. Using

the dimensions suggested the MAXIMIZE statement and the '>'
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3.1 Design Constraints cont.

operator are nearly useless but were included for generality.
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Design Constraint Language
Stack Example

CONSTRAINT Stack_Example;

CONSTRAINT In_Buffer;
POWER < 100;
MINIMIZE CYCLE TIME;
END In_Buffer;

CONSTRAINT Out_Bulffer;
POWER < 100;
MINIMIZE CYCLE TIME;
END Out_Buffer;

CONSTRAINT Stack;
POWER < 50;
MINIMIZE AREA;
END Stack;

AREA(Stack + In_Buffer + Out_Buffer) < 1000000;
1/0 LINES < 40;

MINIMIZE CYCLE TIME;
END Stack_Example.

Figure 3.1.1
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3.2 CHILL Subset

The previous report [45] briefly described the limitations on the
CHILL code which must be enforced to ensure that reasonably
efficient hardware can be generated. It is important that this
subset is formally specified so that the CHILL to Zeus compller
designer (and the Melba abstraction library designer) know
exactly what CHILL constructs can be used. The CHILL subset
should be specified using EBNF (Extended Backus Naur FPormat [62])
or preferably using railroad diagrams. The syntax should be
formulated to specifically exclude such constructs as recursive
procedure calls and other types disallowed under the guidelines
produced in the SDL-VLSI Project Report No. 2 [45]. Redundant
and esoteric features could also be excluded to greatly ease the

burden on the compiler writer.
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3.3 Rule Base

Three of the four processes of the system possess a rule base as
an adjunct in their specified task. The rule base of each of
these processes should be in the same format. A standard has not

been fixed but a rule will generally be in the following form:

iF condition

boolean operator condition

THEN
consequence ;

consequence;

If the three rule bases are in a standard form then standard
tools can be devised for checking the consistency of the rule
base and for optimally ordering them to minimize condition
evaluation. Tools could also be developed for updating the rule
base. The rule interpreter for each of the processes would also

be similar thus reducing the amount of original work required.
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3.4 Zeus and the Control Code

3.4.1 The Control Code

Zeus is a modern structured HDL which allows the succint
description of hardware. However, 1t 1s mainly a structural
description language and although behavioural descriptions are
possible they tend to be rather verbose. For example, a sinmple
traffic light controller specification is given in figure 3.4.1
{for a full description see [8]). Much of this specification 1is
simply a behavioural description of the hardware in each of its
possible states and it does not explicitly describe what type of
hardware to generate. If the description was literally
translated into hardware then the result would be a rather large

and complex controller.

It seems pointless to obtain explicit knowledge of the type of
control needed {(from the CHILL to Zeus compiler) and then to
translate this into an ambiguous intermediate form. The result
of such a translation would be either to lose information or to
overly complicate the design of the Zeus to ITL translator. If
the control of the hardware was to be implemented using a bit
slice approach then the behaviour would be more easily described
using a set of active control points. For example, the
behavioural part of the traffic light controller could look like
figure 3.4.2. The syntax for this control code language has
still to be defined but it should allow the specification of the
type of controller, a definition of the fields in the control
words, the jump condition(s), the Jjump address(es) and the active

control points. It may alsc be advantageous for the controller
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Zeus Traffic Light Controller

TYPE
trafficlightcontroller= .
COMPONENT{IN caronfarmroad, timeoutshort, timeoutlong; logical;

QUT highwaylight, farmroadlight: ARRAY[1. w_colors] OF logical,

QUT starttimer:logical} IS
SIGNAL_CONST

states=(.highwaygreen, highwayyellow, farmroadgreen,

farmroadyellow.);
CONST w_states=WIDTH(states);

yes=one;

HARDWARE state: ARRAY([1..w_states] OF REG;
CONNECT

IF EQUAL(state.o, highwaygreen} THEN
highwaylight:=green,;
farmiroadlight:=red;

IF ANDg(caronfarmroad, timeoutlong} THEN
state.i:=highwayyellow;
starttimer:=yes

ELSE
state.l:=highwaygreen

- END;

END;

IF EQUAL(state.o, highwayyellow) THEN
highwaylight:=yellow;
farmroadlight:=red;

IF timecutshort THEN
state.i:=farmroadgreen;
starttimer:=yes

ELSE
state.b=highwayyellow

END;

END;

IF EQUAL(state.o, farmroadgreen) THEN
highwaylight:=red;
farmmroadlight: =green
IF ORg(NOTg(caronfarmroad}, timeoutlong} THEN

state.i:=farmroadyellow;
starttimer:=yes

ELSE
state.i:=farmroadgreen

END;

END;

IF EQUAL{state.o, farmroadyellow) THEN
highwaylight:=red;
farmroadlight;=yellow;

IF timeoutshort THEN
state.i:=highwaygreen;
starttimer:=yes

ELSE
state.i:=farmroadyellow;
END;
END;
END;
END; ,
END;

Figure 3.4.1

<SDL-VLSI TELECOM REPORT No. 3>
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Control Code for Traffic
Light Controller

BEGIN
~ highwaygreen: SELECT green TO highwaylight,
SELECT red TO farmroadlight,
UNTIL caronfarmroad AND timeoutlong;

highwayyellow: SELECT yellow TO highwaylight,
SELECT red TO farmroadlight,
UNTIL timeoutshort;

farmroadgreen: SELECT red TO highwaylight,
SELECT green TO farmroadlight,
UNTIL NOT{caronfarmroad OR timeoutlong):

farmroadyellow: SELECT red TO highwaylight,
SELECT yellow TO farmroadlight,

UNTIL timeoutshort;

GOTO highwaygreen;
END;

Figure 3.4.2
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3.4 Zeus and the Control Code cont.

to have the option of using subroutines. Thé control code
language could be a separate but it would be better to keep the
hardware and its behaviour together. Thus the control code
language could be defined as an extension to the Zeus language.
Information on the preferred method of implementing extensions is
given in the Zeus report [43].

3.4.2 Zeus

Since a direct translation from the Zeus language to ITL is not
technically difficult it should be a straightforward task to
implement the whole Zeus language. The CHILL to Zeus compiler
will not use all the Zeus constructs but the Zeus language may be
used manually te test the lower portions of the system and also
to enter specialized designs. All the Zeus constructs will be
required if manual entry of designs is permitted. It may also be
desirable té implement all the features of the Zeus language in
order to keep the design flexible. At present it is considered
that the interface between Modula 2 and Zeus (as defined in [433)
is not necessary. However, 1its implementation would not be
difficult, especially if a Zeus to ITL translator was to be

constructed as suggested in this report.
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3.5 The I1ITL

The ITL is used to describe the blocks at the silicon level along
with thelr interconnection. It is a very simple language which
describes the generic structure type of the block and its
connection to other blocks. In essence it is a schematic net
iist which makes use of the inherent regularity achievable on
silicon. Blocks are formed from multiples of bit slices of some
basic structure e.g. an 8 bit adder is 8 times a one bit adder.
ITL also enables the ITL to CIF translation process to select the
form of the block structure. As in the example of the adder, the

selection is made between a serial or parallel structure.

Thus the ITL language 1s a list of blocks and their
interconnects. Generlc types are adders, subtractors,
comparators, multipliers, shift registers, RAM, PLA etc.,

including discrete logic (Ands, Ors, Nands etc.).

The inclusion of a BUS block structure as an extra block enables
the large communication paths associated with buses to be
avoided. For example, if four blocks are connected via bus
there are six paths to describe and identify when translating to
silicon. Clearly, it is much easier to stipulate a bus block

with 4 connections.
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4.8 Processes

This section will outline in more detail the four major parts of
the SDL to VLSI project. They are:

-~ CHILL to Zeus, essentlially a classic compiler design

but with a rule base tc help make sensible hardware

decisions;

- Zeus to ITL, a straightforward translation
of Zeus code into ITL;

- ITL to CIF, a complex suite of programs including
generation, placement, routing and simulation
controlled by a rule base system;

- Flow Control & Constraint Propagation, coordinating
the efforts of the other three and making high level
constraint limited decisions.

An estimate of the effort required to implement these processes

is glven in section five.
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4.1 CHILL: to Zeus

This transformation process takes as input an algorithm or
sequence of operations defined in a subset of CHILL, and as
output produces Zeus code and a control code for specifying the
behaviour of the hardware. Other inputs are design constraints

and a rule base.

4.1.1 Constraints
Many constraints could be placed on a hardware design produced by
this system, some of which are listed below:

- number of states {or control steps):

- the length of the path in each state {(i.e. how many

functional blocks in a path):

- the number of temporary registers;

- the number of I/0 lines connected:

- the number of buses; |

— the number of multiplexers:

-~ the number of arithmetic/logical units;

- the number of sgpecialized registers (i.e.

incrementing, decrementing, shifting).

These are not generated by the designer but are formulated by
the FCCP from the specified design constraints (given in the
Design Constraint Language, for example) and the FCCP rule base.
The tradeoff between power, area and speed is only indirectly

affected by these high level constraints.
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4.1 CHILI, to Zeus cont.

4.1.2 Translation

Figure 4.1.1 shows an overview of the CHILL to Zeus compiler
syétem. Given a segment of CHILL code the compiler will perform
syntactic and semantic analysis {according to the predefined
CHILL subset) and generate some form of intermediate code. This
could be three address code [47] or some other intermediate form
more suited to the unigue properties of the target machine.
Simultaneously, the compiler generates a list or tree of

operations and data transfers that must be performed.

The next stage of the process is to bind the operations to
specific functional units (or specialized registers) and to bind
the data transfers to specific buses or multiplexers. To do this
the rule interpreter looks at the design constraints and the
intermediate code then applies the appropriate rules to determine
the best physical implementation of the desired operations. For
example, suppose a daﬁa-transfer was required from one register
to another. If a path already exists between the registers then
no action is necessary. If the input to the target register is
already bound then the other register must also be bound to the
path at that dinput. If the input to the target register is
unbound then a path must be created (either a bus, multplexor or
direct connection). The rule below illustrates the case where
the input to the target register already has a direct connection

to another register.
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4.1 CHILI: to Zeus cont.

IF data_path_required_to_register
AND NOT path_exists(from register,to_register)
AND num inputs(to_register)} = 1
AND input type(to register) <> multiplexer
AND NOT max{num of multiplexers)

THEN
RESET data_path_required_to_register;
generatemmulﬁiplexer(frommregister,to_register);
increment (num_of multiplexers);

END IF;

A large number of rules would be reguired to cater for all

possibilities.
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4.2 Zeus to ITL

This process is, perhaps, the simplest of the four. The syntax
of the Zeus language is similar to Modula-2 and the lexical and
semantic analysis should present no problem. Figure 4.2.1 shows
a view of how the translation process would proceed. The Zeus
language 1is slightly different to conventicnal languages in that
it contains control variables and statements which control the
generation of the hardware (i.e. statements similar to psuedo-ops
and macros in an assembler}. For this reason Zeus must first be
translated into some intermediate code which is then run (or

interpreted} to produce the final ITL code.

The simplest method of implementation would be to first translate
the Zeus code into Modula-2 code {with all the control variables
being translated into Modula-2 variables). This code would: then
be éompiled and run (automatically) with the output of the
program being ITL. Implementing a Modula-2 to Zeus interface
(see [43]) has an added advantage in that it would be a simple
matter to link user defined Modula=-2 modules to the code produced
by the Zeus translator. Predefined Zeus modules (previously
translated to Modula-2) could also be linked at this stage.
These predefined modules could be used to simplify the

translation process.
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Zeus to ITL
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4.3 Flow Control and Constraint Propagation

This process oversees the operation of the whole of the
translation system. With the help of general (technology
independent) architectural knowledge, it 1is able to make
decisions about what constraints should be placed on the various
stages of the translation process. Figure 4.3.1 shows an

overview of this process.

A typical translation would proceed through a number of steps as
follows:

(i) The FCCP accepts the specified design constraints
and from these generates 'reasonable’ limits to be
placed on the parameters controlling the
generation of the architectural design produced by
the CHiLL to Zeus compiler. Such limi%s could
include the nuﬁber of multiplexers and other
functional units (see section 4.1.1 for further
details) .

{2) Once the CHILL to Zeus compiler has accepted these
constraints two results are possible:

- the compiler generates a trial design that meets
the constraints'given to it by the FCCP (i.e. the
constraints were reasonable)

- the CHILL to Zeus compiler cannot meet one or

more of the given constraints.
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4.3 Flow Control and Constraint Propagation cont.

If the constraints placed on the CHILL to Zeus compiler can not
be met then the FCCP must modify them. Generally this.will
involve a relaxation of the failed constraint and perhaps a
corresponding tightening of other constraints. This process is
repeated until the CHILL to Zeus compiler manages to produce a
trial design. The estimation of good constraints from the design
goals and the size and nature of the CHILL code would be an area

with excellent potential for experiments in machine learning.
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4.3 Flow Contreol and Constraint Propagation cont.

When the compiler has finished a trial design it passes back to
the FCCP a list of paths in each state {(eg. register =-»>
multiplexer -> ALU -> multiplexer -> register). These paths are
then combined with the timing constraints derived by the FCCP
and, together with the area and power specifications, they form
a set of constraints which are passed to the ITL to CIF process.
Again, the ITL to CIF process may either generate a design which
is within the given bounds (in which case we have a design
completed to specifications) or some given constraint can not be

met.

The failure may either be one of power, area or speed or perhaps
some other criteria such as testability. 2As a results the FCCP
will try to loosen the restriction on the failed constraint by
tightening the bounds on other blocks within its field. This
will allow some flexibilty for the critical wlock but keep the
total limit over that field constant. For example, a path with
five blocks in it‘may have a total path delay constraint of 140
nS. The FCCP may try to impose a 20 nS limit on each of the
blocks but £ind that one block can not be kept within this bound.
It may then relax the 20 nS limit on the failed block to 39 nS
and confine the other blocks to 17.5 nS8 each. This type of
procedure would continue until all specifications are met or it
becomes obvious that the restrictions are too tight. In the
latter case rules are applied within the FCCP which allow it to

make power/area/speed tradeoffs at an architectural level.

These architectural level tradeoffs are expressed as new limits

to be given to the CHILL to Zeus compiler. In this way a new
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4.3 Flow Control and Constraint Propagation cont.

design with a greater probability of meeting specifications is

generated. The whole process is then repeated. If no

power/area/speed tradeoffs can be made {(i.e. all constraints are
exceeded), the offending parameters can be identified. The
designer would then be able either to relax the constraints or,
using his superior design knowledge, guide the SDL-VLSI
system with more explicit constraints. Hopefully, the designer
will also be able to formally express his reasoning fof these

modified constraints to be incorporated into the FCCP rule base.
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4.4 ITL to CIF

The ITL to CIF translation process is shown in figure 4.4.1.
This process relies heavily on the top-~down design strategies and
an automatic floorplan generation such as is described in [64] &
£61l]. In the system overview it was suggested that to achieve
best results with a silicon compiler, the translation process
should assist the creation of silicon structures. Figure 4.4.1

shows the use of a hierarchical rule base to achieve this.

The ITL description has been defined as a netlist description
between blocks. The ITIL. generates the floorplan graph by
éeclaring the blocks as nodes and the interconnect as paths.
From this floorplan graph and a process of selection a simulation

description is generated.

The design constraints and specification in conjunction with the
rules devised for floorplanning acts to select an available
structure for each block. This block is then assigned some
internal physical constraints, e.g. the general shape(such as
long and thin), positionof signal and power connections etc.
Included in this iterative selection and generation process are
the results of any previous generation attempts. If all attempts
to generate a solution which fits the design specifications faii,
this information is passed back to the major controlling process

as shown in the system overview.

Additional information geﬁerated by the above process can be used
in conjunction with a predefined rule library to simulate the

approximate behaviour of the blocks and thelr interconnects.
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4.4 ITL to CIF conte.

This rule library is a list of ‘rules of thumb' which is derived
from the designer’s knowledge. The simulation results achieved
are then compared with the goals set for the simulation by the
selection process. The results of the comparison are passed back
to the selection process for evaluation.

When the selection process has chosen a design description that
meets the design specifications it creates a aescription for the
generation of actual hardware. Once the block modules have been
created, placed and routed a full simulation 1s performed using
geometric information from these processes. Simulation can be
achieved in a hierarchical fashion if the modules are simulated
individually followed by their interconnections. Failure to meet
the given specifications at this point should affect only the
module placement and routing. Optimization can proceed at this

level until an acceptable result is obtained.
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5.8 Time & Cost Estimation

The estimation of time and costs at this stage will necessarally
be somewhat imprecise , however, as planning and specification

progress a refinement of these estimates will be possible.

5.1 Rules

The development times associated with construction of the rule
library are still very difficult to estimate, for although there
is some idea of what the rule base should lcok like, there has
not been enough Lnvestigation to determine their exact nature.
The rules for the ITL to CIF process would consist of:

- floorplanning and available block structures

- rules of thumb for blocks and interconnects

~ rules governing generation of block descriptions.
For the CHILL to Zeus compiler:

- when to use buses or nultiplexers

- combining of functional blocks

~ when to use specialized registers.
For the FCCP:

- knowledge about how to make power/area/speed

tradeoffs.

As noted in [63] the acquisition of rules is a major task. It
was observed previously that the knowledge base is, by
definition, a dynamic structure which will be updated

continously.
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5.2 Equipment & Support

A Unix environment would be useful for compiler development as it
provides the yacc system for compiler design and lex for lexical
analysis. A profiler would be useful for determining which parts
of a program should be optimized if higher speed was reguired.
Either Pascal, Modula-2 or C should be provided to write the
compiler - with Pascal or Modula-2 being preferred unless speed
was of paramount importance. If the full Zeus system was to be
implemented then a Modula-2 compiler would be essential as Zeus
has the option of importing Modula-2 blocks.

At the low level graphical capabilities are required to enable
the display of placement and other information that is best
presented pictorially. The languages used would be C, Pascal and
Lisp and it would be neccessary to have a compiler for each
language.

At the low level of fabrication there will be a requirement for
the development tools aimed at the block generators, suchas a
technology independent design rule checker and possibly an
electrical rule checker. Also a gfaphical editcr may be

advisable for examination and modification of actual circuits.

The simulators used in the system would need to be considered
very carefully for they are essential in the selection and design
process. As the SDL~VLSI translation proceeds it would desirable
to simulate at each level, especially when developing the
compilation system. This implies that simulators would be
required at each of the following levels: CHILL, Zeus, Logical,

Switch Level and Electrical. It would be convenlient if the
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5.2 Equipment & Support cont.

simulation package could handle module ané heirarchical
description, as well as a graphical representation and be ableto
support user interaction. A software package similiar to that
provided by Mentor Graphics would be sﬁitable as it is self
documenting.

The hardware required to run this software should be based on a
VM machine with at least 4 Mbytes of main memory to enable the
use of LISP. It should also support reasonably high resolution

graphics. A Sun-3 168/C would be an appropriate machine.
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6.9 Major Example Proposal

Proposal of a subsystem as a trial application for the SDL/VLSI
CAD system.

The IEEE 882 Token Ring Network is under consideration for
evaluating the CAD system during the next phase of this project.
This network is suggested because it is well documented and a
specification is readily available. Examination of this token
ring network, shows it to be too complicated to be implemented
completely at this stage. A simplified version which consists of
several interacting processes 1is under consideration. A design
" with multiple processes should provide interesting insights into

the problems associated with interprocess communication.
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Areas of Further Research & Conclusions

Areas of Further Research

This report has identified at least five areas of interest that

reguire major investigation to be fully explored. They are:

This report

The hardware/software interface, i.e. how do hardware
and software processes interact and at what level?
The type of hardware controller e.g. is it a fixed
architecture and 1is the use of pipelining and
subroutining helpful ?

Whether pipelining of functional units can be
implemented (the examination of compilers written for
vector processers could be relevant).

The possibility of providing automatic code profiling
to determine which areas of the code are the most
profitable to optimize.

Whether machine learning could be usefully exploited
(in the FCCP for example).

has outlined a system for the automatic generation of

VLSI circuits from an initial SDL description. With further

refinement it could form the basis of a practical implementation.

Such an implementation would be not be trivial but the rewards

produced by such an effort, not Jjust in the form of a functional

silicon compiler but also in the advancement of knowldege in this

area, are felt to be too significant for such an attempt not to

be made.

T
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8.8 Appendicies

APPENDIX 1.1 Railroad diagrams for the specification of a Design

Constraint Y.anguage.
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Syntax for Design
Constraint Language

Design constraints are constraints

-

constraints
»( CONSTRAINTS )—» Hentifier —O—» block
process
END )"’ identifier —>
block ( 2 constraints
: (O
/——©4~ niumber
di ) < :
imension id_list
MINIMIZE >———> dimension
MAXIMIZE )——-& dimension

» Appendix 1.1
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Syntax for Design .
Constraint Language cont.

number —p digit
C- digit 4_>
process
identifier —# letter

C ]
letter_or_digit ﬂ-)

letter ——\
letter_or_digit : e

digit

digit '0L.'9'

letter { ALZ 2

N N

dimensions CYCLE TIME

I/O LINES

POWER

Appendix 1.1
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