JOINT RMIT AND CSIRO PARALLEL SYSTEMS ARCHITECTURE PROJECT

DESIGN CONSIDERATIONS FOR A
HIGH PERFORMANCE
DATAFLOW MULTIPROCESSOR

D. Abramson
G.K. Egan (RMIT)

TR-FA-88-04 (RMIT TR 112073R)
August, 1988

(RMIT refers to the Department of Communication and Electronic Engincering, Royal
Melbourne Institute of Technology, Box 2476V, Melbourne VIC 3001 Australia)

Abstract

This report discusses some of the design decisions in the implementation of a high
performance dataflow multiprocessor being constructed by CSIRO and RMIT. The
multiprocessor consists of a number of processors which directly execute directed dataflow
graphs rather than sequential von Neumann programs. The processors are connected via a
high speed multistage interconnection network. The target performance for each processor is a
sustained diadic node evaluation rate of § millions instructions per second (MIPS), sustained
monadic rate of 10 MIPS and a sustained diadic vector rate of 10 MIPS.

Design Considerations for a High Performance Dataflow Multiprocessor Page 1

1. INTRODUCTION

The RMIT/CSIRO Parallel Systems Architecture Project commenced in May 1986. It is a joint
collaborative project between the Royal Melbourne Institute of Technology and the Commonwealth
Scientific Industrial Research Organisation, Division of Information Technology. The purpose of the
Project is to investigate parallel algorithms, methodologies, languages and architectures, and in
particular architectures based on the dataflow model of parallel computation model [1]. The variant
of dataflow model being studied is that first proposed in 1976 by Egan at Manchester University,
UK [2] and subsequently further developed at RMIT. A multiprocessor emulation facility is available
for high speed interpretation of the programs as well as a conventional discrete event simulation of
the architecture. Compilers for a number of dataflow-like languages are being developed. Work is
currently proceeding on the design of processing elements for a high speed multiprocessor.

The purpose of this paper is to discuss some of the technical design trade offs in the construction
of the high speed multiprocessor. The target performance for each processor is a sustained diadic

manner, and concurrency is obtained if more than one node executes at the same time. Figure 1
shows a sample data-flow graph for an arithmetic expression and Figure 2 shows a model for the
hardware required to execute such data-flow programs. In this hardware, the program graph is

distributed to the processing elements so that the computation of A*B can proceed at the same time as
C*D. The results of a computation are sent from the processor that holds the source node to the

The RMIT dataflow machine differs from other dataflow architectures in the following ways:

The architecture uses a hybrid static evaluation model with a dynamic model.

The machine supports vector and list operations

Graphs are partitioned and the partitions are allocated statically to processing-elements.
Storage nodes are provided to allow the graph 1o retain 'semi-permanent’ information.
An Object Store is provided for large structures and persistent objects (e.g.files).

[] L] L] L] -

Many of these attributes affect the design of the processors. The effect will be discussed
throughout the paper.

3. THE RMIT/CSIRO DATAFLOW ARCHITECTURE

The RMIT hybrid evaluation model has been designed to provide efficient implementation of
algorithms which require temporal ordering of data sets, as in many DSP applications, as well as
highly concurrent scientific codes. The machine enforces data and temporal dependencies by
providing token queuing on the arcs of instructions. Data tokens are consumed from arcs in the order
that they are received, thus they move through a graph in the original order that they were

Introduced. In this case only one instance of the node exists, although the data moves through in a

Design Considerations for a High Performance Dataflow Multiprocessor Page 2

| Unit0 | | |

Processing Element 1 —

. Communication
Processing Element 2 -
Network

—

Processing Element n

Figure 2 - Hardware Model.

The RMIT machine provides SUpports operations on vectors as well as scalars. The instruction
Set uses generic instructions which operate on many different types. For example, if two integers are
sent to an add node, then the result is an integer. However, if two floating point number are added
the result is a floating point number. In the same way, if two vectors are sent to an add node, then
each element of the vectors are added, and the result is a vector. The implementation of vectors as a
basic data type allows conventional vector pipelining techniques to be used for improved
performance. The machine must be able to match, build and transmit vectors as basic types, which
affects both the matching unit design as well as the evaluation unit.

Design Considerations for a High Performance Dataflow Multiprocessor Page 3

List operations are supported by using attributes of the hybrid model-to keep list structures in
order. It is possible to operate on a list, construct a list and disassemble a list. Start and end of list
tokens delimit lists, including lists of lists. It is possible to mix lists and scalar operations on the
same Instruction. The implemetation of lists affects the design of the matching unit because they are
supported by special matching functions.

The storage node is an instruction which retains a single token which may then be re-read on
demand. The data is stored in the matching unit for fast access. This has impact on the design of the
matching unit because it does not necessarily mean that a token is removed from the matching unit
when a match occurs. Large amounts of data are not placed in storage nodes because the matching

with no automatic synchronisation between reads and writes, or can be [-structures [6]. I-Structures
provide read before write synchronisation, and prohibit write after write operations, to guard against
indeterminate results.

The code partitioning scheme used by the machine distributes work around the multiprocessor
giving excellent work load distribution. The effect of this scheme is that there is very little locality as
most tokens are required on a different processor from the one which generated them. Later we
discuss a network capable of meetin g the high bandwidth required for the target evaluation rates.

In the following sections we will discuss the details of the processing elements with emphasis on
the processes associated with operand matching.

4. PROCESSOR STRUCTURE

Figure 3 shows the overall structure of a processing element. The element is split into two main
functional units. The matching unit accepts tokens as they arrive from the network, and builds work

number, a colour (or tag), and up to two operands and their types. The evaluation unit applies the
function to the operands and sends the results through the network to their destinations.

The matching unit has a large input queue for holding tokens which have arrived from the
network, but have not been matched or stored. This queue needs to be sufficiently large to hold
excess tokens generated whilst a computation is growing,

Tokens are held in a matching memory whilst they await their partner. This memory behaves as a
large associative store, retrieving tokens based on their node numbers (22 bits) and their colours (38
bits). Because the key field is large, a fully associative memory is impractical, and a token cache
coupled with a secondary hash table in bulk memory is used.

To account for variation in the matching-class and the evaluation-function times, from token to
token and function to function, a small queue of work packets is maintained between the units.

In the evaluation unit simple functions are handled directly in one machine cycle, with more
complex operations being supported by microcode. In the normal case the function from the
evaluation queue is applied to the ALU's and the operands are processed directly. The results are
passed to the dispatch section of the evaluation unit for transmission over the network.

Design Considerations for a High Performance Dataflow Multiprocessor Page 4

-~

— ~
Matching Unit

RS o0

16k 2 way set
assoclative
token

cache
|

 SEER——] b - FP/I
IMx 80 : CBEE | ALU I
dynamic :

memory

rectreulating
buffer
2 way set | o
associative {/ 8Kx64
data 1 | direct mapped
cache § destination
cache

256k x 1
valid bits

..
e — wsw'
aa

5
S

7

8K direct
mapped
instruction

)

: Gy G TR : R e e e

Figure 3 - Processing Element Structure

4.1 Matching Unit

The matching unit is responsible for detecting when both operands of a diadic node have arrived,
or when one operand of a monadic node has arrived, and building a work packet for the evaluation
unit. The matching unit in the RMIT machine has to perform match operations on both tagged (or
coloured) tokens as well as uncoloured tokens. When a tagged token arrives the match unit searches
for another token with the same tag and node number. If one is present, and it is for the opposite
input point, then it is consumed. If one is present but for the same input point, then the new token is
added to the end of a queue. When a token is removed because of a match it is always removed from

the head of the queue. When a token arrives without a colour it behaves as though the colour was
zZero.

The matching unit also handles storage nodes and list operations. In the case of a storage node
the data may not be removed from the matching store when a match occurs and can be read out

repeatedly until the node is reset or the data overwritten, List operations are qualified by detecting
start and end of list tokens.

4.11 Input Queue Design

The input queue poses a design problem because it needs to be both large and fast. It must be
capable of meeting the peak transfer rate of the network, but must also be able to hold most of the
tokens generated during the buildup phase of a computation. Commercial queve and queue
management chips are typically quite small and do not support large data sets.

The input queue has been designed to meet a peak network and processor rate of inserting and
removing one token every 50 nSec (for discussion of this rate see Section 4.3). It is constructed
using a four way interleaved memory structure from 100 nSec memory devices as shown in Figure
4,

Design Considerations for a High Performance Dataflow Maultiprocessor Page 5

Input Output

Register Memory Register
—® Bank 0 >

Address Reg l

Memory
) Bank | >

Address Reg I

Memory
> Bank 2 A

Address Reg |

Memory
—» Bank 3 >

Address Reg |

Figure 4 - Interleaved Input Queue

Tokens are composed of one or more 128 bit words. The format of a single word token is shown
in Figure 5. The first word of a token contains g monadic match flag, processor number, process

indicates whether a match is required, or whether the token can be passed directly to the evaluation
queue; the process number is used to distinguish different users, or tasks, in the machine; the input
point indicates which input of the node the token is directed to; the type field indicates the type of the
data. The data field is sufficient to hold the most common data types.

subsequent words hold the data fields. In the case of a vector, each word following the first word
would, in the case of 32 bit reals, contain four elements of the vector. Thus, a four element vector
only requires 2 words. Records are packed into two or more token words.

- Processor - | Process Node Inp {Mon Colour Type Data
(8 (8) (22) ONES) (38) (8) 40)

e 128 bits >

Figure 5 - A Token

4.12 Matching Process

When a token arrives a high speed associative search must be made to determine whether a
partner is available. The RMIT machine holds waiting tokens in a hash table, The node and colour
fields are hashed into a primary table, as shown in Figure 6. All synonyms are stored in a linked list.
When a token arrives the entire chain is searched, and if not found, it is placed at the head of the
Synonym chain. If a queue is not present, then the entry holds the data directly. If a queue is present,
then it contains head and tail pointers to the queue.

Design Considerations for a High Performance Dataflow Multiprocessor Page 6

The main hash table is designed to be sparsely occupied, sothat the probability of an overflow
chain is very small. In the RMIT machine, this table is large enough to hold 4 times the maximum
number of tokens, thus the chance of an overflow chain is 0.125 [7].

When a tag is not present, the hash table becomes a direct access table, indexed by node number.
In this case the overflow chain would only contain one entry, although it is still necessary to verify
the node number in the case where a graph contains both coloured and uncoloured tokens. The
hashing function combines the node number with the colour field using a multi-way exclusive-or
function. When the colour is not present, only the node number is used.

In order to speed access to this matching table, a special token cache holds the most recently
written tokens. Thaus the hash table is only accessed when the token cache misses.

4.13 Token Lifetimes and Caching

Conventional processors make use of locality to speed up memory accesses by storing the most
recently used data items in a high speed cache memory. Such caches work because once a location
has been accessed it is a likely candidate for future references. Typical cache hit rates can be very
high. However, the matching process in a dataflow machine states that a token either matches with
its partner, or is stored and awaits a partner. Once retrieved, a token is normally discarded from the
match unit. Thus, the locality exhibited in conventional machines is not present in dataflow
machines.

Recent research has indicated that there is actually a significant amount of temporal locality in the
arrival times of tokens in a dataflow machine, Once a token is stored in the match unit, its partner
will usually arrive shortly after the original token. Thus, it is possible to place tokens in high speed
memory when they arrive in the expectation that their partner will arrive within a short time interval;

contains the function code as well as any literal operands attached to the instruction. The cache is
read only, and is loaded from main memory when an instruction is not found. If a literal is present
then it is loaded into the cache at the same time as the instruction.

4.15 Matching of Queued, Record and Vector Tokens

Design Considerations for a High Performance Datafiow Multiprocessor Page 7

memory. In most cases a queue will not be present even in staticcode, so the cache can process
operands at the peak rate of 10 million match/mismatches per second.

The architecture also supports records and vectors as basic tokens. These tokens are of varying
sizes, and thus cannot be stored directly in the token cache. When a record or vector token is
received an entry for the token is written in the cache, but the data area holds a pointer to the token
contents, which are then stored directly in main memory. Each word of the structure is stored in
contiguous space, and can be read out sequentially, faster than normal random accesses to the
memory, by using page mode dynamic memories. Thus, even though the main memory is slower
than the cache memory, the information can be saved and retrieved quickly. In the case of vectors,
once the startup cost has been incurred, it will be possible to retrieve 2 elements of the vector eve
100 nSec, thus giving a peak vector transfer rate of 20 million elements per second. This will then
vield a sustained diadic vector evaluation rate of 10 MIPS.

In fast memory

/In main memory

Hash

OverﬂoKChain

\ He_ad Tail
Pointers Pointer Pointer

\Valid Bits

Figure 6 - Hash Table Structure

4.16 Controlling the Match Process

There is a significant difference in the control sequences required when a token is placed in the
cache, and when a token must be inserted in main memory. The matching unit control system is
optimised so that the cache control is performed by a high speed state machine, but the more complex
operations involving main memory are controlled by a microprogrammed contro} unit, The
microprogrammed control unit normally spins in a microcode loop, issuing an instruction which
allows the cache control unit to match or mismatch simple tokens. However, when an exception
occurs the microprogrammed control unit exits the loop and handles the situation directly,

~ This technique has the advantage that the most common match operations which can be handled
1n one machine cycle, execute at the maximum rate, and the more complex and less common cases
can tbe dealt with by more general, albeit slower, microcode.

Design Considerations for a tigh Performance Dataflow Multiprocessor Page 8

4.2 Evaluation Unit T

The evaluation unit supports computational, organisational and structure accessing functions.
The major elements of the unit are discussed in the following sections.

4.21 Evaluation Queue

A queue is placed between the matching unit and the evaluation unit to compensate for bursts of
monadic or diadic matches and for data dependant variations in operation times of the matching unit
and the evaluation unit. If a token is destined for a monadic node, then the matching unit can forward
work packets at the rate of 10 million per second. However for normal diadic nodes the rate falls to 5
million per second or less for more complex match-classes and complex data types. Lists, vector and
record matches have greater match times due to their size and the reliance on the main memory rather
than the cache. The operation times of the evaluation unit vary depending on the complexity of the
function to be performed, the datatypes of the operands, whether a stored object access is required,
and the number of result destinations.

Each entry in the evaluation queue is a complete work packet. It contains the function name,
process number, nodenumber, colour, operand types and operand data, An entry is shown below in
Figure 7. The queue is small relative to the input queue, and will be constructed from commercially
available 1K deep queue devices.

Func| TypeOj Typel| Process| Node Colour Argument 0 Argument 1
OREORENG) (8) (22) (38) (64) (64)

e 220 bits >

Figure 7 - Evaluation Queue Entry

4.23 Function Evaluation

Function evaluation will be supported by a general purpose ALU and up to two floating point/
integer@ogical ALUs. The output of the evaltation queue can be sent to one or more of the ALUs for
processing. :

The evaluation unit, as for the matching unit will evaluate most functions using a data driven
control scheme. The greater richness of functions and operand types increases the difficulty of using
this technique however the more frequently occurring functions can be executed in one 200 nSec
cycle e.g. multiply two real operands. In more complex functions or where type coercion is required
the instruction may require a few to many cycles; in this case a microcode sequence is started to
manage function evaluation. The type and function fields are used as an index into the microcode so
that the correct sequence can be started without an expensive sequential decoding process.

4.22 Token Dispatch

Nodes can have multiple outputs, thus each node description has a list of destination addresses.
A direct mapped cache is used to hold pairs of destinations. If more than two destinations are

are retrieved while a function is being evaluated. When a token is ready for dispatch, the first
destination address is merged with the result data before it is written to the network and a copy of the
result token is simultaneously written to a recirculating buffer. If there are two destinations then the
second destination is merged and the result is rewritten 50nS later (subject to network contention), If
three or more destinations are required then access to main mermory IS commenced in parallel with the
first token being written. Subsequent destination pairs are then returned every 200 nSec. permitting a
100 nSec rate to be maintained for three or more destinations. The dispatcher operates concurrently
with the ALU's.

Design Considerations for a High Performance Dataflow Multiprocessor Page 9

4,23 Vector Function Evaluation

Vectors are passed to the evaluation unit as two 64 bit slices of the original token word, each
slice may contain more than one datum e.g. two 32 bit reals. With two floating point processors the
evaluation unit can operate on the two vector elements in each operand concurrently. The sustained
vector rate will therefore be 10 MFLOPS, compared with the 5 MIPS scalar rate.

4.24 Object Store

The excution unit is responsible for maintaining the object store, It can create, destroy and access
objects. An object may reside either entirely within one processing element, or can be distributed
across the multiprocessor. The latter form which would most commonly be used for vector and array
structures, reduces structure contention but increases latency. A more detailed description of object
store operations will be the subject of a later document.

4.3 Communication Network

The dataflow multiprocessor is composed of a number of identical processing elements
connected by a high speed multistage network. Workload is distributed by two randomisation
processes. One allocates the instructions statically at compile time, and the other distributes the token
traffic randomly at run time. The combination of the two yields excellent work load distribution [5].
However, the disadvantage is that all tokens generated must be transmitted over the network. A
major feature of dataflow machines is that they can tolerate very high levels of latency in the network
because a processor does not remain blocked whilst it waits for data [8]. However, the tokens must
still arrive at a rate which allows the processor to achieve its peak instruction rate. For example, a 5
MIPS processor must receive 2 tokens for diadic nodes every 200 nSec, or one token every 100
nSec. If the nodes are monadic, then only half this rate is required. Thus, the network has to have a
very high bandwidth, but may be many stages deep and thus have a significant latency without
unduly effecting performance.

4.31 Switch Design

The RMIT machine will use a buffered synchronous multistage network built from 4 by 4 cross
bar switches. The switches operate on a basic cycle time of one transfer every 50 nSec, which is
twice the rate actually required to maintain the processor performance. The reason for this is that in g
multistage stage network, the chance of a token moving through the network without contention
diminishes as the number of stages increases. The probability of acceptance, falls to about 0.5 for a 3
level network of 4 by 4 switches. Thus, to achieve a transfer every 100 nSec, the switches must
actually operate at 50 nSec intervals. The same rate applies to the input and output queues. A 3 level
network would support 64 processors providing a sustained vector performance of 640 MFLOPS.

The prototype network will be constructed from conventional PAL devices, and is expected to
achieve the target speed easily. Later versions of the switches will be implemented either from gate
array technology, or commercially available switches should they be available. An important
observation is that the network can be constructed from the same speed devices as those used in the
processing elements. In this way, the entire system can be scaled as faster logic becomes available.

S. CONCLUSION

In this paper we have discussed some of the design issues considered during the construction of
a high speed dataflow multiprocessor. We have illustrated the sections which have the most effect on
performance, and have indicated that it is possible to construct these from current conservative
tecknology. With faster logic families and/or semi-custom silicon implementations of sections of the
processor, a much faster processing element could be constructed.

It is anticipated that a prototype processing element will be operating early in 1989. Subsequent
work will be to develop a small multistage network, and the construction of a 4 processor
multiprocessor. Future work will be involved in measurement of system performance, and
considerations involved in mapping sections of the processors onto silicon,

Design Considerations for a High Performance Dataflow Multiprocessor Page 10

Acknowledgements

The authors wish to acknowledge the support of the project team, in particular M. Rawling, N.
Webb, P. Whiting and A. Young. Special thanks go to Mark Rawling and Neil Webb who
reviewed earlier drafts of this paper. The Parallel Systems Architecture Project at RMIT is being
supported by the Commonwealth Scientific and Industrial Scientific Organisation (CSIRO) under an
Information Technology joint research project.

References

1] D.Abramson and G.K. Egan, " An Overview of the RMIT/CSIRO Parallel Systems
Architecture Project”, TR 112065R, Department of Communication and Electronic
Engineering”, Royal Melbourne Institute of Technology, Aug. 1987.

Proceedings of 1988 Australian Computer Science Conference, Brisbane, Feb 1988,
Republished in Australian Computer Journal, August 1988.

(2] G.K. Egan, "Data-flow: Its Application to Decentralised Control", Ph.D. Thesis,
Department of Computer Science, University of Manchester, 1979.

{3] S. Brobst, "Instruction Scheduling and Token Storage Requirments in a Dataflow
Supercomputer”, CSG-Memo-264, MIT, May, 1986.

[4] D. Abramson and G.K. Egan "The RMIT Data Flow Computer: A Hybrid Architecture",
Royal Melbourne Institute of Technology Technical Report, TR-112-057R, 1987. To
appear in The Computer Journal.

{5] M. Rawling, "Implementation and Analysis of a Hybrid Dataflow System, M.Eng. Thesis,
Royal Melbourne Institute of Technology, Dec.1987.

[6] Arvind and R.E. Thomas, "I-Structures: An Efficient Data Structure for Functional
Languages”, MIT/L.CS/TM-178, Laboratory for Computer Science, MIT, Sept. 1981.

[7] Morris, R. "Scatter Storage Techniques”, Comm. ACM, Jan 1968, pp 38-43. '
[8] Arvind and R.A. Iannucci. "Two Fundamental Issues in Multiprocessing", Proceedings of

DFVLR - Conference 1987 on Parallel Processing in Science and Enginerring, Bonn-Bad
Godesberg, W Germany, June 25-29, 1987,

