JOINT ROYAL MELBOURNE INSTITUTE OF TECHNOLOGY AND
COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANISATION
PARALLEL SYSTEMS ARCHITECTURE PROJECT

Numercial Examples on the
RMIT/CSIRO Dataflow Machine

TR 118 082 R

GK. Egan
N.J. Webb

W. Bohm 7

Department of Communication and Electrical Engineering .
Royal Melbourne Institute of Technology,
P.O. Box 2476V, Melbourne 3001,
Australia.

1 Department of Computer Science,
Victoria University of Manchester,
Manchester, M 13 0P,
England

Version 1.0 May 1989

Presented at the Workshop on Dataflow Computing: A Status Report, Eilar, Israel 1989

ABSTRACT:

The dataflow architecture of CSIRAC II encompasses both the static queued model and dynamic
or unravelling model and exhibits the advantages of both.

The paper will present some distinguishing features of the architecture using as illustrations
simple representative numerical examples.
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Introduction
The Joint Parallel Systems Architecture Project at the Royal Melbourne Institute of Technology

(RMIT) under funding from the Commonwealth Scientific and Industrial Research Organisation
(CSIRO) is directed at the design, construction and application of parallel computing systems.
The architecture of CSIRACII (1}{2}[8} which is being constructed as part of the Project
encompasses both the static [7] and dynamic dataflow schemes[S] and exhibits the advantages of
both. The architecture is characterised by:

generic node functions with implicit type coercion;

sequence functions for tag and index generation; -

variable length strongly typed tokens including vectors and compound tokens;

extended matching function set :

support of heterogeneous nested lists or streams 215

support for re-entrant graphs;

deferred and non-deferred structures;

. Integrated input-output;

random static allocation of nodes to processors at compile time
qualified by colour at run time.

Completed application studies usin g the DL1 language [17] include object recognition [9],
manipulator control [10], logic simulation {3} and resource allocation[4]. Application studies
currenty in progress include those in geomechanics and weather modelling.

This paper will present some distinguishing features of the architecture using as illustrations
simple representative numerical exampies.

1. Development Environment

The Project has under development several lan guage implementations including SISAL [15],
IDA [23] (an 1d derivative [16]), Guarded Horn Clauses (GHC) {20} and Pascal. SISAL, IDA
and Pascal are targetted on IF1 {18] while GHC and IF1 are targetted on 12 {11]; 12 is a graph
assembler at the CSIRAC I instruction set [12] level. The availability of several back end
transiators for IF1 permits comparative studies of languages independant of the dataflow
hardware. The i2 back end generates code for a muiti-processor based instruction set emulator
and the CSIRAC II hardware which is currently under construction (1] (Figure 1.1).
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Figure 1.1 Development Environment
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2. Computing I

The computation of IT by numerical integration was used by Babb [6] to assess informally some
parallel machines and their language systems. The recursive divide and conquer scheme is used
to illustrate how graph re-entrancy is supported, while the loop solutions illustrate some
tradeoffs between loop unravelling and streaming.

2.1 Recursive Solution

The first solution is by recursive binary subdivision of the integration interval. A SISAL
program which implements this is given below:

% compute pi by recursive binary subdivision of integration interval
define recursive
function recursive(returns real)
function Area(D: integer; dx, L,R: real retums real)
let -
Mid = (L +R)y*0.5;
NewD:=D/2:
in
if D=0 then
(R-LYy*40/(1.0+L *L)
else
Area(NewD, dx, L, Mid) + Area{lNewD, dx, Mid, R)
end if
end let
end function
let
Rectangles = 1000;
dx = 1.0 / Real(Rectangles);
in
Area(Rectangles,dx,A.B)
end let
end function

The compiled graph region corresponding to bold text is shown in Figure 2.1.1. The node
functions are cre (create colour), eve (exchange value and colour), ste (set colour), sri {set
return link) and e (exit).
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Figure 2.1.1 Recursion Fragment
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Although the process is logarithmic it takes some considerable time to reach the leaves of the
recursion tree where the computation of the integral takes place; this is a consequence of the
complexity of the decision and new integration subrange generation combined with latency due o0
the number of network and processing-element stages; latency is set to 10 for all following
simulations. The tail of the computation where the summation of the partial integrals occurs 1s
comparatively fast. The upper line of the performance measures graph of Figure 2.1.2is
nominal MIPs and the lower is MFLOPS; it can be seen clearly that the peak of the floating point
computation lies towards the end of the computation. The other graphs show processing- element
activity and the number of tokens both in transit and unmatched over time in the system.
Workload distribution is excellent as shown by the even granularity of the individual processing-

element activity graph.
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Figure 2.1.2 Recursive Solution
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2.2 Loop Solutions
2.2.1 Single Forall Loop

A program for a solution using a forall loop is:

define loopls
function loopls{returns real)
let
Rectangles = 1000;
Dx := 1.0/ Real(Rectanglesy;
in
forrin 1, Rectangles returns vatue of left sum
4.0*Dx /(1.0 + Dx*Real{r)*Dx*Real(r))
end for
end let
end function

The compiled graph for the forall loop is shown in Figure 2.2.1.1.
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Figure 2.2.1.1 Forall Loop Fragment

The highlighted graph construction is the loop call and throttling mechanism used on the
architecture. The calc_no_para_loops function determines to what degree the loop body should
be unravelled or conversely to what degree data should be streamed through the loop body; this

Page -

is done by examining the length of the processing-element input queue and varying the

arguments of the ccs (create colour sequence) node 10 generate sEqUENCEs of colours varying
from all unique colours (fully unravelled) through cycles of colours (partially throttled) to one
colour (fully streamed) {22]. The additional node and match functions used over and above that

for the fragment of Figure 2.1.1 are pro (proliferate), and prt (protect).

5

It is clear that this solution will not yield good results as the "length” of the loop body is such

that very few loop bodies will be active at any instant even if initiated by sequence generating

functions (Section 5.). This is confirmed by the simulation results shown in Figure 22.1.2.
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Figure 2.2.1.2 Single Forall Loop

2.2.2 Techniques for Lengthening Loop Bodies

Where the bounds of the forall loop are known at compile time, two possible strategies to
increase the "length” of loop bodies are:

i)  take factors of the loop range and generate a nested forall loop using
these factors as bounds;

if) statically elaborate the loop body some number of times (usually small)
within a single loop of appropriately reduced range.

Both these techniques serve to increase the length of the loop body such that an appropriate level
of concurrency is maintained. They can also increase code size and organisational overhead. The
simulation results for both strategies are presented in Figures 2.2.2.1 and 2.2.2.2.
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Figure 2.2.2.1 Nested Forail Loops (outer loop 50, inner 20)



CSIRAC Y1 Numerlcal Examples - Eilat 1989 Page- 7

MS, 05 and Trangit Tokans - Graph 3 - <loapla trowed.disy Liement Activity - Graph 4 - <loopls_tresd.dfo>

A

M5
1.2 T o
j | oo o Transi
! 1
i
r :
1.0 i
}f
9.8 / 1
Tokany i Elements
® 143 l1 Activa
P
4,6 4 ;’.-!,“.Md
Vo 3
In ¥ ’ﬁl
By i
14 L
I I M
° v i
X .
. i 1
v t
L L
sz 4 4/ |
i 1
\‘ﬂ !\ \\
i ‘
2.0 T T T T T T T
0.0 ¢} 9.2 e.3 0,¢ 0.5 4.5 0.7 0.8 s
Tine (Secsl x 10°-¢ Tine (Secs) o« 10%-4

Figure 2.2.2.2 Static Elaboration

2.2.3 Streamed Iterative Solution

Removing the call and throttling code (Figure 2.2.1.1) from the inner forall loop results in data
being streamed through the loop body. This constrains the maximum concurrency of the inner
loop to the static nede count of the loop body; many data sets may however be in transit down
the arcs connecting these nodes. Throtting is now controiled by the outer loop(s). The
simulation results for this case which is presented in Figure 2.2.3.1 may be compared with those
In previous sections. '
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Figure 2.2.3.1 Streamed Inner Forall Loop

Left reduction was specified in the forall loop examples of Section 2.2. This results in a distinct
tail to the computations which is exacerbated by the assumed latency of the system (10). If the
recduction form is not specified, or if tree reduction is specified, it is possible to reduce the length
of the tail significantly.
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3. Lists and Vector Reductions

Figure 3.1 illustrates the combined behaviour of matching functions, object store evaluation
functions and lists of tokens. The store_add (sad} function in combination with the normal
match function (nrm) matches the scalar object store index with each element of the list in turn.
The sad function forms a compound token comprised of the value, index and destination name
of the result and sends it to the the object store where the values are accumulated. Arrival of the
end_of list token causes the sad to emit the sum and reset its state. No counter is necessary to
keep track of how many values have been accumulated.

[,11,12,13..1n,] index “el 22 e3 .en” 2.0

11+12+. . +In el*2.0+e2%2 0+...en*2.0

Figure 3.1 List Reduction . Figure 3.2 Scaled Inner Product

In some applications vectors may be short e.g. spatial transformations in manipulator and
graphics systems. In these cases we may choose to use transmitted vectors rather than stored or
list representations. The example of Figure 3.2 forms the self inner product of a scaled vector;
for the more normal case both operands would be vectors.

4. Monitors and Shared Resources

The ability of the architecture to pass records or compound tokens greatly simplifies atomic
transactions on shared resources. Two examples of the use of cormnpound tokens in this context
are given below. The examples are expressed in .i2.

The first example is that of 'linking’ an output node with a graph arc (na [0 0 0]) and
associating the node with an externai disk file (LaplaceD.tr1) in raw integer mode (i32 2). The
code fragment is taken from a laplacian heatflow problem {13].

define Laplace(};
const
TriFile = 'na [0 -49 0] hell known name of output node

TriFileLink = 'na {0 -49 17";
begin
‘emm { na [0 0 0] cv "LaplaceD.tri” 132 2 }'->TriFileLink;
n->Start;
InitCAndA(Start)->Initialised;
Laplace(initiatised);
end.

data cm { na {00 0] cv "LaplaceD.ri" 132 2}

nal0-49x] owpur

ack
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The second is a simple object store allocator.

J£* Object Store Allocate definitions for node functions to be found in [12]
const

first_free =18 1

next_free =18 0';
define *_alloc(size link);

begin
frne(size link) -> requesy; imake request atomic
rel{request) -> new_request req_colour; iset colour to "0" but retain as req_colour

cgt{new_request} -> req_size req_link;
pip(next_free req_size) -> nen_lit_next_free;
pri{non_lit_next_free free_updated)->read_free;
srd(read_free)->base_address; ! next available free memory position
lusing deferred read
add(base_address req_size)->new_{ree;
sswinew_free next_{ree)->free_updated; iupdate next free using direct write
stc(hase_address req_colour)->base;
ste(req_link req_colour)->Tequester; irestore colour
stn(base requestery; \set name to requestor
end;
define _jalloc(migger length) -> base_address;
begin
pip(#base_address wigger) -> link;
_alloc{length link);
end; | _ialloc

The fmc (form compound) function concatenates the requested block size and the link, or name,
to which the base address of the assigned block should be returned. The rel (remove colour)
function translates the atomic request into the colour space of the allocation monitor, There may
be many requests non-deterministicaily merging at the input of the rel function as depicted in
Figure 4.1. '

size #link

no-deterministic
merge

req_colour

req_size req_link

Figure 4.1 Non-deterministic Merge
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5. Sequence Generators

There are three sequence generating node functions in the instruction set as shown in Figure 5.1

Ib ubfi] v ,n cycle range

fhf.t 1b,lb+i,1b+2i...~ub VLV, VL,V c,o+l c+2..cHeycle,c,c+1,.c+range-1

sequence proliferate create_colour_sequence

Figure 5.1 Sequence Generators

The seq (sequence) function takes as arguments an upper bound, lower bound and optionally
step size producing two output sequences. One sequence is fruth values which may be used ©
control gating functions and the othe is the a sequence of Integers which may be used as indices
or colours.

The pro (proliferate) function takes as arguments a value and the number of times the value
should be reproduced.

The ces (create colour sequence) function takes as arguments a cycle len gth and the number of
colours to be produced.

Sequence functions may be used to quickly initiate computations (Section 6.). Some caution
however is required in setting upper bounds to sequence lengths. Long sequences may produce
allocation hot spots. The grains due to sequence generators may be seen in Figure 5.2.

Individual Elemeat Aetiwvicy - Graph 2: <loopls_treed.dfce

Elemant

Time

Figure 5.1 Sequence Generator Effects
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6. Some Observations on Latency

Tt is arguably true that dataflow architectures, by virtue of overlapped communication and
computation, can tolerate significant communication latency. This is not however a licence for
neglecting the need to minimise critical paths in the code or the hardware. Some, possibly self
evident, observations are made in the following discussion.

Graph cycles which can occur in graph fragments need particular attention; the maximum rate
at which the fragment can produce tokens may be constrained to O(1/nL) where L is the
combined processing-element and network delay and n is the number of nodes in the longest
cyclic path. For example the allocator of Section 4.0 exhibits a loop cycle of 4L (Figure 6.1).

req_size

4L

base_address

Figure 6.1 Graph Cycle from Object Store Allocator
Tt is of course important that simulators, such as the one used to produce the results presented
here, model latency with reasonable fidelity. Figure 6.2 shows the examples of the nested forall
loops (Section 2.2.2) with latencies of 1 and 10 respectively.

Llanest Astivity - Graph 4 - <locpls_piped_xl.dfox Element Agctiwvity = Graph 4 - <loopis piped xl.dre>

1w

60 =

50

L
aments Elenants 49

Active AsTive

30

Tiza {Sacz) x L0~-5 Timme {Secs) = 1Q*-4

Figure 5.1 Latency 1-10
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Considerations of latency of course extend to hardware design where there is usually a tradeoff
between the number of processor pipeline and network stages and maximum instruction rates.
Latency due to these stages is an important factor in reducing the recovery time from sequental
code segments; others have demonstrated an awareness of these tradeoffs [19][14]. At the code
level recursive tree based tag-generators, or generators which have cycles, exhibit slow startup.
For example each level in a tree based generator may have a critical path of of 3-4 nodes.
Assuming a latency of 10 there will be a delay of 30-40 before the next level of the tree is
reached. In this time a sequence generator will have generated 40 tags or indices. Figure 5.2
illustrates the relationship between activity generation, thread length and expected levels of
CONCUITeNncCy.

thread ‘ N 1 with sequence generators

o]

o

2
B

.02
=
3y

Figure 5.2 Threads

6. Conclusions

The architecture of CSIRAC II permits the exploration of tradeoffs between unravelled and
streamed computations and has distinct advantages in environments where preservation of
temporal ordering is important.

The examples presented here are based on initial code generated by our SISAL implementation
and although we are at the beginning of a number of optimisation cycles, early results are
promising. We have commenced evaluating our IDA implementation and expect some
advantages over SISAL in the overlap of computational phases through the non-strict
implementation of arrays.
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