JOINT ROYAL MELBOURNE INSTITUTE OF TECHNOLOGY AND
COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANISATION
PARALLEL SYSTEMS ARCHITECTURE PROJECT

An Implementation of a Barotropic
Numerical Weather Prediction Model
in the Functional Language
SISAL

TR 118 088 R

Pau §. Chang
Gregory K. Egan

Department of Communication and Electrical Engineering
Royal Melbourne Institute of Technology
124 Latrobe St
Melbourne 3000

Version 1.0 Original Document 1/8/89

ABSTRACT

Numercial Weather Prediction (NWP) is acknowledged as being of vital importance to
Australian and world economies. The demand that NWP places on computing system
performance has increased dramatically since the introduction of computer systems and is stlil
growing. The paper describes the parallel implementation of a one-level barotropic spectral
NWP model using the high level functional dataflow language SISAL. The implementation
technique is discussed and results for an Encore Multimax multiprocessor, and a Sun 3/260
are presented.

N i her Prediction in isal Page 1
Introduction

Numercial Weather Prediction (NWP) is acknowledged as being of vital importance to Australian and
world economies. The demand that NWP places on computing system performance has increased
dramatically since the introduction of computer systems and 1s still growing. As technological limits
are approached in component performance, many computer manufacturers are turning to
multiprocessor configurations to obtain increased performance. Although the underlying application
may exhibit large amounts of inherent parallelism, in many cases this has been lost in formulation for
sequential and vector systems. Therefore, the computational techniques of weather modeling will
have to be revised to take advantage of the technology of parallel processing. Additionally there is a
strong suggestion that existing language systems will prove inadequate for the new multiprocessors.
Hence, having developed new more power techniques, a parallel computing langnage is required to
implement these techniques in order to effectively express the inherent parallelism of the weather
model. The purpose of this paper subsequently is to describe our implementation of a one-level
barotropic spectral NWP model {1] using the high level parallel functional dataflow language SISAL

[2].

In order to investigate the feasibility of the implementation in SISAL, a one-level model is adopted
instead of the very large multi-level model. The implementations using a direct transliteration
approach from FORTRAN to SISAL, and a new parallel approach are described and results for an
ENCORE Multimax multiprocessor, and a SUN 3/260 are presented. The initial results, obtained
using an Optimising SISAL Compiler [3], are referenced to the baseline runtime of the original
FORTRAN (sequential) formulation. The analysis in terms of parallelism profiles, speedup curves
and model size, and their impact on achieved performance lead to a continuing study of issues related
to the effective use of current and next generation multiprocessors [4].

1. Weather Prediction Model

In contrast to the usual "grid points" models which represent parameters as grid points in space, the
spectral model studied here represents these parameters in terms of spatial basis functions. The model
size is expressed in terms of the number of resolution (or wave number truncation), J, and the
associated number of Gaussian latitudes, ilat, and number of longitudinal points, ilong, on each
latitude. Apart from the interesting technical features of the model, access to a FORTRAN
implementation and its associated data sets was an important factor in the choice of the model for this
study. A full description of the model setting out its advantages, mathematical algorithm and
presenting the results which were obtained on an IBM 360/65, is given by Bourke in [1].

1.1 Mathematical Description of the Model

For the purpose of this feasibility study, the one-level spectral model is an approximate representative
of a full multi-level spectral model. In the latter, a lot of sequential code will probably be introduced
when the reatment of more complicated physics is considered. Nevertheless, inspection of the
equations decribing the one-level model suggests very high potential concurrency. In its primitive
form, the model is expressed in terms of the vorticity and divergence of the horizontal wind field as
shown in Figure 1.

Integration of the primitive equations is facilitated by a spectral grid transform technique which arises
in evaluation of the nonlinear products UV2y, Vv2y, Ud and V& in equations 4, 5 and 6. Briefly, the
first step of this technique is to obtain the truncated expansions for approximating the stream
function, geopotential height and two derived wind fields U and V. This is followed by a fast Fourier
transformation of these fields to the Gaussian latitude-longitude grid on the globe, and direct
multiplications in the grid domain to obtain the nonlinear products. An inverse fast Fourier
transformation of these terms is then performed, followed by another transformation back to the
spectral domain.

P.S. Chang and G.K. Egan

ical Prediction in i Page 2

Definitions of symbols used:

V = wind vector (east U and north V) ¥ = swgeam function
V = horizontal gradient operaicr x = velocity poiential
k = vertical unit vector ® = time dependent perturbation field
{ = vertical component of relative vorticity _® = geopotential height of the surface
D = horizontal divergence O = global mean geopoiential
J = wave number truncation {resolution)
£ = angular velocity of earth
a = radios of earih
¢ and A are spherical coordinates
§ = k.Vx¥ = Vi (1)
D = V.¥ = V% @
& = @+ O (3)
3(V2y) -1 8(UV2y) B(VV2y) 4
5t = cosZe [T 5+ coso 50] - 2Q (sing V=y + ") (4)
3V 1 8(VV2y) 3(UV2y) , U u2+v?
= [- cosd "1 + 20 (sing V2y - —). VE [=" L @] (5)
8t a cos2d 5% 3¢ a 2 cos2¢
59 -1 §zs'uq)‘) SV . oD 6
T = + Cos -
5t a cos2e = Ok 50

_coso by L &
U =77 % T2 (7

1 3y coso 8y
a dA a &8¢

(8)

Figure 1 Primitive form of the mathematical model,

2 Direct Transliteration Approach

Qur initial approach was to perform a direct transliteration of the FORTRAN codes into SISAL. This
results in a sequential SISAL implementation because the FORTRAN implementation was
sequentially conceived.

2.1 Sequential Implementation

The original FORTRAN implementation of the model was provided by the Department of
Meteorology at the University of Melbourne. The flow chart for the FORTRAN implementation, thus
the sequential SISAL implementation, is given in Figure 2.

The model consists of an initialisation section and a imeloop section. In the initialisation, all lookup
tables, indexing arrays and the initial values of four spectral fields of interest are computed and built
whereas the future states of the fields are computed in the imeloop section.

P.S. Chang and G.K. Egan

Model Initialisation

Inital

IntFFT

GaussGrid

Legendre

LinBai

RdMins

Page 3

Zdiff

UVspectral

imeloop:

ime Step Predictio

NonlLinear

omputations

SpecToFreq

AddLinear

MdFFTGrid

PassGrid

MdFFTFreq

PassFreq

Next

Time Step

ext

emisphere

SymAsym

FreqToSpec

-
ext Latitude

Figure 2: Flowchart for the FORTRAN and sequential SISAL implementations

The function of the major subroutines in the sequential implementations are detailed below.

Inital

InitFFT

GaussGrid

Legendre

initialise essential model variables and generate indexing arrays of
orthogonal spherical harmonics.

generate tables for the sines and cosines required by FFTs.

generate the cosine of the colatitudes and the weights for the Gaussian

quadrature.

compute the spherical harmonics for each latitude from the associated
Legendre polynomial of the first kind:

jn/Z
/20T

£.5. Chang and G.K. Egan

(sind) PT (sind} cosd dd =1

Numeri h icti in i Page 4

where Pin (sind}) = MNormalised Legendre Polynomial

RdMtns read the topography (mountains) of the globe in spectral form imposing linear
balance condition {dD/dt).

LinBal compute the starting geopotential field.

Initpv compute the starting tendencies of the spectral stream function,

divergence and geopotential fields; the spectral forms of the fields are complex
expansion coeffecients.

This completes the initialisation section of the model. The loop body of the other section, the
timeloop, is comprised of the following subroutines:

Zdiff compute the spectral time dependent geopotential perturbation field
UVspectral compute the two spectral wind fields.
NonLinear compute the transformations of fields latitude by latitude and, for each latitude,

hemisphere by hemisphere.

SymAsym if computing for southern hemisphere, compute the anti-
symmetrical spherical harmonics from the symmetrical
spherical harmonics for northern hemisphere.

SpecToFreq compute fruncated expansions of the fields.

MdAFFTGrid compute FFT of each truncated field.

Vertig compute nonlinear products by direct multiplication.

MdFFTFreq inverse FET of these products.

KeepNH retain the northern hemisphere fields until the southern
hemisphere fields have been computed.

FreqToSpec accumulate intermediate non linear terms for each latitude
in spectral form.

AddLinear add the linear and nonlinear terms.

TStep perform a model timestep in the spectral model.
Energy check energy conservation.

AngMom check angular momentum conservation.

Specam check conservation of vorticity, divergence and height.

For a model size of] = 30 for example, each time step is 30 minutes; hence 48 iterations of the
timeloop are needed to perform a 24-hour forecast. This section, as a result, dominates the
computation time of the model.

The parallelism profile has indicated that the most computationally intensive routines are inside
Nonlinear where various transformations are performed. The form of computation of this critical
region for each time step is a multi-nested sequential For loops as illustrated in Figure 3.

P.S. Chang and G.K. Egan

ri Weather Prediction in i Page 5

For each hemisphere
For each latitude
evaluate the appropriate signs of the spherical harmonics

For each ...

For each ...

For each longitude point or element in a spectral field
compute the new value of the point or element

For each ...

For each ...

Next poiﬁt or element
Next latitude
Next hemisphere

Figure 3: Multi-nested sequential For loops in Nenlinear
2.2 Mapping from FORTRAN to SISAL

A typical mapping from FORTRAN to SISAL for SpecToFreq, one of the few subroutines which
constitutes the innermost For loops in Nonlinear, is given in Figure 4. This subroutine evaluates a
transformation to compute the oruncated expansions of four fields of interest. The mappings resulted
in two inner parallel For loops, which performed summations, inside an outer sequential loop which
updated four arrays. With many other codes like SpecToFreq, some worse, residing inside another
two sequential For loops (For each hemisphere and For each latitude) as shown in Figure 3, the
result was a large number of complicated sequential array updates, thus array copyings, in multi-
nested sequential loops. Hence the memory capacity required for this implementation was many times
larger than that for the FORTRAN implementation.

subroutine SpecToFreq
do 20 m = 1, mx

mi o= mo+ m
mr=mi- 1
pg(mr) = 0.0
pe(mi) = 0.0
zg(mr) = 0.0
zg(mi) = 0.0

do 30 ;= jx, 1, -1
if (j eq. 1 .and. m .eq. 1) go to 30
Jm = kmjx{m) + j
jmi = jm + jm
jmr =jmi - 1
imx =kmjxx{m) + j
pg(mr) = pg(mr) + alp(jmx) * pri(jmr)
pg(mi) = pg(mi) + alp(jmx) * pri(jmi)
zg(mr) = zg(mr) + alp(jmx) * zri(jmr)
zg(mi) = zg(mi) + alp(jmx) * zri(imi)
30 continue
20 continue

do 120 m = 1, mx

mi=m+m

mro=mi - |

vglmr) = 0.0

ug(mi) = 0.0

vg(mr} = 0.0

vg(mi) = 0.0

do 130 ; = xx, 1, -1

jmx= kmyjxx(m) + i

jrai = jmx 4+ imx

jmr = jmi - 1

ug(mr)= ug(mr) + alp(jmx) * uri(jmr)
ug(mi) = ug(mi) + alp(jmx) * uri{jmi)

P.S. Chang and G.K. Egan

Numerical her Prediction in

vg{mr) = vg(mr) + alp(jmx) * vri(jmr)
vg(mi) = vg(mi) + alp(jmx} * vri{jmi)

130 continue

120 continue
refurn
end

(a) FORTRAN implemeniation of SpecToFreq

FUNCTION SpecToFreq (jx, mx, jxx

: integer; kmjx, kmjxx : Armrrintl;

alp : ArrReall; pri, zri, uri, vri : ArrReall
RETURNS ArrReall, ArrReall, ArrReall, ArrReall)

LET
P&, 18, ug, Vg 1=
FOR INITIAL
m = 1;
pg = ARRAY_fill(1, mx * 2, 0.0);
zg = ARRAY_fill{1, mx * 2, 0.0);
ug = ARRAY_HH(L, mx * 2, 0.0)
vg = ARRAY_fill(1, mx * 2, 0.0);
WHILE m <= mx REPEAT
m:=oldm + i
mi:=oldm* 2,
mr = mi - 1;
pgmr, pgmi, zgmr, zgmi =
FORGIN 1, x
jm = kmix[old m] + j;
jmic=jm * 2
jmr = jmi - 1
jmx := kmjxx[old m] + j;
RETURNS VALUE of SUM

VALUE of SUM

VALUE of SUM

END FOR;
pg = old pgimi :pgmi; mrpgmr];
zg := old zg[mi :zgmi; mr:zgmr];
ugmr, ugmi, vgmr, vgmi =

FOR jIN 1, jxx

jmx = kmjxxfold m] + ;

jmi = jmx * 2;

jmr o= jmi - 1;

IFoldm=1& j=1THEN 00
ELSE alpfjmx] * pri[jmr]
END IF
IFoldm=1& j=1THEN 0.0
ELSE alp[jmx]} * pri[jmi]

END IF -

VALUE of SUM Foldm=1&j=1THEN 0.0
ELSE alp[jmx] * zrilimr]

END IF

IFoldm=1&j=1THEN 0.0
ELSE alp[jmx] * zi[jmi]
END IF

alp{jmx} * vri{jmr]
alpfjmx] * uri[jmi]
alpljmx] * vriljmrj

VALUE of SUM alpf{imx] * vri[jmi}

RETURNS VALUE of SUM
VALUE of SUM
VALUE of SUM
END FOR;

ug = old ug{mi : ugmi; mr : ugmrl;
vg = old vg[mi : vgmi; mr @ vgmrj;
RETURNS VALUE of pg

VALUE of zg
VALUE of ug
VALUE of vg
END FOR;
IN pg, zg, ug, vg
END LET

END FUNCTION

(b} Sequential SISAL implementation

Figure 4: Direct transliteration of the FORTRAN implementation of SpecToFreq to SISAL

P.S. Chang and G.K. Egan

Fage &

ri her Prediction in isal - Page 7

While many FORTRAN control structures mapped readily into SISAL, as was anticipated, some
difficulties were encountered with comimon and equivalence statements and the implicit mappings
from real to complex number representations using these statements because SISAL does not
provide global structures or implicit mappings. Also with the same common and equivalence
statements installed in the subroutines, the resulting side effects throughout the FORTRAN program
made it difficult for the context of the model to be understood. In addition, SISAL does not currently
provide an intrinsic complex number type although this may be added in future revisions.

The adoption of a direct transliteration of the original code and the need to express operations on
complex numbers explicitly resulted in a SISAL formulation which was long (approximately 3100
lines) compared to the original FORTRAN. The links between the mathematical formulation and both
the FORTRAN and the directly transliterated SISAL codes were also obscure.

2.3 Results for the Direct Transliteration Approach

The SISAL and FORTRAN programs were run on a Sun 3/260 (68020/68881) and an Encore
Multimax with APC (32332/32081) processors. The results were obtained using the standard £77
FORTRAN compiler released with the Sun 3/260 (SunOS 3.5) and Encore Multimax (Umax 4.2, rel
3.3.0), and the Optimising SISAL Compiler (OSC) [3] from the Colorado State University, The
FORTRAN compilations were performed with inlining of floating point functions (Sun 3/260) and
optimisation.

The model size chosen was a realistic resolution with J = 30 [1]. The run times of the model with one
iteration of the timeloop at this resolution on the Sun 3/260 and the Encore Multimax using one
processor are tabulated in Table 1. The runtime for multiple processors are plotted in Figure 5b
whereas the concurrency profile is shown in Figure 5a. The results indicate that this approach is very
inefficient because the code iteratively progressed through the transformation section latitude by
latitude, and hemisphere by hemisphere in each latitude, before obtaining the final nonlinear terms of
the new spectral fields. This resulted in the loss of parallelism due to excessive copying and
sequential updating of arrays (36% of computation time). Consequently, the implementation
technique has to be reformulated.

Time (Seconds)
77 -0 OsC
Sun 37260 94.5 272.1
Encore Multimax 71.0 773.1

Table 1: Single processor run times for FORTRAN and sequential SISAL.

Runtime vs # Processors (Encorel ‘compare’

6.7 ﬁhN*‘“""’)k\H““‘“‘""__'""_“*"""”"“‘“\\h

¢.6 o
G.5 o

Time (sec)

x 1073 0.4 o FORTRAN
0.3

9.2
9.1 m....‘.‘.‘.‘_....v.‘m.‘... R R R T - .

i Processcrs

Figure Sa: Multiple processor run times for FORTRAN and sequential SISAL

P.S. Chang and G.K. Egan

Page &

Active Processors vs time (Encore 16 processors
20 .

15
Processors

10

5

¢ . -

Time (seconds) x 1073

Figure 5b: Parallellism profile of the directly transiiterated SISAL version

3 Parallel Implementation of the Model

Our analysis indicated that the new state for a particular field of interest in a particular time frame was
dependent on its values in the previous time frame, but the values of the state were themselves
independent of each other. By examination of the mathematical model consequently, it could be seen
that a parallel formulation of Nonlinear, which could be viewed as a whole "slice” of the globe,
may be implemented:

FOR both hemispheres and all latitudes
FOR all longitude points or elements in a spectral field
compute the new values of the field

This results in a new implementation which exposed the inherent parallelism of the model. For
example, the loops

FOR both hemispheres and all latitudes
SpecToFreq

may be absorbed into subroutine SpecToFreqSphere. Furthermore, SpecToFreq itself has been
rewritten so that its outer loop also generates successively the individual indices of the four arrays,
thus making possible the use of a parallel loop construct, in addition to the two parallel inner
summations. Figure 6 shows how this technique have been implemented where entirely new arrays
were created directly using multi-nested parallel FOR loops instead of old arrays being updated in
multi-nested sequential loops. This not only produced more concise code, the memory required for
each parallel FOR loop in such implementation was also lower relative to that of the sequential
implementation. The resulting block diagram for this formulation is presented in Figure 7.

FUNCTION SpecToFreqSphere (jz, mx, jxx, ilath, ixh : integer; kmjx, kmjxx : Arrlmti;
alp : ArrReal3; pri, zri, ud, vri : AnrReall
RETURNS ArrReal3, ArrReal3, ArrReal3, ArrReal3)
LET
PE, 78, ug, vg 1=
FOR hemi IN 1, 2 CROSS latlev IN 1, dlat / 2
PE, Zg. ug, vg= % Herein is SpecTokreq
FOR mrmi IN 1, mx * 2
m = {mrmi + 1} / 2;
ps, zg =
FOR jIN 1, jx
Jjm = kmijx{m} + };
jmx = kmjxx{m] + j;
jmrjmi = jm * 2 - MOD(mmmi, 2);
pg,zg = IFm=1& j=1THEN 0.0, 0.0
ELSE alplhemt, lailev, jmx] * pri{jmrjmi], alp(hemi, latlev, jmx] * zri{jmrimi}
END IF
RETURNS VALUE of SUM pg
VALUE of SUM zg
END FOR;

£.5. Chang and G.K. Egan

ug, vg :=
FORGIN 1, jxx
jmx = kmjxx[m] + j;
jmrpmi = jmx * 2 - MOD({mrmi, 2)
RETURNS VALUE of SUM alp[hemi, latlev, jmx] * uwrilimrimi]
VALUE of SUM alpthemi, latlev, jmx] * vri[imrjmi}

END FOR;
RETURNS ARRAY of pg
ARRAY of zg
ARRAY of ug
ARRAY of vg
END FOR;
RETURNS ARRAY of pg
ARRAY of zg
ARRAY of ug
ARRAY of vg
END FOR;
IN pg, 2g, ug, vg
END LET

END FUNCTION

Figure 6: Parallel implementation of the truncated expansion computation

Model Initiaiisation

INtFFT GaussGrid Legendre

A

LinBal RdMins SasSphere |

Page

- ‘Timeloop:
Zdift ime Step Predictio
UVspectral omputations

LinearCanversion

NonLinear

ComplexConversion

MdFFTGridSphere PassGrid

AddLinear

VertigSphere

PassFreq

FreqTeSpecSphere

Figure 7: Flowchart for parallel SISAL implementation

P.5. Chang and G.K. Egan

i her Predicti in i Page 10

In the new implementation, evaluations of both the global symmetrical and anti-symmetrical spherical
harmonics have been relocated so that they are precomputed concurrently only once in SasSphere in
the model initialisation stage. They are stored as templates and are retrieved as required in the
timeloop. The algorithm in each of the subroutines SpecToFregSphere, MAFFTGridSphere,
VertigSphere, MdFFTFreqSphere and FreqToSpecSphere within Nonlinear has been
rearranged as computation of the sphere in a whole "slice”, and implemented using the SISAL muld-
nested parallel FOR loop construct. All other subroutines in the timeloop also have their algorithms
rearranged so that new arrays are created intead of old ones updated. The resulting new codes are
shorter and show a direct link to the corresponding mathematical equations.

4.1 Results for the Parallel Implementation

The model size used for the parallel implementation is the same as that for the direct transliteration
approach. The run times for one iteration of the main loop at this resolution on the Sun 3/260 and the
Encore Multimax using one processor are tabulated in Table 2. The runtime for multiple processors
are plotted in Figure 8a. The runtime on a single Encore processor is now 106.7 seconds which
indicates that SISAL's parallel implementation executes 7 times faster than its sequential
implementation. Additionally, Figure 8b indicates that scalable speedups with the number of
processors used have been obtained. With 16 processors sharing the workload, the run time has been
reduced to 45.3 seconds for this model size. The concurrency profile also shows a large sequential
code section at the initdalisation which needs to be parallelised, and a highly parallel code section
which indicates that the parallelisation of the timeloop has been successful.

Nevertheless, the overall results confirms the feasibility of a parallel implementation of the adopted
weather model. It is possible that a similar reformulation of the model in FORTRAN would yield
some improvement.

Time (Sebonds)
77 -Q 0OsC
Sun 3/260 94.5 74.5
Encore Multimax 71.0 106.7

Table 2: Single processor run times for FORTRAN and parallel SISAL

Runtime vs # Processcrs (Encore) ‘modeli.&f

Time (sec} —————— SISAL
B4 N FORTRAN

2 4 6 L e 12 i4 16

§ Processors

Figure 8a: Execution time profile of the new implementation

P.S. Chang and G.K. Egan

ri Predicti in i Page 11

20 ~

15 o

Processors
10

5_\.

Q

¢.¢ 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0

Time (3econds)

Figure 8b: Concuwrrency profile for the new implemeniation
4.2 Scalability

1t 1s important to focus on the performance of the timeloop since this is the dominating section of the
model in terms of computation time. The model sizes we adopted for benchmarking were relatively
small for very accurate weather modeling. Figure 9 shows the speedup curves for various model
sizes, ie J = 6 (low resolution), 15, 24 and 30 (high resolution), plotted wih the linear and 50% of
linear (corresponding to 50% system utilisation) lines. It can be seen that as the model size increases
so does the slope of the tail (at 16 processors) of the speedup curve. The ratio of sequential to parallel
regions in the timeloop computation is reduced with increasing model size. The concurrency profiles
for low resolution and high resolution models shown in Figures 10a and 10b indicate that the relative
time spent in sequential regions is reduced as excess available tasks in the SISAL runtime task queue
are transferred forward in time, thus extending the parallel regions. The sequential regions in the
profile are currently being investigated and may due primarily to the strict implementation of arrays in
SISAL. It is expected that better speedup will be obtained as the sequential code sections on the
concurrency profile in Figure 10b are also parallelised.

Speedup of Timeloop v Number of Procescrs {Encore)
16.0 Ideal

14.
i2.
10.

""""""" 50% Ideal

Speedup

(=R R e~ T = T -~ T~ R =)
i

(=3 NI -

| § Processors

Figure 9: Speedup curves (imeloop) for various model sizes

Active Processors vs time (Encore 16 processors) ‘Loopl.e’
20 -

‘ 15 [ﬁF
Procaessors ,; i

0

[} ey

0.0 0.1 0.2 0.3 0.4 0.5 4.6 0.7 0.8 C.9

Tima {seconds}

Figure 10a: Concurrency profile for] = 6

P.S. Chang and G.K. Egan

Page 12

Active Processors vs time (Encore 16 processors) ‘Loopl.3’
20 -
15 4 F 1

Processors
JR

!
e
e
™

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.9

Time (geconds}

Figure 10b: Concurrency profile for J = 30
5. Conclusions

The initial results of the study described in this paper are encouraging with the SISAL single
processor performance being gratifyingly close to that of FORTRAN on the Sun and Encore systems.
It is anticipated that further work by ourselves and the SISAL developers will result in continued
improvement in performance. We anticipate that the dataflow work associated with this study wiil
permit exploitation of expression level concurrency in sequential regions of applications while
providing the ability to throttle excessive concurrency in parallel regions [4]{5]. Due to the implicit
expression of concurrency with SISAL, at no time were we concerned with the underlying machine
organisation.

Acknowledgements

The authors thank Drs Ian Smith and lan Simmonds of the Department of Meteorology at the
University of Melbourne for providing access to, and interpretation of, the original FORTRAN
implementation of the NWP Model. They also thank Warwick Heath for his work on
instrumentation, and all members of the Project team for their contributions to the work presented in
this paper. The RMIT/CSIRO Parallel Systems Architecture Project is jointly funded by the
Commonwealth Scientific and Industrial Scientific Organisation (CSIRO) and the Royal Melbourne
Institute of Technology.

References

(1] W. Bourke, "An Efficient, One-Level, Primitive Equation Spectral Model", Monthly Weather
Review, Vol. 100, No. 9, pp 683-689, Sept. 1972.

[21 McGraw et al, "SISAL: Streams and Iteration in a Single Assignment Language, Language
Reference Manual”, Lawrence Livermore National Laboratories, M146.

[3] D.C. Cann, "High Performance Parallel Applicativé Computation”, Technical Report CS-89-
104, Colorado State University, Feb.1989.

[4] D. Abramson and Egan G.K, "Design Considerations for a High Performance Dataflow
Multiprocessor”, ACM Computer Architecture Symposium Workshop, Eilat, 1989. Prentice-
Hall, in print.

[5] G.K.Egan, "Some Shallow Experiences: The Shallow Water Numerical Weather Prediction
Program" Technical Report TR 118 086 R, Deparmment of Communication And Electrical
Engineering, Royal Melbourne Institute of Technology, Aug. 1989.

P.S. Chang and G.K. Egan

