JOINT ROYAL MELBOURNE INSTITUTE OF TECHNOLOGY AND
COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANISATION
PARALLEL SYSTEMS ARCHITECTURE PROJECT

Implementation and Analysis
of a
Hybrid Dataflow System

TR 118094 R

Mark W. Rawling f

December 1989

t CSIRO Division of Information Technology
¢/o Department of Communication and Electrical Engineering
Royal Melbourne Institute of Technology
124 La Trobe St., Melbourne, 3000

This technical report is a reproduction of the author's thesis submitted
in March 1988 to the Royal Melbourne Institute of Technology in partial
fulfillment of the requirements for the degree of Master of Engineering
in the Faculty of Engineering.

ABSTRACT

A new, high performance dataflow computer architecture is being developed in the Department of
Communication and Electronic Engineering, Royal Melbourne Institute of Technology RMIT), Victoria, Australia.
This thesis describes the emulation and simulation of a unique ‘hybrid’ dataflow system that will form the basis of
this new architecture.

A damaflow processing element emulator is described, along with modifications to the RMIT dataftow
model to snit its implementation on this machine. Particular advantages and disadvantages of the unique architecture
of the emulator are discussed.

An implementation and critical analysis of the hybrid dataflow model is also presented. Of special interest
is the dataflow language DIL.1, which has been greatly enhanced. Problems with the language syntax and code
zeneration templates of the old compiler, which reflect deficiencies in the original dataflow model used at RMIT, are
discussed and corrected. Where appropriate, changes have been made to the dataflow model itself, especially in the
areas of the node set and matching unit operation. The benefits of these changes are analysed by simulation and
comparisons are made with approaches taken by other dataflow researchers.

ACKNOWLEDGEMENTS

I would like to thank my supervisor, Dr. Gregory Egan for his guidance throughout the course of this
research.

I would also like to thank Chris Baharis for discussions on dataflow principles and compiler testing, and
Alan Young and Dr. David Abramson for their contributions to the project.

Lastly, thanks to the Commonwealth Department of Education which provided financial support in the form
of a Commonwealth Postgraduate Research Award.

DECLLARATION

No portion of the work referred to in this thesis has been submitted to this or any other university, college
of advanced education, or other institute of learning in support of any other degree or qualification,

— i -

CONTENTS

Chapter 1 Introduction. e AR 1
1.1 Parallel Computing. 1
1.2 The Dataflow Approach 1
13 Dataflow Machines)
1.4 Dataflow Programming Languages... —
1.5 Research Aim 4
16 Thesis Outline. ... 4

Chapter 2 Dataflow at RMIT 5
2.1 A Brief History i
22 Static and Dynamic Architectures e 7
2.3 The RMIT Bybrid ArchiteCture. .o 7
24 Characteristics of the RMIT Dataflow System 8
23 Execution of Dataflow Graphs. .. 9
2.6 The Prototype EMUIator. ... e 9
27 Token Format e e 10
28 Node Format 10
29 The Simulation Environment, DFSIM 10
29.1 Simulation Details 11
292 An Example 12
293 Explanation of Simulation Results 15

Chapter 3 Matching Functions. e e e e w17
3.1 Hybnid Matching Functions...

32 MOnadic. ..o
33 Diadic

34 Storage

3.5 First

36 Prime.

3.7 Protect

3.8 Complex Protect

3.9 Stream

3.10 Head and Tail

311 Cons

Chapter 4 Dataflow Languages and Code Generation. ...

4.1 Introduction...

4.2 Properties of Dataﬂow Languages :

42.1 Implicit Control...oecncinan

422 Single AsSignment........o.....

423 Functionality....ocoe oo .

424 Non-strict Evaluation

4.2.5 Well Formed and Clean Graphs.........

426 Reentrancy.

427 Graphical Languages

43 Dataflow Language One (DL1)

4.3.1 Expressicns and Expression Lists........

432 Determinacy.

433 Conditional EXPressions. ...

434 Eager and Lazy Evalnation

434.1 Eager Evaluation in Conditionals

43472 Lazy Evaluation in Conditionals

4343 Eager, Lazy and Hybrid Code Templatcs 37
4344 Eager, Lazy and Hybrid Merge EXpPansions. ... s s 39

43.5
4351
43.5.2
436
4361
4362
4363
437
438
4.3.38.1
4382
4383
4.3.84

Chapter 5

593

Chapter &

6.1
6.2
6.3
6.4

Appendix A
Al

Appendix B

B1
B2
B3
B4
BS
B.6

Appendix C

Cl1
Cz2
C3
C4
C5
Cs.1
Cs52
Cs53
Cs4
C35
Cs56

The Copy Number Mechanism 42
The Unique Colour Mechanism 45
Iteration and Taii Recursion....
Static Iteration
Dynamic Tail Recursion and Loop Unfolding.......mmm s 49
Tail Optimisation 50
Dynamic Graph Unravelling 51
Sequences and Streams 33
Open Sequences (QueuesX 55
Streams .35
Stream Functions 56
Code Templates for Stream Fuanctions 57
Simulation, Results and Analysis : Bl
Introduction 61
Test Programs UUEUUUTRORRURIN + 1 |
DUpHCALS ¥8 REPLUCAIE ..o e st oemss s 61
Influence of Node Set and Maichmg Functions 63
ELTECE OB GIAPN SIZE... e oo S e e 69
Effect on Concurrency 71
Effect on Execution Times s 71
Unravelling....... U)7
Overheads of Tagging 78
Machine Utilisation 80
Distribution of Machine Activity. 81
Other Effects 82
Effect of Sequential Code Segmemq 82
Operations on Open Sequences .83
Unraveling of Queues 83
Summary and Conclusions T . ¥ |
Simulation and the Design Process.o 87
Recommended Modifications to DL1 I
Suggestions for Further Research .88
Conclusions. 89
Test Programs 91
DL1 Source Listings 91
DL1 Reference
Introduction.
Using DL1
Syntax Diagrams e
Compiler Options
Reserved Words..
Predefined Functions
Advanced Node Set Definition 169
Introduction 109

Multiple Output Destinations...
Transparent Transmission of End of Stream Tokens

Exceptions

Node Definitions 109
Arithmetic — S U BT 110
Logical and Set...mmmm e e 1 111
REIAEIOMIAL ..ottt 111
Sequence . i i1
SEECRITL et o 111

e 112

Type Coercicn

_vio

C.5.7

C.58

C59

€510
C.5.11
C.512
C.5.13
C35.14
C.5.15
C5.16
C.517
C.5.18

Appendix D

D.1
D2
D3
D4
DS
D6

References.....

Storage

Replicate and Identity
Path Control

Token Structure......

Priming

Destination

Colour..

Shared Subgraphs (1)

Shared Subgraphs {2)
Predefined Nodes..

System Nodes

Input and Cutput

Emulation Details......

Emulator Hardware.
Token Format

112
112
113

113

114
114

U T
115

115
115
116

117

117

Data Types

Exceptions

Nodes

ITL Format

- Y1} -

117
118
118
119
119

121

Chapter 1
INTRODUCTION

1.1 Parallel! Computing

Advances in electronic technology have traditionally been relied upon to supply the ever increasing
computing power required by today’s applications. However, relatively conservative commercial equipment
manufacturers have a need to produce products that will be readily accepted in a highly competitive market place. It
has thus been left to research oriented bodies such as universities and some élite manufacturers 1o provide the
facilities and manpower for research into new, perhaps novel ways of improving performance,

Such a research program is under way at the Royal Melbourne Institute of Techrnology (RMIT), Victoria,
Australia. Parallel computer architectures are being investigated as a means of improving performance over the more
conventional von Neumann uniprocessors.

State of the art micros, minis and super computers have reached a sophisticated level of optimisation in an
attempt to overcome the constraints of sequential, fetch and execute type of operation. However, while they may
remain pirely sequential from a programmer’s point of view, much of their high performance is due to various forms
of parallel processing, e.g. instruction pipelining, multiple logic units (for concurrent address/data calculations, etc.)
and vector processing.

An alternative to optimising the performance of von Neumann machines is to design new architectures with
fewer operational constraints. The optimisations mentioned above have been successfully applied at a higher (inter-
processor) level, giving rise to parallel computers which can execute many statements concurrenily and operate on
more than one set of data at a time. These machines can be programmed to take advantage of the concurrency in an
algorithm, giving the programmer much greater scope for algorithmic optimisation.

Parallel machines have their drawbacks however, More complicated, explicit control over the run time
environment is often required in both the expression and execution of an algorithm, making these machines more
difficnit to program than their sequential counterparts. Even though much excellent work has been done in the
design of special compilers and translators to adapt conventional languages for execution on paratlel machines, there
are usually specific hardware constraints that can not be fufly overcome, e.g. fixed vector sizes, non-uniform
machine architecture, etc.. Also, conventional programming languages can hinder the expression of concurrency due
to their reliance on sequential control constructs. The result is that the user can become just as involved in designing
an algorithm to suit the computer, as in designing one that suits the problem. New computer architectures and
programming languages should therefore not only perform adequately in terms of raw processing speed, but must
also take into account the factors of hardware control complexity and ease of sofiware development.

1.2 'The Dataflow Approach

The dataflow approach aims to provide a simple and elegant solution to the problems of control and
program development in a multiprocessor environment. This is achieved by avoiding most of the problem areas of
conventional multiprocessors such as shared memory conflicts (multiple assignment), side effect based computation,
etc.. Much of the burden of program development for efficient multiprocessor based execution is removed by
changing the emphasis from explicit to implicit specification of parallelism and communication {10].

In the dataflow model, an algorithm is expressed through the use of specially designed high level, textual
dataflow languages. It is the task of the compiler to convert this program into a graphical, intermediate form known
as the program graph, the program graph bears a strong refationship to the compiler’s parse tree. The compiler then
expands the program graph, through the use of code generation templates, into a low level executable form called the
machine graph. This is a finite directed graph of low level operators (nodes) which communicate by passing results
{tokens) between them, along both static and dynamic data paths (arcs).

At run time, a node in the machine graph becomes executable when a valid firing condition has been
established by tokens on its input arcs. The dataflow model places no inherent restrictions on the firing rules
allowable (the matching functions), nor on the granularity of the node set itself, but most systems use nodes with at

Ch. 1 Introduction

most two input arcs for hardware simplicity, and of generally comparable power to the machine instructions of
conventional microprocessors. It is common to have a literal data token associated with a node description, so that
three inputs are possible if one of them is a constant; this is true of the RMAT system.

The node set is made up of mostly functional operators which have a constant, single valued mapping of
input data onto cutput data. Machine graphs builf from these nodes are also functional, but have the added properties
of non-strictness {so that not all inputs must be present before execution can begin) and inherent concurrency (so that
many nodes can execute in parallel, spread out over the dataflow machine).

Despite its inherently decentralised, determinate nature, dataflow does not reject the concepts of random
access/shared memory, nondeferminism, etc.. In fact much of the currens research into dataflow architectures is
directed towards the inclusion of these very features. Special memory units, variously called I-Structures, structure-
stores, etc., provide for efficient, random memory access; while the asynchronous nature of dataflow architectures
make them suitable for the execution of nondeterministic programs. The RMIT dataflow system, in common with
maost others, features a nondeterministic merge operation which fakes advantage of the agynchronous dataflow
communications channels. Other nondeterministic operators are present in the RMIT node set, but as this thesis is
mainly concerned with determinate programming, these operators will be used in special combinations to baild
graphs that are themselves determinate.

1.3 Dataflow Machines
Dataflow machines are MIMD (multiple instruction stream, multiple data set) processors, designed {0

provide an efficient architecture for the parallel execution of dataflow machine graphs, A typical maching
architecture is shown in figure 1.1,

— L

PE1 PE2 . e ® PEn

T 1 |

Siviritrierl
nxn
L1 Communications
et Network
'

FIGURE 1.1 A basic dataflow machine architecture

This particnlar arrangement forms the basis of most of the dataflow machines designed to date. Extensions
to this basic architecture include structure stores for holding complex data items [11, 431, faulr tolerance [46, 30],
etc.. However, due to a current lack of suitable operating systems, mosi dataflow machines don’t operate in a stand
alone manner, and in the interim, a practical dataflow machine will almost certainly have an interface to a
conventional host computer which provides a basis for program development, file gperations, efc.. In figure 1.1, the
host interface would be one of the PEs or at least be attached to one of the PEs, together with i/o streams and other
external interfaces.

1.4 Dataflow Programming Languages

Dataflow languages can he similar to conventional imperative/procedural ones (e.g. Whitelock’s P3, which
is a dataflow subset of PASCAL [51]), but more usvally combine the features of furciional and single assignment
languages, to provide a powerful and efficient interface between high level algorithms and the low level node, arc
and token, graphical format.

Ch. 1 Introduction

subgraph Quadratic{a, b, ¢: real} -> (rootl, root2: real};
begin
b2 - 4*a*c ->» discrim;
{(-b + sgrt{discrim}} / (2*%a} -> rootl;
(-b - sgrt(discrim}) / (2*%a) -> rootZ;
end (* Quadratic *);

Quadratic a b c

rootl © root2

FIGURE 1.2 A datafiow function definition

Figure 1.2 shows a simple function as it might be coded in a typical dataflow programming language (in
this case DL1), together with a simple graphical representation which is used throughout this thesis. Note that no
explicit staternents of control or connectivity exist in this code, apart from those implied by pure data dependencies.
In particular, sequential execution of statements is not assumed; a function can execute at any time that all (or
possibly just some} of its arguments are present. Priming tokens initiate the execution, while result tokens, together
with any other side effects, are the results of the execution.

&0

Quadratic l a b c

Context a b ¢

1.0 -0.6 -3.13

1.6 -2.0 -80

1.0 3.0 2.0

s
o

rootl root2
2.1 -1.5
FIGURE 1.3 A snapshot of the function ‘Quadratic’

Figure 1.3 shows a snapshot of the execution of the function Quadratic, Such a snapshot shows the
current state of a graph’s execution and includes all of the intermediate data tokens together with their static
positions in the graph. In the case of dynamic architectures, the tokens’ colours, which separate tokens from

Ch. 1 Introduction

different contexts sharing the same code, are also shown. In this snapshot, Quadratic has been called from three
separaie confexts as indicated by tokens of three different colours. Note the presence of literal data on some of the
nodes in this graph. An optimisation is shown in this graph in that common subexpressions of -b,
sqrt (discrim) and 2*a have been found. In fact, many of the optimisation techniques used in the compilation
of conventional programming languages can be applied to dataflow languages as well [48, 33, 34].

A program written in a daraflow language will often be more ‘readable’ than one written in a conventional
language like Pascal. Coding techmiques which take advantage of the complex execution characteristics of
uniprocessors (¢.g. reusing variables to save space, because sequential execution guarantees unambiguous multiple
assignment) are avoided. While some of these techniques may be space/time efficient, or textaally concise, the added
intricacy of the resulting program often makes mathematical analysis, code readability, etc., difficult [4, 10].

Some of the dataflow languages designed to date are: TDFL (Textual Data Flow Language), developed by
K.S. Weng in his work on streams and static dataflow machines [50]; DL1 (Dataflow Language 1), designed by C.P.
Richardson at Manchester University and now used extensively at RMIT and throughout this thesis {42]; [D/ID-
NOUVEAU (Irvine Dataflow), used by Professor Arvind’s dataflow group at MIT (8, 48, 37]; and SISAL (Streams
and [teration in a Single Assignment Language}, a coilaborative venture of the Colorado State University, Digital
Equipment Corporation, Lawrence Livermore National Laboratory and Manchester University [35]. Of course there
are numerous other dataflow languages in use and many traditional languages are suitable for data driven execution,
¢.g., ‘functional’ languages like pure LISP, and parallel logic programming languages like GHC (Guarded Homn
Clauses), Concurrent Prolog, Oc, etc. [47].

1.5 Research Aim

A collaborative research program between RMIT and the Commonwealth Scientific and Industrial
Research Organisation (CSIRO) Department of Information Technology (DIT), is investigating the issues briefly
raised above with regards to the RMIT dataflow architecture. This thesis contributes to this research by describing
the work done by the author in implementing a prototype emulation facility for the RMIT architecture and in
designing an enhanced version of the DL dataflow compiler originally written by C.P. Richardson as part of his
Ph.D. research at the University of Manchester [42]. Both Richardson’s work and the RMIT dataflow architecture
are based on Egan’s ‘FLO’ dataflow model [24].

1.6 Thesis Outline
Chapter 2 describes the dataflow system in use at RMIT and the author’s involvement in the project. The
prototype emulator is described along with modifications to the FLO dataflow system to adapt it for use on this

emulator.

Chapter 3 describes the matching functions introduced by the author to overcome many of the limitations of
the current system and to help investigate the role of the matching unit in efficient graph execution.

Chapter 4 describes the program development environment at RMIT, in particular the language DL is
critically examined and enhanced.

Chapter 5 presents the results of simulation studies which outline the features of, and show the effects of the
changes made to, the RMIT dataflow system. The significant features of these results are highlighted and discussed
in this chapter.

Chapter 6 presents conclusions and some possible areas for future research.

Chapter 2
DATAFLOW AT RMIT

2.1 A Brief History
Software:-

Dataflow research began at RMIT in 1981 when the original simulator, translator, compiler, etc., for the
FLO dataflow system [23] were installed on the RMIT computer centre CDC Cyber 180-835. In following vears, the
software was ported to Unix based enginecring work stations in the Department of Communication and Electronic
Engineering. Some improvements, especially to the simulator were also made at this stage.

Having completed hardware testing and the assembly code for the prototype emulator board, the author
began working with the DL compiler to write test graphs. A significant rewrite of much of the compiler was
undertaken, including new code templates, improved syntax, new types, improved type checking, etc.. New features
have been added to other system software as needed, e.g., the matching functions described in chapter 3 have been
added to the simulator, and new node and binary formats have been added to the compiler, simulator DFSIM, and
intermediate texinal language (ITL) to machine binary translator FLOITL. Also, a disassembler to convert from
binary back to ITL was written.

An important development was the author’s design and implementation of an interactive control and
debugging interface for the prototype processing element. This interface allows graphs 1o be loaded, run, debugged,
etc.. Also, it provides a debugging package for the emulator code itself, which has proven invaluable in the
commissioning of the prototype hardware,

The latest development in the project has been the involvement of the CSIRO Division of Information
Technology (DIT). With DI'T"s sapport, the software gide of the project will see the development of an ID-Nouveau
compiler [373, an IFI to RMIT ITL translawr (for SISAL and related compilers [35, 451}, and a GHC compiler for
Ueda’s ‘Guarded Homn Clauses’ logic programming language [49], This is part of an effort to concentrate on
applications programming and analysis of dataflow machines. Several CSIRO divisions and other interested bodies
(e.g. Melbourne University’s and RMIT’s computer science departments) are already developing large applications
systems based on these languages, which include:

Using simulated annealing algorithms for optimal building layout
Robot trajectory planning algorithms

Timetable computation algorithms

Some experimental expert sysiems

High speed digital logic simulation

Real time computer generated imagery

s & & 3 & e

Hardware:-

Hardware development has been undertaken at RMIT since 1982. In the original documentation {24], was a
proposal for a fast dataflow processing element (PE) design for the FLO system; a very similar fayout to that used in
other dataflow architectures {6, 29, 14, etc.]. It is based on a pipelined ring structure, with a communications
network interface through which PEs transmit and receive tokens to/from each other. A local queue is included in an
atternpt to optimise performance when the output of one node is directed to the input of another node in the same
element, but if the network has a path from the output of a PE back to the input of that PE, then that path is made
redundant by the local queue. In this case, the local queue itself might be unnecessary and whether to include one or
not will depend largely on the allocation strategy used to distribute the nodes across the dataftow machine,

Ch. 2 Dataflow at RMIT

oulpui : local inprut
queue . : queue queve

external local

 hewn
- Distribution: . {'
S Unin

T

o Bvawaon | L))
RRAZ.E ORNENY N (R

o N_O&Ei "::‘.:‘ .
Vi Store

Matching
Unit

- pipe
quene’

FIGURE 2.1 Fast dataflow processing element layout

Figure 2.1 shows a revised layout of the fast processing element design, which features a separate unit for
result distribution (the result distribution unif) and an extra buffer (the pipe queue) at the output of the marching uniz.
The pipe queue is included to help separate the tasks performed by the CPU modules in the PE emulator (§2.6 and
{40]), but its value has also been demonstrated for discrete, high speed PE designs [29].

The design of a single board prototype emulator, based on this PE structure, and using dual MC68000s with
interconnecting FIFOs and an external host interface, was completed by the author and another fourth year B.Eng.
student in 1982 (appendix I and [401). Test graphs, including a 3000 node simulator for a laser range finder based
object recognition system, {41}, were running on the emulator by 1984.

More recently, a re-engineering of the prototype board has adapted it for use in a sixteen ¢lement
mulrprocessor emulator [52]. This emulator features a sixteen way buffered delta network {22] for token
tranismission between PEs and has the capability of using either one or two single 68000/68020 processor boards per
PE slot (§2.6). It has been running test graphs since autumn 1987, controlled by a Unix based host computer
interfaced to one of the PE slots, but the work described in this thesis with regards to PE design and programming
refers to the author’s original dual 68000 board.

The CSIRO project involvement will have a large impact on hardware development, since it is proposed 1o
commission a very high performance, many PE (232) hybrid dataflow machine (§2.3). A *Sun 3/268 Unix work
station has been installed as the host for the new dataflow machine and software development, Currently, a high
speed interface between the Sun and the 16 PE emulator 18 nearing completion. The new dataflow machine will
inctude a {floating point node set with high speed hardware support; a hybrid architecture, combining static/queuned
and dynamic computation models (see below); and distributed object storage for efficient random access of stored
data structures [1, 3].

Ch. 2 Dataflow at RMIT

2.2 Static and Dynamic Architectures

There are currently two main classifications for dataflow architectures, static and dynamic . The static
scheme was first proposed by Dennis [19, 20, 21], and has been used by various research architeciures such as Texas
Instrumenis’ DDP [15] and the French LAU system [38]. The dynamic scheme is used by Arvind’s research group at
MIT [6]; by Gurd ef a at Manchester University [29]; by Davis’ DDM architecture at the University of Utah [173;
and by the Japanese SIGMA-1 system [44, 53].

In the static model only one token is allowed on an arc at a time, whereas in the dynamic model, many
tokens are allowed on an arc, their order or context being determined by special tag or colour fields.

Static architectures are easier to implement than dynamic ones because the matching of operands can be
performed with a simple table lookup. A two input node has at most one token waiting on one of its input arcs,
When a second token arrives, on the opposite arc, the node fires and the tokens are consumed. The main
disadvantage of the static model is that the concurrency of a graph is limited by its static width and the amount of
data pipelining that can be achieved. The static width of a graph can be a particularly poor measure of a graph’s
potential concurrency as it hides the effects of loop unfolding and other sources of dynamic parallelism, e.g.
recursion, Pipelining can be restricted by static architectures which do not allow queueing on arcs, since dummy
nodes are required to equalise the lengths of the data paths to prevent deadlocking [36]. Never the less, static
architectures can provide very good performance for ‘wide’ algorithms which process large sets or streams of data in
a filter like fashion.

In a dynamic architecture many tokens with different tags, or colours, may be pending on both inputs of a
node, and they are only consumed when tokens with matching tags arrive at the opposite input. The matching
process is more complex than for a static architecture and can be further complicated by more complex matching
functions such as those discussed in chapter 3 and [46]. Network traffic is higher in a dynamic machine because the
tags must be carried with the tokens. Also, special tagging nodes must be placed in graphs, which expands the code
size. The main advantage of the dynamic model is that a particular node may consume more than one token pair
simultaneously (on different PEs), thus increasing the concurrency in the dataflow graph. Tagged token dataflow
machines take full advantage of all forms of dynamic concurrency by unravelling the graph at run time, §4.3.7 and
[7]. A disadvantage is that algorithms which cannot use this feature must inherit the cost of tagging the (okens,

2.3 The RMIT Hybrid Architecture

The RMIT architecture uses a hybrid scheme in which a modified form of the static model coexists with the
tagged dynamic scheme. Tokens are of variable length and may or may not be tagged; tokens without tags may be
regarded as an optimisation of tokens with the special tag ‘zero’. If a token arrives at a node where there is already a
token with the same tag present on the same input, then the tokens are queued until partner tokens arrive, this is
opposed to the more usual case where it is an error for such a queue to form. A separate queue is maintained for each
different tag and for those tokens with no tag at all; the matching unit can be optimised for tokens with no tag. When
a partner arrives, a token is removed from the head of the appropriate queue. If many colours are present, then many
instances of the node may execute in parallel because the hardware is capable of unravelling, or distributing the
graph according to colour. Alternatively, if there is a queue of tokens with the same colour, then the program may
take advantage of pipelining in the hardware to still achieve high concurrency, although not potentially as high as in
the unravelled case.

The advantage of the hybrid arrangement is that the cost of tagging the tokens is not present when tagging
is not required. Because the queuned static mode of operation does not demand that each arc only hold one token, the
potential concurrency is higher than in Dennis’ static model. Figure 2.2 shows how the hybrid model combines the
quened static and dynamic models.

Ch. 2 Dataflfow at RMIT

Static Model - Static Queved Model -
single tokens without colour queues of tokens without colour

Dynamic Model - Hyhrid Model -
single tokens with different queues of tokens with different
colours on the same input(s) colours on the same input(s}

FIGURE 2.2 Static, dynamic and hybrid models
2.4 Characteristics of the RMIT Dataflow System

The dataflow variant used at RMIT is based on Egan’s original FL.O model [23, 26] and is characterised by
the following atributes:

= The hybrid architecture combines a quened static execution model with an unravelled dynamic model.

« Node functions are weakly typed,

« Tokens are strongly typed and of variable length.

« The system supports shared subgraphs which facilitate multiple recursion and reduced code size.

» (raphs are both statically and dynamically partitioned to achieve a high machine utilisation. Note that
dynamic unravelling reqguaires multiple copies of the graph to be stored in the machine at run time.

» Storage nodes are provided to allow the graph to retain “semi-permanent’ information.

= Exceptions are handled using a special error token 1ype.

» Open and closed streams are supported,

» [/O is accomplished using predefined nodes.

» Nodes may send tokens to many destinations either by using a tree of duplicate nodes, or by stepping
through a destination list.

The RMIT system takes a ‘low level’ approach to dataflow whereby the granulanty of the underlying node
set is quite fine and high rates of achieved concurrency are required to produce efficient execution. This has come
about because of a desire for flexibility in the node set, thus specialised and possibly complex node functions have
been avoided. In such an environment, the design of the communications network is of paramount importance since
the dynamic token load is usuvally very high. Simulations have shown that even the simplest of graphs which do any
kind of looping or recursion can generate very large token traffic indeed (see ch. 5). For these reasons, together with
an emphasis on ‘eager, data driven’ evaluation [5, 391, the RMIT system calls for a high degree of buffering within
processing elements and communications network modules, hence the inclusion of the input, pipe, local and output
buffers.

Nodes are currently limited to two inputs and two outputs (in general), which greatly simplifies the design
of the matching unil, as with more than two inpuats, the node firing conditions can become very complex and
expensive to implement. The simplest firing condition possible for a node with more than two inputs is based on the
presence of all of its inputs, and designs which feature more than two inputs usually allow even more complex firing

_8-

Ch. 2 Dataflow at RMIT

conditions to exist {32, 46]. These firing conditions could be easily programmed into the interpretive emulator, but
this approach has been avoided since it would not form a solid basis for the eveniual transition to a dedicated
discrete design, implementing the matching unit as a simple state machine. Some nodes (e.g. replicate) have
more than two outputs, and the inclusion of a specialised result distribution unit will allow all nodes to have multiple
outputs in future implementations.

The complexity of token gueueing in the RMIT system can be seen in the structure of the matching unit,
which rather than simply reserving a slot for one token for each two input node, must maintain separate pointers 1o
the heads and tails of token queues. The situation is made even more complicated by dynamic token tagging. As it is
very difficult to generate predictable tag sequences the associative search to find the quene with the correct colour is
non-trivial [187. A hashing strategy to access the token queues held in the arc store has been proposed and appears to
be the best compromise for the RMIT system [1]. Currently, the emulator conducts a simple lnear search for a quene
with the correct colowr, as in the original FLO specifications (see also §3.1).

2.5 Execution of Dataflow Graphs

At their lowest hnman readable level, dataflow graphs arc represented in a textual form known as the
intermediate target fanguage (ITL) (appendix D and [23]). The ITL consisis of a list of node descriptions and
priming tokens which represents the initial live state of a machine graph. For a graph to be executed, these node
descriptions and priming tokens must be translated from ITL to machine binary format and then loaded into the
dataflow machine. This loading is done by representing the graph as a collection of node type tokens which are
directed to a predefined node store node in each element which requires a copy of that node. Priming tokens are just
data tokens sent to the previously loaded nodes, clearly, the graph must be loaded before the priming tokens. Once
the graph and priming tokens have been loaded, execution may commence by the detection of live or executable
nodes by the matching unit(s). Execution proceeds as live nodes fire and generate result fokens which are sent on to
successor nodes. The process terminates when no more live nodes can be found.

2.6 The Prototype Emulator

The prototype emulator is a medium performance, single board implementation of the fast PE layout of
figure 2.1. Its structure is shown in figure 2.3.

To Network From Network

output Q

status port

To Interface To Interface

FIGURE 2.3 The prototype emulator layout

Detailed characteristics of the prototype emulator are described in appendix D, while timing information for
the execution of nodes on this hardware is given in the node set description of appendix C. This machine forms the
basis of the new multi-clement emulator being constructed at RMIT, which will be capable of running much larger
and more practical applications then the single board prototype, [52].

Ch. 2 Dataflow at RMIT

2.7 Toker Format

The token formats used in the RMIT dataflow system are based on the FLO formats described and justified
in [24], but have been modified to reflect the change from eight bit to sixteen bit CPU emuiation. Appendix D gives
a more precise description than that presented here, while reference [25] describes new binary formats to be used in
the next generation architecture. Figure 2.4 shows the basic token format wsed in the 16 bit emulator and the
simulator DFSIM.

Context | Element # Node # Colour (if present) | Type [Length Value

<8> <8> <16> <32> <> <8 <variable>

FIGURE 2.4 The 186 bit oriented tcken format

Figure 2.4 is a slight simplification of the actual format used, since some hidden bits have special meanings,
e.g., colour present, node input point, etc.. The token fields as shown have the following meanings:-

Context This field is part of a virteal addressing scheme to be used in the next generation machine, it
separates the graphs of different users.

Element # The destination element number used to route tokens through the communications negwork, This
field is ignored internally.

Node # The graph address of this token’s destination node. The node space uses a linear addressing
scheme with node numbers of 1 and upwards.

Colour The dynamic tag or label. This ficld is only present if an appropriate bit is set in the Node # field.
Token’s without a colour behave as if their colour was zero, the matching vnit being optimised for
this case.

Type The type of the token’s data, see appendix D.

Length The length of the token’s data fields. The end-of-stream token has zero length. Type and Length

together make up the so called data header.
2.8 Node Format
Once a graph has been loaded, the node store (CPU 2 in the emulator) has access to node descriptors of the

format shown in figure 2.5, These descriptors are loaded into the machine by the node type tokens of the ITL
machine graph description.

Function # Flags Literal Destl Dest2 Link

<8> <16 or 32> <32> <32> <16

FIGURE 2.5 The 16 bil oriented node descriptor format

The node descriptor fields have the following meanings:-

Function # An 8 bit vector number into a table of node function routines.
Flags A set of flags with the following meanings:-
I one input node
D literal data present
T this node is to be traced
E an extension bit used by the emulator as a link into the node extension siore for node
descriptors > 5 words
Literal A literal data field £ 2 words in size, larger literals are stored in the extension store,
Destl, Dest? 32 bit destination node addresses {Dest2 may be held in extension store).
Link A pointer into the extension store for long descriptors.

2.9 The Simulation Environment, DFSIM
Although the emulator has proven useful in the development of PE hardware design criteria, it has not been

so useful in general dataflow programming development. This is largely due to the limitation of only having one
processing element to study, with a limited range of statistics being returned (this situation will change in the near

- 10 -

Ch. 2 Dataflow at RMIT

future with the commissioning of the 16 element emulator). On the other hand, the program development and
simulation environment that exists entirely on the Unix workstations is not only extremely convenient o use, but
also returns much more meaningful results in terms of multiprocessor performance characteristics. For these reasons,
most of the language development work carried out under this research concentrates on the simulation environment.

The dataflow machine simulator, DFSIM, was developed for use with the originai FLO system, but has
been adapted to keep pace with alterations to node set and matching function specifications. It provides a discrete
event based simulation of a multiprocessor consisting of any number of simplified, non-pipelined processing
elements. Communications network delays are modelled (in the form of destination clashes) but delays within the
ring structure of a single PE are not, e.g. it is assumed that node function evaluation may proceed immediately npon
the detection of a live node by the matching unit. In the real pipelined PE however, node evaluation will not proceed
until an idle evaluation unit has been found.

From
Nerwork

To
Network

Smg _ C'_ U Proccssmg EZemem :

: § M68020 M68881.@ IOMHZ e
" Quenes: .I.0 1Sec/Word,"

MU 5(7 5 1f !agged) + 5 ;LSec!Search

FIGURE 2.6 The processing element modelled by DFSIM

Figure 2.6 shows the format of the simulated processing element. The timing figures are based on a system
with the hardware characteristics shown. As a result of this simplified PE structure, figures of concurrency due to the
pipelining within each PE are not available and absolute timing figures are therefore approximate but never the less
‘reasonable’. In any event, most of the important simulation results come about from a comparative analysis between
separate simulations and are not influenced by actual time values. Most importantly, simulation resuits for the
performance of a cluster of processing elements are perfectly valid and accurately show the effects of varying the
number of PEs and the graph distribution. In short, the results of many simulations have proved extremely useful in
identifying the strengths and weaknesses of the RMIT dataflow model.

2.9.1 Simulation Details

The simulator has a resolution of 100 nSec, all times are a multiple of this figure. As seen in figure 2.6,
tokens are assumed to be read from and written to queues at a rate of 1.0 uS per word; tokens of varying lengths are
accurately simulated using this figure. Note that the input and output queues are correctly simulated; they are
entirely independent of the processing element internal operation. Network contentions are handled by detecting the
situation where two output queucs are scheduled to write into the same destination input queue during the same time
interval. DFSIM keeps a count of the maximum queue occupancy during the simulation.

‘The matching unit is assumed to ake a time of 5n uS / search where 1y is a factor that reflects the effmency
of the hashing scheme used for tagged tokens [1]. Currently 1 is set to 1 for untagged tokens and 1.5 if a tag is
present (the matching umnit can handle untagged token traffic without hash clashes). In addition, there are additional
penalties for both successful and unsuccessful searches due 10 the time taken to process an entry from a located
queue or to establish a new entry if the search was unsuccessful; these are currently set to 5 uS and 10 pS
respectively.

The execution of nodes is straight forward, with the execution times shown in table 2.1 being used. There is
an extra time of 5 uS added to every node evaluation to allow for node store accessing. Result distribution is done by
scheduling tokens to be written into the output queue after node evaluation is complete,

Tokens carry an earliest possible creation time tag with them during simulation; it is this time that derives
the figures for ‘average potential concurrency’ and ‘potential execution time’ for the graph. Simuiated time is used
to derive the ‘average actual concurrency’ and ‘actual execution time’ figures, Average concurrencies are given as
the ratio of aggregate machine run time (i.c. the time it would take one element to execute the graph) to the creation
times of the last token (shortest time for potential concurrency, and simulated time for actual concurrency).

-11-

Ch. 2 Dataflow at RMIT

Node Mnemonic Evaluation Time (1S)

arithmetic nodes:-

ADD, SUB 51
ABS 3.5
MUL 7.1
DVD 10.3
MOD, DIV 5.0
NEG 35
SQT 10.7
SIN, COS8 39.1
TAN - 47.3
ASN 58.1
ACS 62.5
ATN 40.3
LOG 58.1
LNE 52.5
EXP 49.7
SQR 7.1
RND, TRN 5.5
fast nodes:-
DUP, REP, ID, PIP, PRT,
PRS, SYN,FIR, §, §TS,
HD, TL, CON 2.0
default nodes:-
All others {including system nodes) 5.0

TABLE 2.1 The node evaluation times used by DFSIM
Machine utilisation is also reported by DFSIM; it is the ratio of average actual concurrency to the number
of processing clements nsed and is a useful figure of merit for a particular graph/machine configuration. This figure
can be expected to degrade as the number of processing elements exceeds the available graph concurrency, see §5.7.

2.9.2 An Example

As an example, consider the following simulation resuits for a sequential solution to the 8 queens problem,
figure 2.7. The DL1 source is similar to that of the recursive 6 queens solution given in appendix A,

Data~flow Machine Simulateor - Graph File: 8gueens.itl - Thu May 28 15:47:25 1487
Configuration: elements [0..127], element-nodes [0..2047]
Options: Simlation Hash-Element Hash-Search

initialise gueues

initialise M3

initialise NS

loading commenced

nodes=1276 priming tokens=27 max element=127

Solution number 1 Solution number 2 Solutien number 3 Solution number 4
(Tests made 876) {Tests made 264) {(Tests made 200) (Tests made 136}
L Lo Q. - - Q.
P ¢ P ¢ P o . Q
Q e . Q Q. .. Q
o] . Q. N ¢ . 2
Q P Q _— - Q2 Q
o} .. Q Q. . . Q
e} . 2. .. . Q Q
Q .] .0 Q

—12 -

Selution number 5 .. So

{Tests made 504} (T
o
Q .
. .0 .
.. . Q .
R o N . Q
Q . N
e e e e . [N
. e . Q . s
Total number of solutio
Tests made to exhaust b
Nodes Fired
Tokens Generated
Time (Sec.}
Av. Concurrency
Neode Functions/Sec.
Machine Utilisation
Activity
Node Evaluation
LQ/0OQ Write
LQ/IQ Read
Matching Store
Structure Store
Network Wait
Func us Time% #%
SYs 10 0.1 0.1
pup 7 38.7 47.0
PRT 7 G.8 1.0
MC 1o 1¢.8 9.2
EMC 7 1.0 1.2
ADD 10 3.3 2.8
SUR 10 1.0 0.8
A 10 1.2 1.0
R 10 0.8 0.7
E 10 0.8 0.7
SWI 10 17.2 l4.8
PIT 10 7.0 6.0
PIF ic 9.8 8.3
BIP 7 0.6 0.7
PRS 7 0.1 0.2
AND 10 1.3 1.1
TSR 10 1.9 1.6
STB 10 0.5 0.4
CLB 10 0.5 0.4
EQ 10 0.3 0.8
T 10 0.2 0.1
iE 10 0.6 0.5
CHR 10 0.0 G.0
STD 10 0.2 0.2
YL.C 10 0.3 0.2
STC 106 0.3 0.2
Assumptions: Single CP

MS 5x1.0{1.5{Colour)}

Locality Words
Local 201928
Non local 25578044

lution number 90
ests made 136} {Tests made
- “ o - P
Q. . . o .
Lol Q .
o 0
.) .
.- Q Q
[0 R .
. e . Q - Q. .
ns 92
card 268
Potential Achieved %
2837628
4256031
8.509153 9.704139
18.3 l16.1 87.7
340528 298597
12.86
%
15.8
16.5
16.5%
50.9
0.0
0.2

Sclution number 91

Ch. 2 Dataffow at RMIT

Seclution number 92

Mon Diad Stor Frst Prot Prme Strm Head Tail Cons

47.0
1.0
9.2
- 1.2
2.0 0.8
0.8
1.0
e.7
0.7
14.6
0.2 5.8
0.0 8.3
0.4 0.3
0.2
1.1
1.6
G.4
.4
0.8
0.1
0.5
0.0
c.2
0.2
6.2
53.0 33.5 0.0 0.0 11.4 0.0
U PE (M68020, M68881 @ 10MHzZ),

+ 5(Success) {10(Fail)} us.

W/Sec
20808
2635787

o o
& 00 o

200} {(Tests made 264}
- Q Q
Q .
o .
- Q
- . o .
Q . . Q
Q . .
.0 ¢.0 0.0 0.0
Queues 1.0 uSec. per word

FIGURE 2.7 Simuiation of 8queens.il (the sequential 8 queens solution)

~13-

Ch. 2 Dataflow at RMIT

Tokens
X 1083

0.8

08 o

02 4

5.8

MS and Totad Tokers - Graph 1 - Graph File: 8queens.id

atal

0.0

9G -
ag -

T -

e
Cumulatve

Petcent
50 -

40 -
30 -

20

T T T T T Y T T MS
18 z0 a0 4.0 5.0 60 7.0 3.0 9.0

Time (Secs)

System Time - Graph 2 - Graph File: 8queens it

el
Wim &
ead O

Time

2.7

24 4

24

Nades ']

Fired
xton 13

DR

0.3

Tithe (Secs)

Nodes Fired - Graph 4 - Graph Fle: Squaens.if

02

T T T ¥ t T T t T
1.0 20 30 4.0 5.0 50 7e a.0 2.0

Titne (Sees)

Element:

Elemeny
ActTve

Inciividual Element Activity - Graph File! Bqueens il

- -mlu it L.

b

Tune

Element Activity - Graph 3 - Graph Fie: Squeens it

Al B bt R,

kg, =, i,
T

£0 -

35

10 4

Tokenz 79 |

x 10%
20 4

65

T T
0 20 30 4.0 50 (X4 ra a0 4.0

Time (Secs)

hocakly of Tokens « Graph S - Graph File: Bqueens i

on i.ocal

2.0

“fima (Secs)

FIGURE 2.8 Performance Graphs for 8queens. itl

~14-

Ch. 2 Dataflow at RMIT

2.9.3 Explanation of Simulation Resuits

Referring to figure 2.7, DFSIM reports the simulated machine configuration, the options used in the
simulation, and the static graph size (nodes and priming tokens), Output from the simulated program follows (in this
case eight of ninety two solutions to the eight queens problem are shown).

A table of run time results follows, in which the average concurrencies, execution times and machine
utilisation are given. This example was carried out in full simulation mode, but there is also a simple emulation
mode which emulates a machine with just one processing element, making the simulation faster, although the wue
vatues of actnal concurrency and execution time are not returned. Next is the activity table which shows the
percentage of aggregate time spent performing different tasks; this table does not indicate ‘idle’ sime, which is
obtained from the machine utilisation figure,

The dynamic breakdown table shows figures for individual nodes and matching functions. Node evaluation
times are shown, including the extra 5 uS allowed for node store accessing, Other entries indicate the percentage of
aggregate machine tme taken by each node (Time%) and the percentage by number for each node and matching
function (#%). The locality table shows the number of words sent to local and output queues (tokens average about 6
words each for this graph).

Other information available, but not shown here, are tables of token usage by type and length, and a table
showing the maximum namber of tokens in each matching unit {arc store), local queue, and input queue. Finally,
data files are produced which enable the graphs shown in figure 2.8 and chapter 3 to be plotted.

Figure 2.8 shows graphs of machine activity during the simulation. Graph 1 shows the number of tokens in
the matching store and in total. Graph 2 shows accumulated time as a percentage of time spent in the different modes
of machine operation, idle time is not shown; note that the percentages are cumulative. Graph 3 shows the maximum
and mimimum number of elements active during each time step. Graph 4 shows nodes fired vs time, its slope
corresponds to machine activity. Graph 5 is similar, but shows the number of tokens sent locally and externally
during the run. Finally, there is an individual element activity picture which shows a black spot for each element that
is active during each interval. The vertical axis represents elements 0 1o 127, while the horizontal axis corresponds to
simulated time as in the other five graphs. Graph hot spots show as dark areas in the activity picture. Note that graph
3 is the “integral’ of the activity picture in the vertical axis,

15 -

Chapter 3
MATCHING FUNCTIONS

3.1 Hybrid Matching Functions

Matching functions are the rules which govern the operation of the matching vnit in determining which
nodes are ready to fire. Because of the special hybrid nature of the RMIT architecture, several unigue and diverse
matching functions are supported, and research into the value of additional functions is on going, It must be
emphasised that becaose of the experimental nature of the project at this stage, the matching functions to be used in
the next generation processing element will not necessarily be the same as those described here.

The original FLO matching functions are monadic, diadic and storage, but this research clearly
demonstrates the advantage of the additional matching functions: first, prime, simpie protect, complex protect,
stream, head and tail. Most of these new matching functions arise through the gueueing of tokens on arcs. This
chapter explains these functions and their implementation in some detail, especially with regard to future, possibly
discrete matching unit implementations.

The matching functions are illustrated by state transition diagrams. A practical implementation might
include a micro-programmed controller to carry out the action associated with each transition, supported by parallel
hardware {0 deiermine any special conditions leading to the next state. Actually, the diagrams could be implemented
by a simple, dedicated state machine, but there is a need to maintain flexibility in an experimental design of this
nature.

The state information implied in these diagrams is a combination of information held in the input map and
information obtained by associatively searching the arc store. For example, a two input node may have 1okens of
several different colours stored in the arc store. In this case, the input map entry would merely indicate that the node
is not empty, and the assoctative ‘colour search’ is made to find stored tokens of the same colour as the current input
token, or to detect emptiness for that colour. The colour search is the critical operation of the matching unit and has
been shown to be a limiting factor in the performance of dynamic architectures {297, A simple linear search has been
shown o work adequately for a large class of problems 18], but is clearly inadequate in the general case since no
assumptions can be made about the way colours will appear in the graph. Reference [1] outlines a proposal for an
efficient associative search mechanism to be uséd in the next generation RMIT machine.

3.2 Monadic

send token

0,1
FIGURE 3.1 The monadic matching function

The monadic matching function is shown in figure 3.1. Tokens arriving at a one input node (or a two input
node with a literal) are simply sent on to the next stage in the pipeline (the pipe queue), and the node remains in the
‘1 Input Node® state. Monadic is the simplest of all the maiching functions and most dataflow architectures treat it as
a special case, since tokens destined for a one input node may bypass the search unit altogether. This is usually
achieved by having tokens carry the matching function of the destination node with them (attached by the
predecessor node), however, in the RMIT architecture the matching function is stored in the input map at the
beginning of the pipeline in each processing element. Incoming tokens index the input map, based on nede number,
where the matching function is found along with the current state of the node. In the emulator code, the ‘monadic/l
input node’ state is just one entry in a vector table of all possible states.

—17-

Ch. 3 Matching Functions

3.3 Diadic
queue queue
input 1 input 0
Queve on Empty Queue on
Input 2 Input Input 0
Node P
dequene and ' dequeue and
send input 1 ¢ send input 0
with nput O , with input 1

FIGURE 3.2 The diadic matching function

Diadic is the simplest matching function which actually requires arc store accesses to be made. In most
dynamic dataflow models, diadic iz made very simple because only one token is allowed per arc at run time. This
greatly simplifies the structure of the arc store since there is no need to hold gueues of tokens. The advantage is often
negated to a large extent however, because the hash tables usually used to implement such an arc store still require
gueues or special overflow processing 1o cope with synonyms [16]. A truly associative token store would not suffer
from this problem and possibly represents the best answer to the matching problem, despite its difficulty to
implement, Simple arc stores made from Content Addressable Memories (CAMs) have been proposed but are
limited in size by the present state of CAM technology, although this situation should change in the future, In any
event, a simple associative arc store might not be suitable for some of the more complicated matching functions that
have been defined.

In the RMIT system, diadic, shown in figure 3.2, is rather unique in that unlimited unmatched token queues
are allowed on the inputs to diadic nodes. Separate gueues are maintained for tokens of different colours, but the arc
store is optimised for tokens with no colour. This optimisation, together with the fact that tokens without a colour
tield (tag) are physicaily shorter than those with a colour, is shown to improve the performance of graphs that do not
require coloured tokens (§5.6).

3.4 Storage

, Ieplace
imput 0

_ save
0 mput 0 _ Token
in Store

Empty
Storage
Node

€ITor

d
empty store oY #n

send input 0

FIGURE 3.3 The storage matching function

The storage matching function, figure 3.3, is the last of the original FLO matching functions to be
incorporated in the current RMIT system, Some examples of uses of the storage node (8), which is the only
node to use storage, are given in [24], where use is made of their inherently indeterminate nature in a ‘set point
controller’ as part of a decentralised industrial control system. This node can also be used to implement a general
lazy evaluation scheme for some languages (§4,3.4).

- 18 -

Ch. 3 Matching Functions

3.5 First
send
0 input ¢
Input 0 discard
. Seen input O
b
error : discard input 1 1 0
illegal input

FIGURE 3.4 The first matching function

The first and prime (§3.6) matching functions were introduced to altow the priming of shared subgraphs
(§4.3.5). Both of these functions work by recording state information in the arc store to show that a particular colour
has been seen on input 0 of this node, see figures 3.4 and 3.5. The first call to a shared subgraph can thus be
detected, and appropriate action taken to simulate the effect of priming tokens. Firss is considered the more
fundamental of the two functions and has been accepted into the basic node set in the form of the £irst node
(¥ IR). This node ransmits input (0 unchanged if its colour has not been seen. Successive tokens on input 0 are
discarded by the matching unit. Many examples of £1rst node usage are given in the code templates of chapter 4.

First and prime nodes have the disadvantage of leaving state information in the matching store, so that
graphs which use either of these nodes are unclean (§4.2.5). The problem can be largely overcome by applying
special code transformations which detect the completion of a function invocation {e.g. by detecting the return of all
or even just some of the outputs) and signal the graph to reset any £irst and prime nodes by directing a token o
input 1. This cleans the arc store for that colour. It can be very inefficient however, [0 clean out the graph for one
invocation, only to find that a new data set enters that code segment with the same colour, as can happen in a queued
environment. Simtilar problems have been reported by other researchers 28], with the result that the code
transformations described are not yet implemented in our system; more reliance is currently made on graphs that do
not need the first function.

3.6 Prime
send input 0
as input 1
send
input 6
as mput

error :
illegal input

discard input 1

FIGURE 3.5 The prime matching function

The prime matching function, figure 3.5, is similar to first in the way that state information indicating that
colours have been seen is saved in the arc store, The prime node (PRM) was designed to optimise a particular use
of the £irst node (as used in the basic expansion of head in §4.3.8.4), but is not considered of fundamental
importance. Thus, the compilers for the RMIT system will only plant prime nodes if an extended code generation
toggle is set, the default setting for this toggle is off (see appendix B). The prime node always has a literal
associated with it, and its operation is to output the literal and the input token when the colour has not been seen.
Only the input token is output if the colour has already been seen. This effectively primes the output arc with a copy
of the literal token.

Prime requires a special interaction between the matching store and the execution unit, since the matching
store has to inform the execution unit whether to send the literal or not. The method currently used is to use the input
point bit in the input token’s description (§2.7, app. D) to indicate whether to send the literal or not. The input token
always arrives on input O of the prime node, but if the colour has not been seen then the matching store sets the
input point bit to a 1. The execution unit simply inspects the input point bit and if it is set, the literal and the input
token are sent, else just the input token is sent.

- 19—

Ch. 3 Matching Functions

Although the current implementation only uses prime on the prime node, it would be possible to
generalise it to any input of any node. This has not been done at present because of the unclean problem that exists
with prime. In fact, the problem is made even worse in the case of diadic nodes where there would be no way of
providing a reset input, and a diadic node with a literal already present clearly could not use prime.

3.7 Protect

Y, queue
send and protect input O

input 0

Protected/ :
| Queue on
Limt Input 0

remove protection

Empty
Protected

Node

1 et

SITOr &
not protected dequeue and

send input O

FIGURE 3.6 The simple protect matching function

The protect matching function, figure 3.6, is a recent addition to the system and is only used with the
extended code generation option. It serves three very useful purposes:

» Tt avoids a priming of shared subgraphs problem with protect staiements

« It provides a useful optimisation for certain code templates {i.c. static iterations which would otherwise
use a controtled merge construct, §4.3.6.1)

= It solves the problem of unclean graphs and indeterminacy of DL1 conditionals and loops (§4.3.3 &
§4.3.6)

Certain characteristics of the code templates which use protected nodes allow a simplified implementation
of the matching function that does not allow tokens to queue up on input 1 of a protected two input node, e.g. the
controlled merges of conditionals, Hence, no provision is made for queues on input 1 in the simple version of
protect. Protected nodes behave as if a boolean true priming token is present on input ! before the graph starts to
execute. An initial token passes through input 0 and enters into the graph region requiring protection, {usually a non-
reentrant graph segment required to support queues). When the protected region terminates, a token is returned to
input 1 of the protected control node which cleans the arc store and allows more tokens into the protected region.
The important difference between protect and firse is that while input O is blocked, prorect quenes tokens on input 0
whereas firse discards them. Prorect is correspondingly more difficult o implement than first.

For all protected nodes, input 1 acts as a control input which is asserted by a boolean true token, thus the
protect function only makes sense for a small but very important subset of the entire node set (i.e. all the nodes
which may require boolean true priming tokens). The claim that protect solves the unclean graph problem for DL
loops and conditionals is justified by observing that the only priming tokens required here are indeed boolean true.
Similar solutions can be applied to other templates with other types of priming tokens, but the problem was greatly
simplified by limiting protect 10 boolean frues when designing the extended code templates for the enhanced DL1
compiler. Weng’s TDFL language [50], which DL1 is partly based on, also hag this characteristic, although the fact
was unexploited in that language.

Like other matching functions, a special set of nodes has been defined to use prorect, these nodes are

eager-merge-control (EMC), lazy-merge-contrel (LMC) and protect (PRT) (§4.3.3 and
appendix C).

~20 -

Ch. 3 Matching Functions

3.8 Complex Protect

guene queue
input 1 mput O {(—mt)

send input 0
. and protect (mt) #

. Protected/

Queue on Empty
Input 1 Protected Queue on
Node

Input G

dequeue and
send input 1
with input ¢

remove
protection

dequeue and)
send input (

FIGURE 3.7 The complex protect matching fuaction

Figure 3.7 shows the complex protect matching function, which is identical to simple protect, except that
queues are allowed on input 1. This allows resetting tokens to be sent to input 1 before all of the corresponding input
tokens have passed through input O. Interestingly, this matching function is potentially casier to implement than
simple protect because it has the characteristic of behaving as a simple one input node for initial tokens arriving on
input O and then effectively becoming a two input node until the protection is removed. Tokens always queue on
input 1 as in an ordinary diadic node. This operation is made clearer by observing the similarity between the state
diagrams for complex protect and diadic.

Although not implemented at this stage, complex protect will be of benefit in a revision of the RMIT node
set currently being defined [25]. In this revision, the nodes up-sequence (US) and down-sequence {DS)
generate a sequence of integer counting tokens and boolean control tokens to improve the efficiency of for loop type
constructs. The control tokens can then be queuned on the control inputs of protect nodes at the inpuis to static
iterative constructs, but such nodes would have to allow queueing on that input, i.e. these nodes would require the
complex protect matching function.

3.9 Stream

queue

send input 0 \ 'qaeug
with copy nput
of input 1

Queue on
Input 1

Queue on
Input 0

dequeune and send
all mput Jup to }
. with copies of

O/l dequeue and
send input 1
& with input (

save input 1

FIGURE 3.8 The streamn matching function

-21 =

Ch. 3 Matching Functions

The stream matching function, figure 3.8, has been designed to improve performance of stream macros
{84.3.8.2). Although shown for a stream arriving on input 0, it is equally valid when applied to input 1 of a diadic
node (asin *STS’, see below). It is a very flexible function because its use is valid for nearly all nodes. Its operation
is simply to reuse a woken on a node’s input (0 or 1) for every element of a stream that arrives on the complementary
input.

trigger
simple stream | CR

FUNC

Body of
FUNC

Stream

streaml

FIGURE 3.9 Typical discrete code (shaded) for stream functions

Using stream, stream entry and exit to and from shared subgraphs using the new create colour / set colour
mechanism (§4.3.5.2) is reduced from the complicated, inefficient structure of figure 3.9 to the simple, efficient
structure of figure 3.10. In figure 3.9, the shaded areas show the code planted to regenerate the context (colour) of
this call to FUNC for each element of the input stream, and to regenerate the return address for each element of the
output stream. The code includes a priming token which is avoided inside the shared subgraph by enabling extended
code generation, which results in the placement of a proetect node. Note that only one return address is generated
since the length of the output stream cannot be determined at compile time, of course it is not necessarily equal to
the length of the input stream,

-

Ch. 3 Matching Functions

trigger

simple stream STS

FUNC

Body of
FUNC

stream

FIGURE 3.10 Improved code using stream

The st ream-store (STS) node nses stream to replace the shaded macros of figure 3.9. In figure 3.10,
$TS is used in combination with other nodes (set-colour and exit) to effectively make these nodes operate
over streams rather than simple tokens. As pointed out above, many nodes can be used in this way, especially control
nodes like pass~if-true,pass-if-false, switch, efc., see also §4.3.8.4.

To further improve the performance of stream graphs, it would be possible to use stream on the inputs of
existing nodes rather than always interposing the STS node. This transformation saves two nodes and two tokens per
stream element per application and is the optimal strategy for stream graphs without actually defining even more
powerful nodes specially for handling streams, see figure 3.11. In this figure, an ‘s’ on the input of a node indicates
the stream function applies to that node, with the tokens making up the stream arriving on the labelled input. The
transformation requires that the matching function be specified independently to the rest of the node description,
which is currently not the case because the original FLO node set made little use of special matching functions. A
new node has always been defined to handle a new matching function to date, but in the future, node descriptions
will include explicit rather than implicit matching function specification.

stream simple
;> s
&9]

FIGURE 3.11 The transformation far optimal stream controf

3.10 Head and Tail

Head and tail (figares 3.12 and 3.13), are simple matching functions which solve one remaining problem
with stream graphs on the RMIT architecture. Problems exist with the predefined DL stream functions head, tail,
empty and get such that it is difficult to produce clean graphs (§4.3.8.4). With these functions, the machine graph
must be arranged so that it appears that a stream has just gone past, and for the graphs to be clean it is required that
no priming tokens are used or state information be left behind. The problem proves 1o be difficult using the matching

functions defined so far.

-3

Ch. 3 Matching Functions

q Processing .
- sen Stream ‘dlscard
nput ¢ _ _ input ¢
i discard eos
Ocos input 0
FIGURE 3.12 The head {of stream) matching function
discard
discard " Processing send
input 0 Strearn input O

FIGURE 3.13 The tai {of stream) Matching Function

The new matching functions, head and rail, solve the problem by effectively carrying out the entire head
and tail operations within the matching unit itself, get can be made up of a call to head and a call to tail while
empty simply uses head and one other node. An input stream (to the maiching unit) of say 1,2,3.4,] will produce an
output {from the matching unit) of 1 for head and 2,3.4,] for tail. The execution unit simply passes these iokens to
the destination node(s). Thus there are one node implementations of head (head (HD)y)and tail (tail (TL)),a
two node implementation of empty (one head and one compare~type 1o literal end-of-siream) and a three node
implementation of get (on¢ duplicate, one head and one tail). This gives major static and dynamic
performance improvemenis (§5.4) over the older implementations, as well as producing the very desirable clean
graph property for these functions.

3.11 Cons

qieue

Consing/
Queue on
Input ¢

send
input 1

Queue on
input 1

send input 0,
then dequeue
and send all

input 1 up to]

FIGURE 3.14 The cons matching function

Cons, figure 3.14, was added to compiete the matching function based implementation of the five bhasic
stream operators. Even though the templates for the stream cons function using the basic or extended node sets were
clean, they siill exhibited poor static code size and unacceptable dynamic performance, simidar to head etc,. The

—24—

Ch. 3 Matching Functions

state diagram for cons is similar to that for stream except that stream was shown applied to the opposite input and
that the actions taken with certain ransitions are somewhat different.

In the simulator, DFSIM, which does not exactly simulate the pipe queue of the RMIT processing element,
cons, tail and stream have been implemented by having the routines that simulate the matching unit set a special flag
variable. During node processing, while this flag is set, the evaluation routines continue 10 cafl the maiching unit
until no tokens are left.

-2y

Chapter 4
DATAFLOW LANGUAGES AND CODE GENERATION

4.1 Introduction

The development of a new computer architecture brings with it the need for new programming languages
designed to extract the best possible performance from that architecture. It is impractical to program a dataflow
machine in a sequential langnage like FORTRAN for example, since that language has been designed for execution
on a sequential computer, aithough it is true that dataflow compilers can be written for these languages [27].

There are several features of imperative languages like FORTRAN that make them largely unsuitable for
execution on a dataflow machine. Two of these features in particular are multiple (sequential) assignment and side
effect based computation. It is interesting to note that both of these features have evolved largely as a consequence of
program execution on sequential machines and not becanse the language itself requires their use in the expression of
an algorithm, it merely permits it. In this chapter, these feamres and others will be examined with regards to their
implications for the dataflow language DL1 (Dataflow Language One). which is currently the main language in use
at RMIT. Problems with DL1 and the improvements that this research has led to are also explained by illustrating the
dataflow code laid by the compiler for different high level consiructs.

4.2 Properties of Dataflow Languages

Dataflow languages have been developed with many properties that suit them for data driven execution in a
multiprocessor environment. In this section, the more important of these properties will be examined and some terms
defined,

4.2.1 Implicit Control

In a dataflow language, the programmer is not required to specify execution control by writing statements
in a certain order, rather, it is done at run time by the dataflow machine itself. Control is therefore implicit in a
dataflow language, being derived solely from the data dependencies between identifiers, as opposed to the explicit
control flow of imperative languages. This can result in a significant reduction in the complexity of the programming
task itself and it 13 no accident that simplifications like this also make dataflow languages, and functional languages
in general, more suitable for mathematical analysis, which is often touted as one of their most important features.

Some languages, e.g. P5, which is a dataflow implementation of a subset of PASCAL [511, still require
statements to be written in a strictly ‘define before use’ order, but even in these cases, control is purely data driven
and may not correspond to statement ordering. In fact, even a pure dataflow language could sensibly enforce the
define before use rule, because it leads to the important class of acyclic dataflow graphs. Acyclic graphs do not
suffer from the initiation and termination problems that are associated with their cyclic counterparts. This will
become clear when iteration is discussed in §4.3.6.

4,2.2 Single Assignment

The single assignment rule i3 another simplification to the semantics of a language. It changes the
interpretation of a variable from something that has a certain value at a certain time {i.¢., the changing contents of a
memory location), to something that is just defined in terms of other values and conditions, the precise physical
representation being unimportant. Variables may not be reassigned in a single assignment language {SAL) and thus
are often referred to as ifems, identifiers or values. Special cases do exist however, where the term ‘variable’ makes
some sense because multiple assignment appears to apply. Thus loop variables are referred to in an iteration,
although once a loop is unfolded single assignment is again seen to apply (§4.3.6.2).

In an imperative SAL, the programmer must still ensure that an identifier’s value has been computed before
its use, even though there is no ambiguity as to what value that identifier will eventually take. The programmer is not
relieved of the burden of explicit control specification and for this reason most imperative languages do not enforce
single assignment, foregoing it instead for the ‘efficiencies’ of multiple assignment {e.g., LISP ¢f. PURE LISP). Ina
dataflow SAL., the programmer specifies data dependencies as a list of definitions, like mathematical equations

—27 -

Ch. 4 Dataflow Languages and Code Generation

(hence the term definitional languagesy. The truth of a definition does not depend on its position in the program
segment over which it applies, nor on the time at which it is evaluated. This freedom from interaction and lack of
side effects is what allows statements {0 execuie in parallel, constrained only by the data dependencies between
thermn,

4.2.3 Functionality

Funciional dataflow nodes (and graphs) have the value of their cutput tokens fully determined by their node
descriptions (and connectivity) and the value of their input tokens. They operate without side effects, simply
consuming inputs and generating new outputs to be sent to successor nodes. The edges of a graph must behave as
pure identiiy functions to fully support functionality, e.g., the boundless FIFQ buffers used at RMIT have this
property even in the presence of token queues. Restrictions on the functionality of arcs include the common ‘one
token per arc rule” which gives rise to deadlocking possibilities [36]. Note that a functional graph may coniain some
non-functional nodes, and that improperly connected functional nodes may vield a non-functional graph.

A Tunctional graph does not have to be determinate, and support for nondeterministic programming can be
easily provided {13]. Most of the graphs considered in this thesis are determinate, although there is a need w be able
10 build arbitrary graphs using a symbaolic high level language, rather than pure ITL (ch 2 and appendix D). Such
graphs require the language used (DL.1) io provide some nonfunctional, low level features,

4,2.4 Non-strict Evaluation

A function which is strict in a given argument may not begin executing until that argument is fully
evalnated; an over all strict function is strict in all of its arguments. Siriciness is sometimes required to guarantee
correct execution, but, in general, non-strict evaluation is preferred as it Jeads to improved performance through
increased concurrency. Non-strict evaluation increases run time asynchronism while reducing “bursty” activity; if is
supported at all ievels of the RMIT dataflow model, from high level functon calls 1o low level node evaluation
{(cons, arb, sts,etc.).

4.2.5 Well Formed and Clean Graphs

A well formed graph is one that returns to its initial state, or an equivalent state, after each application,
‘Equivalent” means that graphs which validly store variable state information are considered well formed for the
purposes of this rescarch. Such state information can be easily held in a datafiow graph by recirculating or storing
state variable tokens of the appropriate type.

Clean graphs are graphs that start and finish each application in an empty state, i.¢., no priming tokens are
required and no tokens are left in the matching store. These features are very imporiant since priming tokens are
difficult to support in shared subgraphs (§4.3.5), and tokens left in the matching store can be expensive in memory
reqguirements. In addition, a clean graph is known to have terminated when there are no tokens left in the machine,

4.2.6 Reentrancy

Reentrancy is a featre of dataflow graphs which permits multiple code applications to execute in parallel.
The queuned static model supports reentrant filters (§4.3.8.1) and loops/tail recursions (§4.3.6) by allowing tokens
from different applications to queue on arcs, leading to efficient pipelined execution. Queues must be kept in order,
and nondeterministic software and hardware merges avoided, to prevent different data sets from incorrectly
scrambling. Dynamic architectures use token tagging or code copying to make all applications entirely independent.
This exiracts more potential concurrency (at the cost of tagging or code copying) and allows generalised shared
subgraphs, including multiple recursions (84.3.5). Machine data paths do not have to keep token queues correctly
ordered and code templates may safely use the simple nondeterministic merge. The hybrid model combines the statc
and dynamic modes and therefore requires safely reentrant graphs which support queueing and code sharing. This
chapter shows how many dataflow code templates have been adapted to the hybrid model, e.g., by eliminating
merges and unclean code.

4.2.7 Graphical Eanguages
Graphical {anguages have been proposed for dataflow machines because of the case of representing an
interconnection of nodes as a directed graph. The experience of this research indicates that a graphical language

would indeed be ideal as a programming aid, but it must be remembered that a simple representation of
interconnected nodes is a long way from being a high level language. In DL1 for example, a single statement can

- 28 -

Ch. 4 Dataflow Languages and Code Generation

lead to the compiler planting dozens of nodes. A high level graphical language should therefore abstract compiex
node templates just like a textual language does.

Having drawn numerons low level machine graphs in the design of templaies and debugging of programs, it
is felt that a graphical form would be best as an assembly language equivalent, rather than as a concise high level
language. It is certainly quicker and easier to debug machine code in a graphical environment, than in the textnal
machine language equivalent. Figure 4.1 illustrates the type of textual/graphical programming dichotomy being
considered, where there is a on¢ to one correspondence between the textual and graphical machine code forms and a
possible relationship between the high level forms as well. All graphical code representation is currently hand
drawn.

High Level ? High Level ”
bL1 Textnal - _ Graphical ’
L Machine Code . 1:1 N Machme. Code "o

Textual Graphical
Machine Binary

FIGURE 4.1 A textuai/graphical pregramming dichotomy
4.3 Dataflow Language One (DL1)

DL1 was designed by C.P. Richardson to aid in his Ph.D. research at Manchester University [42]. This was
after he had developed a large program in ITL, to simulate a dataflow laser range finder object recognition system,
as part of his M.Sc. [41}. DL1 started out as little more than a symbolic assembly language for the FLO system, but
was quickly enhanced to a high level SAL with facilities for resource management, code sharing, block structure,
limited optimisation (e.g., the use of height balanced trees for multiply, addition, duplicate and other
reduction/expansion operators), etc.. The syntax is based on PASCAL and Weng's TDFL [50]; a complete
description can be found in [39].

DL1 is essentially a functional langnage, but this work has led to many revisions being made to it and the
RMIT node set in order to improve this aspect. A clear distinction is now made between functional
statements/expressions (functional definition, if, subgraph call, etc.) and nonfunctional statements/expressions
(Join, switch, oldif, etc.) [39]. Originally, little distinction was made and it was up to the programmer to add exera
control statements like protect, and to keep careful track of the use of identifiers 1o ensure that programs were
determinate, well formed, reentrant, etc.. Never the less, DL1 supports a necessary and sufficient complement of
nonfunctional and low level operators to ensure its value as an arbitrary graph building 100l and as an intermediate
form for higher level languages. The rest of this chapter will include details of the enhancements made through this
research,

4.3.1 Expressions and Expression Lists

In most conventional programming languages, expressions are limited (o unit arity so that complex
assignments involving many variables have to be done one component at a time. Procedural languages like PASCAL
and C can be quite verbose as a result, although special features like complex data structures and assignment help to
overcome this problem, Even so, there is still a need to declare precisely each structure to be used and assignments
are restricted to variables which are related through these definitions.

Most SALSs on the other hand, place no restriction on the number of components an expression can have
and do not require the structure of such complex expressions (e.g., lists, tuples, informal records) o be predeclared,
Unlimited expression lists provide for a more unified syntax. Functions may retuen one result and vet still be used
like they were simple identifiers. Multiple definitions can be made in one statement by assigning an expression list

~29 -

Ch. 4 Dataflow Languages and Code Generation

1o an output list. Actual parameters in a function call simply make up an expression list, which unifies the syntax for
predefined functions as well as for user defined functions with variable numbers of arguments.

The original D11 (old DLI) was very restrictive in its use of expression lists, whereas now they can be used
anywhere that is sensible, including inside other expression lists. About the only place that isn’t sensible is in the
factor of an expression, although some languages even allow this, e.g. Glauert’s LAPSE language which allows
‘informal records’ in a factor, but which allows no mathematical operations on such a factor [28]. In LAPSE,
informal records are enclosed in square brackets but D1 has no such mechanism, instead a comma operator is
recognised which continues an expression list until no more commas are found.

A

)

< expr - e

EXPRESSION LIST [

A subgraph.call |

] conditional.expr

N _ deferred.expr |/

FIGURE 4.2 The new syntax of ‘'expression list’

The syntax diagrams of appendix B make it clear as to precisely where expression lists are allowed. Apart
from this more flexible, unified use of expression lists, one other significant improvement has been made fo the
expression list syntax itself, figure 4.2. Old DL1 only allowed expression lists to be made up from simple (unary)
expressions, but now expression lists can be assembled from expressions of any arity. This allows for a remarkable
improvement in the readability and conciseness of a DL1 program, since previously one would have to assign n-ary
expression lists to nt individual identifiers and then nse those identifiers in building up other lists. Figure 4.3 shows a
simple example of this, involving a mixture of subgraph calls, conditional expressions, etc.. The components from
which an expression list may now be made are: simple (unary)} expressions (the trivial list), n-ary function
{(subgraph) ouiputs, n-ary conditional expressions and n-ary deferred expressions.

subgraph c¢_mul (ar, ai, br, bi: real) -> (ox, ol: real);
bagin
(* complex multiplication *)
ar * br — al * bi -> or;
ar * bi 4+ ai * br -> oi;
end (* ¢ mul *};

Now compare
{* i1 and iZ are temporary complex numbers *)
if bool then xr, xi else vr, vi ~>» ilr, 1li;
c_mul(ar, ai, br, bi} -> i2r, i2i;
o mul (ilx, ili, i2x, i2i) -> 2r, zi;

with

c_mul (if bool then xx, xi else yr, yi endif, c _mul{ar, ai, br, bi))
- oz, zi;

FIGURE 4.3 Using expression lists
4.3.2 Determinacy
Determinacy is a fundamenial property of all but a few of the basic operators used at RMIT, so that these

operators will produce the same, predictable results, under all circumstances, e.g., regardless of the order of arrival
of their inputs. An arbitrary graph, made up of determinate nodes with a strictly one-to-one connectivity, is itself

—30 -

Ch. 4 Dataflow Languages and Code Generation

guaranteed 10 be determinate {50]. Furthermore, because the architecture models arcs as boundless FIFO queues,
then data can be streamed through such a graph with no effect on its functionality or determinacy (a quene of results
is produced with an order corresponding to that of the input data).

Some operators have indeterminate firing conditions, e.g., they may fire on a subset of their input arcs (but
not all operators which do this are indeterminate). These include identity (ID), storage (S) and merge.
The Iatter is a special case since a physical operator does not actually exist, rather the merging is done in the
communications network by directing more than one arc 0 the same destination point. These operators can all lead
to non-reentrant graphs if not used appropriately.

Indeterminate operators can be used to build ‘nondeterministic’ graphs useful in many applications, e.g, real
time controllers [24], committed choice logic programming [49], ‘resource managers’ [13], etc.. They are also useful
in some code templates which are over all determinate, ¢.g. conditionals (§4.3.3) and protected static loops
(§4.3.6.1). These templates rely on carcfully laid code that creates (possibly artificial) data dependencies between
tokens. Other operators that are timewise indeterminate but which are used by DL in a determinate manner are
first (FIR), prime (PRM) and the predefined system nodes in most elements, input /output (e.-
16..31/-32..47), set~max~occurrence {e.-2) and exception {e.-3), see appendix C.

There is a group of nodes which are themselves determinate but which may introduce indeterminacy
through the communications network by altering the dynamic connectivity of the graph. This effect may be observed
whenever the context tags carried by tokens are altered. These nodes are set-~destination (STD), yield-
celcour (YLC), set-colour (8TC),arg~entry (A), return~entry (R),exit (E),create-
colour (CRC) and set-return-link (SRL). Again, the DL1 compiler uses these nodes in a manner
which guarantees determinacy.

Mention was made above of a class of nodes which fire on a subset of all possible input arcs but which are
never the less determinate. These are the non-strict nodes arbitrate (ARB), synchronise (SYN),
stream-store (STS), head (HD),tail {TL},cons (CON),protect (PRT),eager-merge-
control (EMC) and lazy-merge-control (LMC).These new, non-strict nodes are crucial to the efficient
performance of many graphs, examples of their use and of the revisions made to improve the overall determinacy of
DL1 machine graphs are given in the following sections.

4.3.3 Conditional Expressions

The nature of SALs makes it difficult 10 support conditional statements, because there would have to be
multiple definitions for each identifier to be conditionally defined. In fact, there has to be precisely one definition for
each conditional identifier, for each possible condition. This restriction ensures that each identifier is functionally
defined, since after the code block has executed, each will have been assigned to exactly once. With a simple
boolean predicate, two sets of definitions (the true branch and the false branch) must be chosen between. This is
usually coded as a sclection between two expression lists, rather than definition (assignment statement) lists, as in
case {a) below.

DLI took a unique approach to this problem by defining an if statement which was actually three
statements in one. Only one of these forms was functional and only one (a different one) was reentrant. The three
forms are described below, together with their revised versions. Note that being a statement and not an expression, if
could not be used in expression lists and always had to be assigned to some identifier(s). Also, in new DLI1, the if
statements referred to here are still available for compatibility and comparison, as ‘oldif’.

—3] -

Ch. 4 Dataflow Languages and Code Generation

(a) ‘Seleciing” if statement, a functional, non-reentrant form
€.2.,if bool then else x else y —-> result;

bool X y bool X bool X ¥

result result result

FIGURE 4.4 The nen-reentrant if else else template

This form is functional, but non-reentrant because if more than one data set is directed at the graph, then
true (false) results from one data set may race through the indeterminate merge with false (¢rue) results from another
set, figure 4.4, This race actually occurs at the merge after the two gates as all the other operators are determinate.,
Richardson recognised rhis fact and designed the protect staiement which allows tokens on a group of arcs 10 be
protected by tokens on apother group of arcs. In the example given, we would say “protect bool with result”,
resulting in the graph of figure 4.5.

bool X ¥

resuft

FIGURE 4.5 A reentrant form using protect

Unfortunately, this graph is less efficient than the unprotected version and requires a priming token, so that
it cannot be used inside shared subgraphs (§4.3.5). The new form for if (the conditional expression) is shown in
figure 4.6, where the syntax of the statement has changed {sce also appendix B) and the pass-if-present
{PIP) node, priming token and duplicate node are combined to form a new non-strict template called eager-
merge—-control. It is known as cager because it expects data on both gates even though one ser will be discarded,
and is shown in a square outline because iis form is variable, depending on which compiler options are used. One
option in particular, the exiended node set option (compiler toggle [w+]), will expand EMC into just one node, se¢
§4.3.4.4 and figure 4.21.

—37

Ch. 4 Dataflow Languages and Code Generation

CONDITIONAL EXPRESSION
———(IF)— CApr —-CYHEN)@ exprulist]
expr.list »-
e.g.,if bool then x aelsa v -> result;
bool X ¥

—{EMC

e =)

result

FIGURE 4.6 Ths revised syntax and expansion of if

Note that if actually returns an expression list, and the two input lists and the ocutput list must all be the
same §ize; the examples have shown lists.of size one for simplicity. For expression lists with more than one
component, one copy of the entire graph of figure 4.6 is planted per component. To be suitable for use inside of
shared subgraphs, EMC should be well formed and clean, ie., it should not contain any priming tokens. This
interaction between priming tokens and clean graphs is often observed since a well formed graph with an initial
priming token will return to that state and is therefore unclean. The optional * symbols are explained in §4.3.4.2.

(b) ‘Merging’ if statement, a nonfunctional, non-reentrant form

€.8.,if bool then either xz elsa y > resﬁlt;

bool X y bool X y ool

X ¥

result resuit result

FIGURE 4.7 The iazy non-reentrant if either else template
This form is similar to that of (a), the difference being its lazy operation (§4.3.4.2). Figure 4.7 shows results

being returned in the wrong order just as in the example of (a}, but here the selection of the appropriate inputs should
be made twice; once elsewhere in the graph, so that nothing arrives on the false input when the conirol is true, and

~33

Ch. 4. Datafiow Languages and Code Generation

once in the template itself, where the switch node directs the conirol token to the appropriate gate. A very
interesting point about this template is that it is actually redundant as it stands and is effectively equivalent to a
straight merge of the true and false inputs. However, when protecied it does produce a reenirant graph ag in part {a).

A determinate, well formed and clean version with a new syntax has also been defined for this form, figure
4.8. Join is actually & statement which cannot be used as part of an expression list, unlike an if expression, also join
is clearly nonfunctional since it does not take one token from gach and every input to produce its cutput. Indeed, for
programs written in revised DL 1, this nonfunctional form is virmally useless by itself, but it can be combined with
another siatement (switch) to give conditional statement execution (see (C)):

eg.,
if bool then either x else y -> result;
protect bool with result;
becomes
join boel then x else y -> result;
bool X 3 bool X ¥
Nghls
4 L.MC
o -
result T result |
FIGURE 4.8 Protected and revised versions of if either else (join)
{© ‘Switching if statement, a nonfunctional, reentrant form

e.g2.,if bool then x -> resl else resi;

resi res? res) res?
FIGURE 4.9 The switching if statement

The code laid for the switching if statemeni remains unchanged in the revisions 1o DL, figure 4.9, however
to aveid confusion it has been renamed to switch, with a syntax as shown in figure 4,10, Like join, it is a statement
and not an expression. This is unavoidable in the case of switch, since its output syntax would make it difficuli to
use in an expression list. In any event, special operators like switch, join, protect, etc., are best left as isolated
statements to improve code readability. Switch can be used with join to give conditional statement execution {(e.g.

program Binary_stream_sum #2, appendix A).

34 -

Ch, 4 Dataflow Languages and Code Generation

SWITCH STATEMENT

—-—.@WITCH)— expr —(THEN)- expr.list
output.list ELSE}— output.list 7_>

FIGURE 4.10. The syntax of switch

Either output list specification may be missing or may include the special destination null, In cither case,
the switch node is replaced by a pass~if-true or a pass~if-false node as appropriate, to discard tokens
destined to nuil. One gate node is placed for each component of the input list.

4.3.4 Eager and Lazy Evaluation

Eager evaluation of an expression means that all inner arguments are evaluated first, then surrounding sub-
expressions and so on until the outermost result has been computed. Non-strict, eager evaluation is the natural mode
for data driven computation since, in dataflow, computation begins with the arrival of data tokens on input arcs.
Eager evaluation can lead to increased concurrency, e.g., in conditional expressions (§4.3.4.2), but it can also lead to
redundant computation and explosive activity, which can result in inefficiencies in a machine with limited resources.
Also, eager evaluation is not always ‘safe’ and erroneous conditions, such as nonterminating recursions, can result.

Lazy evaluation takes thie opposite approach, whereby expressions are not evaluated until their results are
required. Since DL1 1s eager by design, many applications of lazy evaluation, e.g., to provide call by need for
function arguments [5], will not be considered in detail here, although two important aspects of lazy evaluation, i.c.,
excessive expression recomputation and graph throntling as a means of run time resource control, are briefly
discussed in the following paragraphs.

Fully lazy evaluation can lead to excessive recomputation of expressions defining duplicated data items.
This can be prevented in a single assignment language by using once only lazy evaluation, followed by storage and
copying on request. In our dataflow system, this can be achieved by using a £irst node to detect the initial request
for a value (by a nondeterministic merge of all possible requests), which fires the defining expression. The result is
then placed in a storage node which is fired by this and further requests, in the form of addresses. A set -
destination node sends a copy of the result (0 each requesting address, This scheme is not used in DL1, since it
is known exactly how many copies of each result are required and it is more efficient to simply duplicate the value
that many times. Also, the storage node method will not handle queues correctly, i.e., it is not reentrant.

Throttling is used in graphs which generate excessive concurrency (in bursts), which can overload machine
storage space. Under lazy evaluation, computations are deferred until their results are required, these resuits can then
be consumed straight away. This is also useful in the processing of infinite data structures, e.g., streams, which can
be read as required, rather than flooding the graph with uncontrolled input. As a result, DL1 provides a deferred
expression (on) which allows the passage of tokens to be controlled by the presence of other tokens in a damand
driven manner. Other methods of throttling include limiting the number of concurrent invocations of Ioop bodies and
shared subgraphs, etc., although care must be taken to avoid deadlocks.

4.3.4.1 Eager Evaluation in Conditionals

In DL1, conditional expressions are 4 source of redundant computation, because only one of the branch
expressions is used and the other is discarded. However, despite this redundancy, there are still conditions under
which eager evaluation is suitable for conditional expression evaluation:

* side effects must not be generated by the expression {list) that is eventually to be discarded

« the evaluation of the expression to be discarded should not lead to illegal or improper conditions like
MMaway Tecursions or passing empty streams into stream graphs

+ the concurrency gained by evaluating both expressions in parallel with the predicate should not be lost
through ‘swamping’ of the machine

~35-

Ch. 4 Dataflow Languages and Code Generation

The first condition addresses the unsafe nature of eager evaluation. It is perhaps strange, in that DLl is a
supposedly functional langnage without side effects, but only correct computations are guaranteed to be side cffect
free. The simplest example of this type of side effect is a fatal error which may have been avoided if not for eager
evaluation, i.e., one that occurs in the branch to be discarded. In addition, there are certain basic operators which
produce side effects, e.g., input and output nodes, where improper execution will have obviously undesirable effects
on any input and output streams referred to. Some other nodes (system nodes in particular} may produce side effects
and are therefore unsuitable for eager conditional evaluation.

The second condition is similar to the first in that its effects on the compwation will only be felt through
side effects, however, it is only a recommendation as many error situations like this are recoverable. The most
important of these are simple node errors (arithmetic, type, etc.) which will not in general have adverse side effects,
A section of graph which executes cagerly and generates errors, simply transmits them as ? tokens to successor
nodes, so the eventual output(s) of that graph will also be errors, but most importantly, the graph will have executed
functionally. Some errors which may not be recoverable are runaway recursions which use up too many context
colours from the available pool, and passage of empty streams into stream graphs which, because of the way stream
operators like head, get, etc. are implemented, might operate nonfunctionally. Some of these error conditions are
stit] subject to change, 0 that for the time being we will merely point out the possibility of problems in this area.

The third condition states that although eager evaluation of 2 particular expression may be entirely valid, its

" use may generate extra (redundant) computation to the point where limited machine resources cause the final result

to actually be delayed. In other words, a shortening of the critical path through a graph with a probable increase in

available concurrency, at the expense of extra run time activity, does not guarantee a speed up in the production of

the final result. This would not be true if such a graph could be ‘perfectly’ distributed on a machine with sufficient
parailelism, but even if this were the case, machine atilisation (§5.7) would certainly decline.

if bool

then expri{a}, expr2(b)
alse expr3{c), exprd(d)
-> resultl, result2;

bool a c b d input arcs
expr 1 expr 3 expr 2 expr 4 eager
expressions
EM EM eager, determinate

merges

result] result? outpul arcs

FIGURE 4.11 Eager, conditional evaluation

Figure 4.11 shows the functional definition of two identifiers (resultl and result?) using a conditional
expression with eager branch expressions. The eager~merge (EM} macro is explained in §4.3.4.3,

4.3.4.2 Lazy Evaluation in Conditionals

In a lazy conditional expression, the predicate is evaluated first and only then is the corresponding branch
expression evaluated. In the dataflow graph, branch expressions are delayed by gating their input arcs. In addition,
tokens destined to the inputs of the unselected lazy expressions must be kifled, figure 4.12. The meaning of the ™’
annotations in conditional expressions is now clear, an cxpression so annotated is to be evaluated lazily. The
annotation applies to the entire branch expression list in the current implementation. Figure 4.12 shows a conditionai
expression with lazy branches,

— 36—

Ch. 4 Dataftow Langunages and Code Generation

if bool

then ° exprl(a), expr2(b)
else ' expri(c), expri(d)
~> resultl, result?;

bool input arcs

gates

lazy
expressions

expr 1 expr 3 expr2 |- jexprd

N N

LM lazy, determinate
merges

resultl result? output arcs

FIGUHE 4.12 Lazy, cenditional evaluation
4,3.4.3 Eager, Lazy and Hybrid Code Templates

There is no reason why the branches of a conditional expression should both be either eager or lazy, thus it
is valid to use lazy annotation on only one branch. As conditionals are themselves expressions and can therefore be
used in the branches of other conditionals, according to the new syntax of expression lists, then we may have lazy
conditional expressions, as shown by the template of figure 4.13. The examples of §4.3.4.1 and §4.3.4.2 are in fact
both eager conditional expressions, ihe second of which has lazy branches. This section will show the templates used
for all possible cases and give the expansions for the macro operators used in these templates.

gate
s

(

boolean 'then' ‘else’ “ f boolean " 'then'

" expr branch branch expr branch

EM EM
\ | \. | J
e.g.,if a > 0 then sqrt{a) else sgrt(-a) e.g., 1if ok then yes elsa no

FIGURE 4.13 Eager and lazy conditional expressions

Templates are shown in heavy, rounded rectangles and may refer to each other, possibly recursively. All
examples are shown with only one element in the true and false branches, merges and gates being simply repeated
for branches with more than one component. Gates arise from conditionals using lazy annotation and are shown
entering gated femplates through circles at the top. In the case of a gated (lazy) conditional nsing lazy annotations
itself (nested lazy evaluation), the second gate is derived from the first, together with the predicate, sometimes
requining a logic inversion, see figures 4.14, 4.15 and 4.16.

—37 .

Ch. 4 Dataflow Languages and Code Generation

gate
"4 w f N
) boolean
(boolean) ‘ '
. expr
expr .
L_ o L]
LM LM
‘then' ¥ ‘aise’ 'then’ 'else’
branch J % branch branch " branch
—_—r by
LM LM
\, | J \. ! Vv,
eg.,if a > 0 then "sgrt(a) elsa ‘sqrt(—a) e.g., 'if ok then "yes else "no

FIGURE 4.14 Eager and lazy conditicnal lazy expressions

The L=M and ELM macros referred to in some of these templates are hybrid merges which always expect a

token on the eager input, but only on the lazy input when the predicate has the appropriate value,

gate
boolean Y:
boolean }
oxpr) expr
B
LM
© 'then’ § ‘else’ ' "then’ ‘else’ ¥
branch branch . branch branch J
— —_—r
LEM LEM
\. i J O\ | .
eg.,if a > 0 then 'sgrt(a) else sgrt(~a) €.8., 1f ok then 'ves elsa no
FIGURE 4.15 Eager and lazy conditional iazy/eager expressions
gate
~ N h
. “boolean
boolean ¥:
expr : .
O— [f]
LM
'thery’ ‘else’ 'then' 'eise’
branch branch branch . branch
by — —_
ELM ELM
\. i J t w,
eg.,if a > 0 then sgrt(a) alse "sgrt{~a) e.g., if ok then yes else "no

FIGURE 4.16 Eager and lazy conditional eager/lazy expressions

38—

Ch, 4 Dataflow Languages and Code Generation

In some templates, LM is shown with a literal ‘boolean false’ on one input. Literals like this are suitable for
both eager and lazy evaleation, since they do not leave a token on an arc when not selected, i.e., they are clean.

4.3.4.4 Fager, Lazy and Hybrid Merge Expansions

The expansions of the merge macros depend heavily on compiler options set in the source program. The
options which cffect the expansions are dererminate code ([d1]), which influences code reentrancy, and extended
node set ([wt]), see also appendix B. These options were originally introduced for testing purposes and were
retained to maintain compatibiltiy with older versions of the compiler and source programs. Now they are retained as
options only because the node set has not been finalised and because they are very conventent in the study of how
different graph expansions affect static and dynamic performance {ch 5}.

The determinate code option currently affects only thgse programs which use the original indeterminate if
else else or if either else {(now renamed to oldif) statements. If [d+] is selected, then DL1 will automatically
‘protect’ all oldif statements, saving the programmer the responsibility of adding protect statements to guarantce
reentrancy. In future, it will be possible to override the automatic protection built into the new merge macros by
using [d-], as not ail graphs must be reentrant.

It is critical that expansions do not include priming tokens so that the templates can be used in shared
subgraphs and to a lesser extent because priming tokens represent unclean code, The extended node set has been
designed in conjunction with the matching functions of chapter 3 with precisely this in mind. In addition, one exira
node, first (FIR), hasbeen added to the basic node set so that some sort of expansion, albeit far from ideal, is
available for shared subgraphs when using that node set.

control data control data

EM —

FIGURE 4.17 Expansion of the cager-merge (EM) macro

Figures 4.17 and 4.18 show the expansions of the basic EM and LM macros. ‘Protection’ is used in all
cases except for the oldif statement with the [d-} option, thus ensuring reentrancy.

[+s)
controf data nirol . data

LM e

‘oldif’
[d-,W-]

FIGURE 4.18 Expansicn of the lazy-merge {(LM) macro

Figures 4.19 and 4.20 show the expansions of the hybrid cager/lazy and lazy/eager merges. Note that an
optimisation is available here in that new nodes could be defined to absorb the PIF (false) and PIT (true)
nodes back into the output of the preceding DUP or EMC node. Such nodes could be named ELD, L.ED, ELC and LEC

- 30—

Ch. 4 Dataflow Langunages and Code Generation

for eager-lazy-duplicate, lazy-eager—duplicate, eager-lazy~control and lazy~eager—
control respectively.

control data

ELM s

‘oldif’
{d-,w-}

FIGURE 4.19 Expansion of the eager-lazy-merge (ELM) macro

conirol data conlt:rol data

LEM| —

‘oldif’
[d-w-]

FIGURE 4.20 Expansion of the lazy-eager-merge (LEM) macro

The expansions of the merge control macros {figures 4.21 and 4.22) clearly show the relationship berween
protection, priming tokens and DUP /EMC (SWI/LMC) nodes. In particular, an EMC node is equivalent (0 a primed,
protected DR, and a LMC node is equivalent to a primed, protecied DUP plus swit ch. Also of special interest is
the expansion used in the case of shared, unextended code. In this case, a £1rst node is used to simulate the action
of the priming tokens at the expense of one token being left in the matching unit for each different context {colour)
processed, i.e., an unclean graph is produced.

trie
nd —» oM s

unshared shared
[w-] | fw-]

FIGURE 4.21 Expansion of the eager-merge~control (EMC} macto

FIGURE 4.22 Expansion of the Llazy-merge~control (LMC) macro

~ 40 -

Ch. 4 Dataflow Languages and Code Generation

4.3.5 Subgraphs

Subgraphs are the D1 equivalent of conventional procedures, functions and macros, Like other functions
they should maintain the order of gneues so that outputs are returned in the same order as inputs are received (this
effect can be simulated without requiring the subgraph itself to support queneing, e.g. by sorting tagged outpuls).
The two types of subgraph provided by DL1 are the unshared and shared subgraph. This research has led to the
correction of some fanlts in the shared subgraph calling mechanism and some syntactic improvements which allow
functions with one output to be declared without an output list, e.g.,

subgraph fred{a,b: integer): integer;
¢l subgraph fred{a,b: integer) -> (out: integer):;

and the general expression list optimisation which allows subgraph calls to be used directly in building expression
lists (84.3.1).

Unshared subgraphs are block structured macros which are copied wherever they are called. They do not
allow code sharing, incloding recursion, except for that obtained by streaming token queues through them {(§4.3.8).
They are the defaukt form used by DL1 since they provide for optimal run time performance, at the cost of expanded
graph size. An analysis of the performance of unshared subgraphs can be found in ch 3 along with refs [42, 41, 2.

Actual Return
Triggers Parameters Addresses

Ll gyl

 Call Inerface -~)}

L1 4 il

FUNC

Body R
of -
FUNC

Exit Interface
i
£
H

I

Results

FIGURE 4.23 The general-data driven call mechanism for shared subgraphs

Shared subgraphs are implemented using a calling mechanism, which tags (or labels) argument wkens and
untags and routes result tokens to their respective return addresses, figure 4.23. A mrigger may be required to
generate the tag if one of the actual parameters is not used for this; any suitable identifier can be used, or it can be
derived from a single ‘global’ trigger which is passed through all subgraph calls. Having passed through the call
interface, umiguely tagged tokens from all calling graphs are merged at the entry (o the shared subgraph, thus
providing the desired code sharing, but some concurrency may be lost if all shared activations are executed in the
same machine region (§4.3.7, [7]). If the tags are not unique, then tokens involved in different calls to a shared
subgraph, but with identical tags, may interact or scramble. The tagging scheme used by old DL.1 does not guarantee
the required unigueness (§4.3.5.1). Note that each call interface forms a part of the calling graph, but the exit
interface, through which all results must be returned, forms part of the called graph.

A problem exists with the priming of shared subgraphs, since when tags are generated, there is no simple
mechanism for generating the priming tokens, The problem is virtually unique to static/queued dataflow systems,
because if there are no queues, then priming tokens may be generated along with the instantiation tag (the priming
token will not be created more than once because the trigger will occur only once). Note however that even a purely
dynamic machine may generate ‘queues’, as long as there is never two tokens with the same tag on an arc at the
same time, There is also a determinacy issue here, since a priming token generated at run time may be involved in an
indeterminate race with other run time tokens destined for the same arc: this can also happen when priming tokens

—41 -

Ch. 4 Dataflow Languages and Code Generation

are sent in with the graph description at load time if the graph is allowed to start execution before all the priming
tokens have arrived. The general solution to this problem is to only use priming tokens where no races can occur,
Le., no tokens can arrive on a primed arc until the priming token has. An example of the problem and how it is
overcome can be seen in figures 4.39, 4,40 and 4,41, In these diagrams, the template for head of stream is logically
primed, first with an actual token, second with a first/pass-if-present pair and last with a prime node,
The second case is the dangerous one and the primed arc must be protected with 2 second pip node as shown in
figure 4.40. A straight merge of the PIP (true) and CPT (1) outputs would almost certainly fail due to the
priming token arriving after its own trigger, This could also happen to the graph of tigure 4.3% if the program can
start executing before the priming token arrives. Figure 4,41 is safe becanse the prime node has the protection of
4.40 built into it, i.e., it always emits the priming literal first. The templates for cons show safe cases which are
determinate; no race ¢an occr because the priming token is needed before any run time tokens can be directed to the
primed arc. Precise details of £irst and prime were given in §3.5-6.

4.3.5.1 The Copy Number Mechanism

DL1 uses a low level computed copy number mechanism, provided by the original FL.O node set. Figure
4.24 shows this type of shared subgraph call in machine graph form.

Actual Return
Parameters Addresses Trigger

Results

FIGURE 4.24 Template for a shared subgraph call using copy numbers

Shared subgraph applications are characterised by a copy number which is computed by the call interface
from the incoming token’s copy number and a Hieral occurrence datum assigned o each interface. DL.1 programs
are statically divided into levels and occurrences, corresponding to their shared subgraph call stracture, Every nested
call to a shared subgraph increases the level by one. Every call to a given shared subgraph from a particular level is
given a unique occurrence number, OCC, starting at one. A system constant, MAXOCC, defines the maximum number
of calls allowed to any particular shared subgraph al each level, The copy number at the outermost texaal level is
zero and is optimised by allowing tokens with a zero copy number to actually not carry a copy field at all,

On entry to a shared subgraph, a new copy number is computed by:
Newcopy = Oldcopy x MAXCOCC + OCC;
and on exit, the old copy number is restored using:
Cldecopy = {(Newcopy — OCC) div MAXOCC;
In figore 4,24, special nodes A (argument-entry), R (return-entry) and £ (exit) perform

the copy number computations described above. The A node carries a literal occurrence token which has the values
of oCcC and MAXOCC. The R node carries a literal link token which also carries an occurrence ficld as well as the

_47 _

Ch. 4 Dataflow Languages and Code Generation

return address (element, node, input point) associated with its particular result, The link token is sent to the E node,
with the new copy number as a tag, where it is used to untag and route the corresponding result.

Some interesting observations can be made on this tagging mechanism:

Copy numbers are wasted whenever MAXOCC exceeds the actual number of shared subgraph calls at any
given level. This is nearly always the case since MAXOCC must be large enough to cater for the greatest
possible value of 0CC, i.e. MAXOCC Z max (OCC). A special constant, TGPOCC, allows MAXOCC ©
be exceeded on the first level by offsetting the values of OCC in the top level call interfaces. This
adjustment cannot be used al lower levels, or scrambling may occur.

The subtraction of OCC in the computation of Cldcopy is unnecessary, since integer division by
MAXOCC will discard any remainder less than MAXQCC.

Important information about the history of a token is contained in its copy nomber. In particular, the
valoes of OCC can be determined for every level back to the top level of the graph, where the copy
number is always zero. ')

The copy numbers correspond to the branches of an n-ary free where n = MAXOCC. This tree is the
parallel machine’s equivalent of a stack. The copy number formulae are the equivalent of pushing and
popping this stack.

This mechanism can be supported by a distributed environment, one of the key points behind its
conception [42, 24, 7].

The compiler cannot lay a call interface until the call level is known. Thus code generation for call
interfaces must be delayed until a call can be traced to the bottom or zero level,

The copy number tree referred to above is designed to correspond 1o the static call structare of the source
program. It is assumed sufficient that the tree connectivity be a super-set of this static structure, but it will be shown
that this is not sufficient, because no provision is made for the dynamic connectivity introduced by (mutual)
recursion. A recursive subgraph exists at many levels equal to and greater than the level of its first instantiation, in
particular, a self recursive subgraph exists at ail such levels.

COPY NUMBER FUNCTION OCCURRENCE

TOPOCC = 4 \’
MAXOCC =2 . LEVEL
4 mam
A 0
3 4 5 8
— % n) \Q . 1
2

(3

1 2 1

FIGURE 4.25 A copy number tree showing the mapping of the program structure of figure 4.26

Figure 4.25 shows a copy number tree with TOPOCC=4 and MAXOCC=2, notice how the values of CCC on
the top level are offset in this case to ¢nsure that copy numbers are unique between levels 1 and 2. The values of
oCC and CoprY shown will be the same for any compilation with these values of TOPOCC and MAXGCC, but
different graphs will map onto this static structure differently. The diagram also makes reference to five functions

—43 -

Ch. 4 Dataflow Languages and Code Generation

a,b,c,dand e and shows how the graph siructure of figure 4.26 maps onto this copy number tree. Figure 4.26
shows this mapping in the opposite direction,

= N = N A |
S I B N & 2 R
CEgn ol fcEas
BN It LT

31* 39* 4°7*

& :] FUNCTION —p{a] 3 I
CCURRENGE 5 I}
15 0 3 3 o, I - =
- $ 4J——COPY NUMBER G A
TOPOCC = 4 -3-15%;1-
MAXOCC =2

* .. recursion will continue this sequence
FIGURE 4.26 A program structure corresponding 1o the mapping shown in figure 4.25

This first example shows a safe case in that no scrambling can occur, i.e., in figure 4.25 there are no
instances of any function occurring twice with the same copy number and correspondingly, in figure 4.26, there is no
copy number appearing twice in the instantiation of any function, Despite being safe, this example still exhibiis
many problems associated with the computed copy number mechanism. The function ¢ is only singly recursive and
generates a wasteful copy number sequence, MAXGCC can’t be set to 1 because there are two calls to e, With a 32 bir
wag field, ¢ can recurse at most Logyaxoaee (232) = 32 times before exhausting the available tag pool. In general,

copy number trees are exponentially wasteful of the available tag space whenever max (OCC) < MAXoCC. To
overcome this problem, the original FLO specification calls for extendible tag fields, but this-is an unsatisfactory

solution given that a 32 bit field should enable 232 concurrent instantiations of each function. Even a 16 bit tag field
would be adequate for most practical programs if one could make use of every available tag for each function.

fel,1] {* MAXOCC, TOPOCC set to 1 *)

shared subgraph a{i,j: integer): integer;

begin
{* a(i,]) reproduces i by recursion, then adds j to it *}
if 1 > 1 than "a(i~1,j)+1 else 1+3 -> a;

and;

shared subgraph b{i, j: integer): integer;
shared subgraph c({i,j: integer): integer;
begin
a{i,qy -> ¢c;
and;
bagin
e{i,3) > b;
end;

begin {* main *)
prime bagin
4 -» x1;
400 —> x2;
& —> yi;
(* 600 -> y2 *);
and;
{* b(), deprived of its second arg, should produce no result *)
a(xl,x2y —-> {(1,-32,0):; (* send result toc console *)
byl,y2) => (L,~32,0);
and.

— 44~

Ch. 4 Dataflow Languages and Code Generation

main
main §°
0 a b
b 1 1
a ¢
a 1 1 ¢ 2 1
& 1 a 1 a a s,
COPY #
% &
234,35 345 > CONELICT
a* a*

FIGURE 4.27 An unsafe program showing how conflicting copy numbers arise

Figure 4.27 shows a program that is not safe, the program and copy number diagrams clearly show
how several instances of the recursive function a are created with the same copy numbers. I is therefore possible for
tokens involved in logically distinct calls to a to scramble, with the result that the program shown produces a result
of 406 for b, instead of the correct 404 for a. This occurs because the actual parameter x2 of the call a (x1, x2)
is being usurped by the call b (y1, y2). This could not happen if procedure application was strict and atomic (thus
requiring all arguments to be evaluated and the passing of parameters to occur indivisibly), but the non-strict nature
of DL1 machine graphs allows the call to b () to proceed all the way down to where its nested call to a requires the
second argument, 3, to appear. Of course, this J never does arrive, but the 3 of the logically distinct top level call to
a{x1,x2) does, with the same copy number, s¢ that an improper match occurs.

One way 10 guarantee unique copy numbers would be to give a different value of OCC to each and every
call of a shared subgraph regardless of the static call level. Unfortunately this method still does not overcome the
problem of copy numbers being wasied, unless all subgraphs have the same number of occurrences, Also note that
the copy number mechanism fails in the case of functions being passed as parameters, or being dynamically
instantiated in any other way, since the mechanism relies on the compiler being able to generate a suitable valne for
occ. Given these problems and a desire for safe, non-strict procedure application, a new method that guarantees
unique tags for logicaily distinct applications has been designed for future language implementations, Unfortunately,
it is not without disadvaniages of its own.

4.3.5.2 The Unique Colour Mechanism

Returning to the general call interface of figure 4.23, a mechanism is required that will append a unique tag
io each argument, where the actual value of the tag may or may not be of any special significance. In the previous
discussion on computed tags it was pointed out that the value of the tag may contain important information on a
token’s history and this is seen as an advantage of that method, for example, it may help in debugging a graph by
aiding in the interpretation of a matching store dump or run time inspection. Never the Iess, all that is really required
of a tagging scheme is a goarantee of uniqueness and the ability to restore the caller’s tag when a {function returns
results. In addition, in the presence of queues, a shared subgraph should return results in the correct order, so that it
must be reentrant for a given calling colour. A procedure that returns no results, i.e., one that is redundant or one that
operates by producing side effects, need not restore the tag of the calling graph at all.

Actual Return
Trigger Parameters Addresses
X,y &z}

* may be qualified
by literal (sce text)
Body

FIGURE 4.28 Template for a shared subgraph call using unigue colours

—45~

Ch. 4 Dataflow Languages and Code Generation

The unigue colour scheme, figure 4.28, uses a new call interface using creste~colour (CRC), set-
colour {STC) and set-return-link (3RL) nodes, note that set-colour is identical 10 set-copy and
shares the same mnemonic, see appendix C. The exit interface is the same as that shown in figure 4.24. The CRC
node generates a unique colour, which characterises this particular call and is appended to the actual argument and
return address tokens by the 37TC and SRL nodes respectively. The SRL node takes a literal destination token and
converts it to an environment token by adding an <oldcolour> field to the destination token. The ex it node uses
this field to restore the caller’s colour to the return tokens. The behaviour of exit depends on the type of the token
on input 1, since it is also used in the copy number call mechanism outlined previously.

The implemeniation of CRC is criticat for it must be usable in a disiributed environmeni, ¢.g. it can not use
a-global counter, The current implementation uses a separate counter for each processing element which increments
with every access to CRC, thus ensuring a unique colour sequence within a PE, To ensure uniquericss between
colours from different PEs, the colour is structured as in figure 4.29. The <PE> field indicates the originating
processing element number (0 to MaxPE, where MaxPE < 255) and prevenis tokens tagged with colours from
distinct PEs from scrambling as they merge into a shared graph region.

31 24 16 0 .
PE OCCURRENCE COLOUR
8 3 16
PE The originating processing element
OCCURRENCE An optional field, further qualifying the tag origin
COLOUR The actual colour of this tag

FIGURE 4.29 The structure of a 'colour tag

The <occurrence field in the colour tag is set by an optional occurrence literal on the CRC node itsell. This
field is an attempt to add to the meaning of the colour tag by helping o identify its origin. Its precise use is
undefined in the current implementation and the colour counter is free to overflow into this filed at present. It could
also be used to hold an ‘index’ field for data structures, as in the Manchester design [291, although the limitations on
data structure nesting implied by this field are just as undesirable as those on iterations due to the Manchester
<lteration Level> field (§4.3.7). The RMIT system currently handles 224 concurrent calls to any shared subgraph

from any given PE (232 in all), a counter overflow produces an appropriate efror token.
Points to note:

= Colour allocation on a per PE basis may help in the study of dynamic graph partitoning (i.e. run time
balance). The colour itself represents the total number of calls made (as given by the <colour> subfield)
from interfaces within that PE.

» The <PE> field requires each PE to know its own identity, this may have implications for the design of
dynamically reconfigurable machines. A similar requirement is placed on machine design by the use of a
local queue to minimise network token traffic.

= The structuring of the colour tag to include a <PE> subfield, although necessary, may limit the effective
tag pool size, This is because it is not guaranteed to have an equal distribution of calls to each and every
shared subgraph among each and every PE, although dynamic graph unravelling is an attempt o do just
that (§4.3.7).

= (olours may be further structured to indicate the name of the calling graph, the particular interface, etc..
This would necessitate allocating counters on a ‘per interface’ basis and could further reduce the
effective tag pool size (see above).

» Like the copy number mechanism, this mechanism can be supported in a distributed environment.

= Unlike the copy number mechanism, the compiler can now lay a call interface as soon as a call is made.

The precise operation of the CRC node is under review, so that an altemnative scheme which avoids the
overflow problem may be implemented in the future. Such a scheme could be to allocate colours from a free list, or
pool of available colours, and to return colours to this pool when a call is complete. A signalling scheme as
described in [48] can be used to detect the termination of a call at the cost of increased graph complexity. Alse, the
generated colour should ideally be reused for each further call with the same calling colour to ensure that queues are

46 -

Ch. 4. Dataflow Langnages and Code Generation

kept in order, but other methods can be used for this, e.g. protection, see also §5.9.3. Tagging schemes similar o the
one described here can also be found in {28] and [44].

4.3.6 Tteration and Tail Recursion

DL1 provides no direct syntactic support for iterative functions, instead they may be expressed as either
static or dynamic tail recursions. In a tail recursion, the function either returns a result (at termination), or calls itself
and returns the result of that call, with no post-processing. A static tail recursion forces a time dependency between
tokens in all cycles, achieved by queueing; but in a dynamic tail recursion, the bodies of alil cycles are independent
of each other and can execute in a different context (anfolding}. A tail recursion, staric or dynamic, must be lazy
with respect o its arguments, (o prevent run away and to ensure clean execution.

A scheme for translating while and for loops into their tail recursive counterparts is given by Nikhil et al
[37]. The idea behind this translation is to split the loop body into local and result (new) bindings. In a clean DL1
loop, all tokens in the tocal bindings are either used to compute the results or are discarded, local bindings/tokens are
therefore referred to as loop temporaries. Results are passed to the next cycle through a nondeterministic merge in a
static iteration, or through the argument list in a dynamic tail recursion. The originating call must initialise all result
bindings. Loop invariants must be passed in the argument list with loop variables, as no ‘loop constant’ storage is
provided by the RMIT hardware. When the termination condition is satisfied, the last cycle may return the result(s)
directly to the calling context {tail optimisation)}.

4.3.6.1 Static Iteration

The classical approach to iteration treats each cycle as occurring in the same context, i.e., no unfoiding. In a
von Neumann machine the program flow jumps back io the entry point of a loop at the start of each new cycle, and
has access to static, in place variables in an efficient, space saving manner. There is no need to push a data stack
with each new iteration and the final result may be computed and returned directly by the terminating cycle. A
similar strategy can be used in a dataflow graph, provided that the loop body code is reentrant. The jump can be
achieved by a simple merge of initial call tokens and result tokens, which continue to circulate through the loop until
termination. The loop is used in line, so no result distribution or tagging is required, Figure 4.30 shows a static
dataflow tranglation for loops of the form:—

initialisation(...)

while condition(..) do
loop-bodyt...)

return result-exp(...)

A repeat loop simply places the termination condition and switch after the loop body.
As shown by shading in figure 4,30, some parts of the translation are not always present:—~

» There may or may not be any recirculating loop invariant data. Such data implies a level of inefficiency
in this model, since it must be copied several times.

* The overall iteration is non-reentrant, and protection is required before the nondeterministic merge if the
code is to be pipelined. This protection can be reset by a false condition (e.g., a token from the false
switch output). The protected merge arrangement is more efficient than a primed join construct in this
case, although the latter is superior in most other cases because of its local protection,

= The result expression evaluates in the same context as the calling code and therefore may access free
variables in the surrounding graph. This may not be true in an unfolded iteration (§4.3.6.2),

—4T -

Ch. 4 Dataflow Languages and Code Generation

loop inputs

()

r

£ loop invariants 3

protection

| initial values

feedback values o g

nondeterministic
merge

loop variables

loop-body resuit-exp

new vars

loop results W
FIGURE 4.30 Static dataflow while loop transiation

(*
INT and T2 are constants,
close _range is a free variable in the surrcunding graph
*} ’
. —>» close_range;
wr = —> Itheta, Iphi; (* initialisation *}

{(* merge initial and 'new’ values to give loop variables *)
merge (Itheta, Ntheta)} ~> theta; (* indeterminate *j
merge (Iphi, Nphi} -> phi;

{* evaluate condition, and ‘switch’' variables *)

switeh laser miss(theta, phi) and theta < T2

than theta, phi, true

->» Btheta, Bphi, null {* loop body inputs *)
alse Ftheta, Fphi, done; {(* final values *}

{(* lLoop body *)

laser plot(Btheta, Bphi) -> null; {(* plot all ‘miss points’ *)}
Btheta + INT ~> Ntheta; {(* new theta (variable} *}
Bphi -> Nphi; {* new phi {invariant) *}

{* opticnal protection for pipelined use *)
protact theta, phi with done; (* ensures reetrancy (optional) *)

{* result expressicon *)
Frheta, laser(Ftheta, Fphi) < close_range -> .. , .7 (* loop outputs *)

FIGURE 4.31 DL1 description of a static while loop

48

Ch. 4 Dataflow Languvages and Code Generation

Figure 4.31 shows a DL.1 while loop which moves a laser scanner in the theta direction untl it strikes an
object or reaches a limit on theta. It plots all ‘miss points’ in the scan and retuns the final value of theta and a
boolean which indicates whether an object found was closer than a certain range. The lack of syntactic support for
static foops is immediately obvious from this figure, the program must be layed ot carefully if the final code is to be
well formed and clean. This is true of any graph which uses nonfunctional statements like switch and merge.

4.3.6.2 Dynamic Tail Recursion and Loop Unfolding
The taser scanner loop can be expressed as a dynamic tail recursion, as in figure 4.32.

shared subgraph scan(theta, phi: integer} -> {(Ftheta, Fphi: intager):

subgraph body {Btheta, Bphi: integer) -> {(Ntheta, Nphi: integer};
bagin (* body *) .

laser plot (Btheta, Bphi) -> null; {(* plot all 'miss' points *}
Btheta + INT -> Ntheta; {* new theta *)
Bphi -> Nphi; {* new phi {(invariant} *)

and;

begin (* scan *}
if laser miss{theta, phi) and theta < T2

then "scan {body (theta, phi}} (* lazy evaluation #*)
alsa theta, phi (* NB. no access to 'close_range' *}
~> Ftheta, Fphi: {(* returns final lecop variables *)

end;

(* INT and T2 are constants, close_range is a free variable in the surrounding graph*
. —> close_range;

wr - —> theta, phi; (* initialisation *)
scan (theta, phi) -> Ftheta, Fphi; (* call it *)
Ftheta, laser(Ftheta, Fphi) < close_range —-> .., .. ; (* result expression ¥*)

FIGURE 4.32 Dynamic tail recursive equivalent of while

Similar identifier names, comments and layout have used to aid comparison with the previous example. In
fact, this version could easily be expressed more concisely than shown here. The code is now more obvious and
much easier to write, although certainly not as easy as if the syntax included a looping primitive. The program is
now entirely functional and automatically determinate, reentrant and clean. One problem is the requirement to sef the
loop body apart in a subgraph of its own. This occurs often in DL1 programs, as it is the only way to introduce
temporary bindings and is equivalent to the “bindings’ part of a SISAL or Id Nouveau lef expression {35, 37].

The main advantage of writing this program as a dynamic tail recursion will become apparent when graph
unravelling is discussed in §4.3.7. By creating a new context for each loop cycle (as is done by the tagging of the
shared subgraph arguments), the entire loop can be unfolded. In this case, all activations of the procedure
laser plot can proceed in parallel, spread out over the entire dataflow machine (machine graph unravelling}.
The same is true for evaluation of new bindings in the loop body and for evaluation of the termination condition.
This approach clearly generates very much more concurrency than the static version, since in that case, all loop
cycles were constrained to execute in the same physical graph region.

There is a subtle issue regarding the evaluation of the result expression. If the result is evaivated in the
context of the final recursive call, then any free variables that are required must be circulated as loop invariants to
deliver them into that context {unlike the static translation}. Alternatively, the result expression may be evaluated in
the calling context, which requires all loop variables used in that expression to be returned. In any case, loop
variables not involved in the result must be explicitly discarded. If tail optimisation is not used, as in figure 4.32,
then it could be expensive to return a large number of loop variables to the outer context through the shared
subgraph return mechanism, but the result itself may consist of many tokens equally as expensive to return.
Similarly, free variables used in the result expression may be costly to include in the argument list of the recursion,
because they must be tagged and circulated. There is a significant difference between these two cases however: the
tagging of extra loop arguments may proceed in parallel with loop variables and thus presents little added cost; on
the other hand, the return of extra loop results can not be done in parallel. These effects are investigated in chapter 3,
but tail optimisation also has a large impact on this discassion,

49 ..

Ch. 4 Dataflow Languages and Code (Generation

There is no special template for the translation of a tail recursion without optimisation, since it is just coded
like any other recursion, using the general shared subgraph caling mechanism.

4.3.6.3 Tail Optimisation

Static loop translations involve no context changes and return their results directly to the calling graph (sail
optimisation). However, the overall graph is non-reentrant and will require protection to preserve determinacy.
Dynamic loops, expressed as recursive shared subgraphs, are always reentrant and determinate because they retwmn
their resulis in order through a series of exits and conditionals (the fail); tail optimisation apparently cannot be used
without sacrificing this order preserving property. Therefore, a tail optimised recursion cannot be pipelined without
protection, as in the siatic case. Chapter 6 cutlines some proposals which should prove more effeciive than
protection in maintaining queue order, since far Iess concurrency is lost.

To implement tail optimisation in a dynamic loop the calling context is made known to the terminating
cyele by including an extra argument which is the context (colour) of the calling graph. The results now exit through
a set-colour node statically linked to the calling graph. Figure 4.33 shows a template for the transiation of while
loops into tail optimised machine graphs. Figure 4.34 illustrates the various loop translations at run time.

loop inputs

(v ¥ ¥ Y
" yield e e . .
: initialisation loop invariants
colour
calling i
context initial values +
calling context
loop variables +
calling context
. switch '
I Inal values
calling
conlext
new vars result-exp Fegoond
\ J

Ioop results 'Y

FIGURE 4.33 Dynamic while loop with tait optimisation

— 50

Ch. 4 Dataflow Languages and Code Generation

‘ + olour

loop l Toop E;{ /

5

ioop JEE

g

p |-

loop

)

loop

A

—

o]

ENERED

dynamic loop
with unfolding
and tail optimisation

3
&
b1

dynamic loop
loop with unfolding

)

static loop with
tail optimisation

-4

FIGURE 4.34 Run time characteristics of loops
4.3.7 Dynamic Graph Unravelling

It has been shown how the DLI/FLO system uses token tagging to implement code sharing/reentrancy in
shared subgraphs, recursions and loops {as tail recursions), but the real power of tagging lies in its use to unrravel
dataflow graph execution. This is the process of executing multiple instances of a node, i.e. different coloured
firings, in parallel. This is in keeping with the fundamental principle of dataflow based parallel computation that any
operations not dependent on each other for data may be executed in parallel.

The processes of unravelling a dataflow graph and code sharing are similar in that the same tagging scheme
is used to implement both ideas. In code sharing, the different instantiations of a single node are confined to one
processing element or evaluation unit, thus reducing achieved concurrency through sequential evaluation of that
node and communications problems brought about by corresponding hot spots in the graph. Unravelling, on the
other hand, allows each different instantiation of a node to be executed independently, on separate processing
elements. In the best case, when all instantiations have no data dependencies, they will be available for parailel
execution and may execute as soon as a tagged much occurs.

The MIT Approach

The use of 1ags in the extraction of parallelism at run time was developed by Arvind and Gostelow in their
work on the U-interpreter (unravelling interpreter) while at the University of Califormia, Irvine [7]. They describe
not only the use of tags as an implementation strategy for shared subgraphs, but also a model for execution that takes
advantage of tagging to extract maximum available machine graph concurrency. In particular, they identify shared
procedure application (including recursion) and dynamic Ioop unfolding as sources of concurrency, and structure
their tags accordingly:-

<Tag> =
<Color>
<Physical-instruction-address>
<lInitiation-number>

The format shown is actnal;y the one used currently by Arvind and the MIT dataflow group: it differs
somewhat from the format described in [7] which was more conceptual in nature. <Color> separates tokens from
disjoint procedure/loop invocations (nested loops are given a new <Color> because of limitations in the </nitiation-
number> {ield). The actual destination node number is given by the <Physical-instruction-address> field and is
considered part of the tag by the MIT group on the grounds that it is used in the token matching operation.
<Initiation-number> is a finite implementation of an iteration counter and as such has overflow problems associated
with its use, this field is part of an optimisation used in the control of dynamic loop unravelling.

—51 .

Ch. 4 Dataflow Languages and Code Generation

The proposed MIT machine is a sophisticated impiementation of the unravelling interpreter {7, 91. Groups
of processing elements, called physical domains (PDs) cooperate in the unravelled execution of loops and
procedures. Within a given PD, a form of code sharing is achieved by allocating copies of the code body not to each
processing element, but {o consecutively addressed groups of PEs called physical subdomains (PSDs). A physical
domain is made up of an integral number of subdomains, each of which has exactly one copy of the code body. A
single PSD can utilise the static concurrency in the structure of a code body (i.e., its width), while several PSDs can
execute #PSD/PE procedure or loop bodies in parallel.

The Manchester Approach

A very similar tagging scheme, based on <Activation Name>, <Index> and <izeration level> ficlds was
independently developed at the University of Manchester, England, by the group of John Gurd, Philip Treleaven and
Ian Watson {31] at around the same time as Arvind, Gostelow and Plouffe’s original work [81. <Activation Name>
and <lteration Level> are similar to MIT’s <Color> and <Initiation-number> fields respectively. Like the MIT
design, nested iterations are not directly supported, but are implemented by calling inner loops through a procedure
interface, thus changing the <Activation Name> before the inner loop begins. In this new context, the inner loop is
free to reuse the iteration counter. The </ndex> field provides for concurrency in operations on array like data,
which was initially held in the matching store, rather than a separate structure sore unit. The Manchester group’s
work also emphasises that the tagged token approach increases available run time concurrency. More recenily, the
Manchester group have abandoned the <Initiarion-number> field, due to the overflow and nested loop problems.
This problem has been avoided altogether at RMIT since generating activation names, or colours, can be just as
efficient as an iteration counter, much less complicated and free of restrictions, hence our emphasis on tail recursive
loop implementations.

The single ring Manchester machine achieves an extra degree of unravelling through a tagged matching
store and muliiple function units within a single processing element. The function units are used in a manner that
allows several instantiations of a node (as well as separate nodes of course) to execute in parallel, Evaloation results
are simply merged together, so it is possible for the resulis from one node, within one PE, to be produced in a
different order to which its argument matching occurred. This overtaking is acceptable in the Manchester design
because the tags keep all tokens logically isolated, but is unacceptable in the hybrid model, since several node firings
may have the same tag when arising from queues of operands.

The Manchester machine is designed o have several processing elements connected by a multi-layer
switch, as in the RMIT design, but initial work was carried out on a single element only. More recently however, the
multiple PE version of the Manchester machine, the Multi-ring Dataflow Machine (MDM]}, has been simulated {12].
As part of this simulation, split functions, which route tokens between elements based on their tags and static
addresses, were investigated. The split function is arranged so that an integral number of copies of a graph can be
addressed in a machine of any number of PEs. The results clearly show the effects of machine graph unravelling
produced by tagging and spliiting.

The RMIT Approach

The original FLO system had no provision for graph unravelling at the machine level since there was only
one physical copy of every node in the graph. The graph was simply statically distributed over the entire dataflow
machine in a random manner, addresses being based on static element and node numbers. Multiple function units
within PEs were allowed, as in the Manchester design, aithough the problem of avoiding result overtaking was
always present and never fully accounted for. In recognition of the need for unravelling, to improve achieved
concurrency and machine utilisation, a scheme has been devised for allowing independent (separately tagged) node
activations to proceed in parallel. In the following discussion we concentrate on ‘colours’, although the argumenis
aiso apply to tags generated by the copy number scheme.

The initial implementation is similar to the ‘splitting’ approach of the Manchester group (although
developed independently); a hashed addressing scheme is outlined below. It is also illustrative to draw comparisons
with the MIT design. To borrow from their terminology, the entire RMIT machine represents one physical domain,
responsible for all code execution. Within this PD there are as many physical subdomains as there are processing
elements, but a single PE does not represent one subdomain, since a subgraph application with any given colour is
still statically distributed over the entire machine. The PSDs actually overlap each other, with the effect that
achieved concurrency smoothly degrades as the number of instantiations of a code block increases, rather than
suddenty degrading when this number exceeds #PSD/PD, as would be expected with the MIT design.

—52 -

Ch. 4 Dataflow Languages and Code Generation

Currently, each element must hold a copy of the entire graph if dynamic unravelling is used, although a
simple change to the hashing function can restrict the number of code copies required [12]. This system achieves
high machine utilisation and run tme concurrency at the cost of increased storage requirements.

Parallel execution of coloured node activations is achieved by hashing the colour and destination PE fields
of a token together to form a physical PE address, like the Manchester split. The effect of including the destination
PE in the algorithm is to distribute the computation for a given colour as per the static allocation generated by the
compiler and allows more ‘intelligence’ to be built into the unravelling. The problem of choosing a destination PE at
run time, i.e., & suitable hashing aigorithm, is similar to the problem of statically allocating a graph within a physical
subdomain at compile time. Results are presented in §5.6, which show the simulated effects of the allocation
strategies used by DLI {currently random) and the RMIT emulator (hashed/computed as shown below).

(*

* Compute HashPE from static PE and Colour.

* Don‘t hash if token is going to a system node.

* NumPEs is the number of physical processing elements.
* Colours include the criginating PE number.

*}

HashPE := PE;
if not SystemNode then begin
HashColour := Colour;
while HashColour <> 0 do begin
HashPE := xzor(HashPE, HashColour mod NumPEs):;
HashColour := HashColour div NumPEs;
and
and

FIGURE 4.35 The hashing algorithm used to unravel machine graphs

The algorithm of figure 4.35 is used in the RMIT simulator, DFSIM, but is oriented towards hardware
implementation by the use of exclusive-or rather than addition. As DFSIM can model a user defined number of
processing elements, the divisor NumPEs is a variable in the above algorithm, but an actnal machine would fix this
value, Tokens destined to certain system nodes must not be redirected, since these nodes currently have different
meanings on different PEs. The desired features of the hashing algorithm are that the compiler generated allocation
is preserved for any given instantiation, and different instantiations are spread uniformally across the machine.

Although the sequence of tags is expected to be well distributed for both copy numbers and colours
{counier generated), a simpler scheme such as

HashPE :
OF HashPE :

{PE+Colour) mod NumPEs
xor (PE, Colour) mod NumPEs

4

is still not used. This is because the originating <PE> field of the colour (which is in the upper byte) would be
masked out of the hash so that subgraph calls from different PEs, but with the same <colour> subfield would clash.

Some observations:-

« Static code sharing (i.e., not unravelled) reduces graph size, but lowers available concurrency and
machine utilisation.

« Unravelled graph execution requires many copies of shared code to be loaded, but increases available
concurrency and machine utilisation,

« Smaller physical domains could be implemented by including domain size and location fields in tags.
These fields would be interpreted as PE numbers and would appear in the hashing algorithm for
unravelling. This method would relieve the compiler of the burden of keeping track of the absolute static
locations of domains.

4.3.8 Sequences and Streams
Queueing is one way of taking advantage of temporal concurrency within processing elements, in addition

1o the spatial concurrency achieved by distributed processing over different elements. However, it has the drawback
of introducing an extra time dependency between data so that it is not an optimal strategy for graph execution. Some

~53—

Ch. 4 Dataflow Languages and Code (eneration

poteniial concurrency is lost in maintaining all intermediate results in time order, since computations on these results
might otherwise proceed in parallel (unravelling again). Many researchers have rejected queueing for this reason,
leading to the purely tagged or dynarnic architectures with no support for queues on arcs apart from the possibility of
colouring the different elements of a gueue 1o keep them isolated. The RMIT group has not rejected queneing for
these reasons, but has looked instead for ways to take advantage of queues.

multiple
1 (pipelined)}

- applications
ordered
zn © intermediate
1 results
G diff] 4 _ z
g 3 0 _
body of ' _ . ?
G X *

A B C
FIGURE 4.36 Multiple function applications

In figure 4.36, the application of fanction ¥ to a sequence of untagged input lokens may proceed
suboptimally because any given result may be held up by a prior result which takes longer to evaluate. Tagging the
input tokens so that each application of ¥ can proceed independently will produce the resuits in the shortest possible
time (all else eguoal), except that a small overhead for the actual tagging will be incurred. Also, in the tagged case, the
results will almost certainly be produced in the wrong time order, their actual sequence position has to be derived
from the tags they carry.

There are three basic operations that may be applied to the sequence of (possibly tagged) intermediate
results produced by F:-

(a)

A function such as G, defined over simple token types, can be applied to the intermediate resulis o produce
a set of output results. If the tokens in the original sequence are all separately tagged, then further unravelling will
occur within G, to produce a set of correspondingly tagged outputs in close to minimal time. The time ordering of the
tagged results will again change (probably), possibly even back to the order of the original input stream. If tagged
results must be output in their correct time order, then special i/o interfaces, which sort the tokens based on their
tags, are required. Alternatively, tokens may be oatput with their tags attached, to be interpreted directly by another
dataflow graph.

If wkens are not tagged, then G will operate over the intermediate result sequence in a strictly determinate,

functional manner, maintaining time ordering throughout. Some gains are made by having no tags {1], but these will
almost certainly be offset by the lost asynchrony due to not unravelling the graph {7].

{b}
The simple differentiator di££, shown in figure 4.36 requires that the input sequence arrives in correct

time order, This will be true in general of any graph which, like di££, uses state information and in some way
combines the values of tokens in a sequence. The suitability of the hybrid dataflow architecture to the execution of

.54

Ch. 4 Dataflow Languages and Code Generation

such graphs has been clearly demonstrated in many applications [41, 42, 24, 21, and is clear from the extreme
simplicity of di££. The action of these graphs can almost certainly be simulated on machines without queueing, but
the code required to manipulate tags and possibly shared storage devices may add significant complexity and
inefficiency to the graph.

(©)

Finally, a graph such as ¥ may be required that takes all the values i a given sequence and produces a new
sequence of different length. In this case, ¥ returns just one resull, being the sum of the tokens in the input sequence.
In fact, 2. cannot be implemented in the context of figure 4.36 because their is no way of knowing when the input
sequence is finished. A distinction must therefore be made between open and closed sequences.

4.3.8.1 Open Sequences (Queues)

Open sequences are supported in DL1 by allowing'queues of tokens 10 be strecamed through a graph
segment. Such filter type graphs can have state variables, allowing powerful graphs to be built very efficiently, e.g.,

subgraph diff (V: intaeger): integer;
ceonsgtant
dT = 0.01;
bagin (* differentiate the input seguence *)
(V - old V} -> &v;
dv / dT ~->» diff;
V -> old V;
prime ¢ -> old V; (* initialise old V *}
and;

bagin {* main *)

(* read a sequence, differentiate it and write it out *)
read (input, more) -> V;

V -> more;

write{output, diff(V)} -> null;

prime true —> more; (* gets it going *)
end.

FIGURE 4.37 Program segment that filters a quaue

This program segment has one state variable, o1d_V, which is used in a continuous differentiation filter on
the input sequence. Elements are processed as they arrive, which is ideal for applications like real time signal
processing. The data dependencies are such that no advantage would be obtained by tagging/unravelling, indeed the
graph would be substantially more complicated if this was attempted. Note that if dif £ was a shared subgraph, then
cach application to a given queue would have to have the same colour in order to use the history mechanism
provided by o1d_V. The prime statement is executed only once and is used to initialise o1d_V and more in this
graph. As DL1 already provides support for open sequences in sufficient generality, we shall move on to the sabject
of closed sequences or streams.

4.3.8.2 Streams

Weng introduced the semantics of stream based computation on a static dataflow architecture and showed
how sireams could be used to provide interprocess communication and to increase both available and achieved
concurrency [50]. His implementation, in common with the current DL1 approach, is based on gueues of tokens (of
the base type of the stream, if declared) terminated by a special end-of-stream tken ‘7', An empty stream consists of
a single end-of-siream token. This implementation forces the structure of a nested stream to be declared statically to
avoid ambiguity, e.g., the sequence 1,2, 3, 4,1, 5,6,1,1, 1 could be a queue of four simple streams, or a much
more complex structure such as ‘stream of (stream of (stream of integer))’, whereby the sequence would be
interpreted as ({<1,2,3,4,]1>,<5,6,]>,1},1), with the symbols (), {} and <> representing the three
levels of nesting. This interpretation is most easily seen if the sequence is read backwards.

On the RMIT architecture, streams provide enhanced run time performance through pipelining and
significantly more powerful semantics for high level DL1 programs, but it must be emphasised that this
implementation, which carries streams on data arcs, is not suited to random access of stream elements because of the
amount of data copying implied. For example, to find the nth member of a stream requires that every element be

~ 55—

Ch. 4 Dataflow Languages and Code Generation

processed n times, through n-1 tails and 1 head. Never the less, sequential access data structures, like seams, can
be of great benefit in interprocess communication, and provide a powerful abstraction over simple (atomic) data
types. Also, the problems asscciated with stored data structures are avoided by this approach. The new node set
being developed for the RMIT machine supporis structure store based lists which allow more efficient pseudo-
random access through indexing and indirection, In addition, start-of-stream and stream-separator tokens, and a
more general siream matching function will be supported, which allows 4 fully dynamic implementation, requiring
no static declarations at all. In certain cases it may even be possible to unravel sireams by uniquely colouring all the
elements and processing them in parallel; such a scheme is used in SISAL [35].

4.3.8.3 Stream Functions

Strearn ‘variables’ are indicated by identifiers beginning with an underscore, e.g., 1 am a stream.
This scheme has been chosen to limit the number of ‘typing’ statements in DL1, and to emphasise the use of streams
as sequential rather than random access items by preventing nested definitions. In any event, the code temnplates
provided can not handle nested streams without significant modifications.

Predefined operators on streams are: bracket, unbracket, head, tail, get, empty and cons. Bracket returns
a copy of the input data followed by an end-of-stream token. Unbracket absorbs all end-of-stream tokens passing
through it. Note that these two operators are not functional and require exireme care to ensure clean, well formed
code.

The new stream functions head, tail, get, empty and cons allow for easier and safer stream manipulation,

Get returns both the head and tail of a stream and is slightly more efficient than a head/tail pair. Cons allows for
non-sirict stream creation by concatenating a simple element with an existing stream. Because of its non-strict
nature, cons will begin production of its oufput stream as soon as its first input arrives and then as successive tokens
arrive on iis second input, up to and including the end-of-stream token. This non-sirict operation is important in
improving run time concurrency and in providing a logically consistent interpretation of streams, e.g., as potentially
infinite data structures. Empty reiurns true when applied to an empty stream and should be used to test streams
before applying head, tail or get since these functions are not defined for empty streams. In addition, implicit stream
support is provided by many other DL1 primitives including merging, protection, shared subgraph entry/exit, etc..

A recursive subgraph o sum the elements in a stream could be:-

shared subgraph stream sum(_input: integer): integer;
begin
if empty (_input)
than ©
else ° head(input} + stream sum(tail (_input)})
~-> stream_ sum;
and;

and to sum the corresponding elements of iwo streams to form a new stream:—

shared subgraph _add{ _inl, _inZ: integer): integex;

begin
if empty {_inl) or empty(in2)
then]
else ' cons(head{_inl}) + head{ in2), add(tail(_inl), tail{ in2)}!}
~> _add;
and;

where the end-of-stream symbol ‘1" denotes the empty stream. Lazy evaluation of the else branch is
necessary to prevent head and tail from being applied to empty streams, also, this subgraph is well formed and clean
gven if the input streams are of different length,

— 56—

Ch. 4 Dataflow Languages and Code Generation

4.3.8.4 Code Templates for Stream Functions
sream stream stream

head tail

TAIL - GET

stream simple stream
tf |f

r “

boolean slream

EMPTY CONS

FIGURE 4.39 Simple templates for stream functions

The basic templates shown in figure 4.39 are similar to those proposed by Weng in his original work on
streams. Due to the use of priming tokens, these templates are not suitable for shared subgraphs on the RMIT
system, but do represent the simplest implementation based on the original FLO nidde set. The code is well formed,
since the functions return to their original state after a stream has been processéd, but it is not clean becaunse a token
is left in the maiching store for each context in which they are activated. One can imagine the matching store slowly
clogging up with tokens from unclean functions like this unless actiofi' is taken to either prevent or remove these
tokens. o
stream '

simple stream

1

_ L]

i simple stream I

HEAD (TAIL, GET, EMPTY) CONS

FIGURE 4.40 Stream functions for shared subgraphs using the basic node set

— 57

Ch. 4 Dataflow Languages and Code Generation

Figure 4.40 shows templates which are suitable for shared subgraphs because they have no priming tokens.
These templates are still unclean however, because after the {irst activation, a boslean token remains, as in the prior
case. In addition, a further token is left in the matching store to indicate the state of the £1irst node.

simple stream

"\

[w+]

simple I stredm

HEAD (TAIL, GET, EMPTY) CONS
FIGURE 4.41 Stream functions for shared subgraphs using the extended node set

The templates of figure 4.41, show how the extended node set has been used to reduce the complexity of
stream functions. The template for cons is now clean because the PRT node resets after a stream has been processed.
The reset feature of the prime node is not used in the other templaies as it is not determinate (yet), these templates

remain unclean.

There is a need to provide macros for several other operations on streams, many of which require a code
block that will accept a stream and a simple token and reproduce a copy of that stmple token for every element in the
stream. This macro is called the st ream—store function. Its use will be outlined shortly {(see also ch 3), but first
its expansions are given for the various node set possibilities in figures 4.42 and 443, Stream—store has been
implemented as a non-gtrict function, like cons, 0 increase concurrency in stream handling macros. Thus a copy of
the simple token can be produced beforé the start of the stream arrives.

simple

» A

} stream simple

4

unshared

s

W,
multiple multipie
simple simple

STREAM STORE (STS)

FIGURE 4.42 The stream-siore {STS) expansion in the basic node set

—58 -

Ch. 4 Dataflow Languages and Code Generation

| stream simple

STREAM STORE (STS)

Y

multiple
simple

FIGURE 4.43 Stream-store for the extended node set

The nse of st ream~store becomes clear in the following macros. Figure 4.44 shows expansions for
stream gates, operators that replace the simple functions of pass-if-true, pass-if-false and switch
when the data to be gated is a stream. They will be referred toas PIT (S), PIF (S) and SWI(S).

boolean stream boolean stream boolean stream
STS STS - STS
—® e 6
stream stream stream stream
PIT {stream) PIF (stream) SWI {stream)

FIGURE 4.44 Path control macros in the stream node set

boolean stream stream boolean stream stream
EMC
. MC
PIT PIF PIF
LM LEM =
S S s
) — () (S) (s) (8)

sfream stream

FIGURE 4.45 Controlied merge expansions for streams

Figure 4.45 gives expansions for the lazy and hybrid lazy/eager merge of two streams under control of a
single boolean token. Similar expansions apply for the eager and eager/lazy case. With these macros and the gate

- 59—

Ch. 4 Dataflow Languages and Code Generation

macros shown above it is possible to handle streams in conditional statements in full generality, using the templates
of §4.34.3,

Another place where special handling is required for streams is in the interface 1o shared subgraphs. The
idea here i8 0 use st ream~store to generate multiple copies of tags, return addresses, etc., for appending to the
elements of streams involved in shared subgraph calls and returns, see figure 4 .46,

stream COpY or siream link or stream
colowur l environ
5T3S ; STS
=
stream stream stream stream
A (stream) STC (stream) E (stream)

FIGURE 4.46 Shared subgraph expansions for streams

To greatly reduce the complexity of stream graphs, and as part of an ¢xperiment into the use of advanced
matching functions, single nodes have been implemented for many of the stream functions seen so far, see figure
4.47, These nodes are available when the advanced node set toggle [a+] is set during a compilation. See chapter 3 for
a discussion and implementation of the advanced matching functions used by these nodes. Results of simulations
involving streams are presented in chapter 5.

stream stream stream simple simple strearn

simple stream stream muitiple
simple
[a+]

FIGURE 4.47 Special stream nodes in the advanced node set

— 60—

Chapter 5
SIMULATION RESULTS AND ANALYSIS

5.1 Introduction

In this chapter, various aspects of the dataflow system described in this thesis are simulated and discussed.
The timing figures used in all simulations have been derived from an evalvation of the prototype emulator code and
represent the performance of a MC68020/M68881 based processing element in single CPU configuration (§2.9).
Where possible, results are presented in a comparative manner as absolute values for the dataflow system may bear
little or no relationship to analogous values for conventional machines. Emphasis has been placed on trends for
future development so that resuits are relevant to the design of the next generation system where possible.

5.2 Test Programs

A suite of test programs has been written to allow varions areas of interest to be studied, especially those
features peculiar to the RMIT system. Simulations were performed on the CSIRO Sun 3/260 which handled most
graphs comfortably with the exception of the recursive 8 queens solution. This program aborted due 10 a lack of
swap space after generating a massive {oken load during simulation (> 4 million tokens in ransit and in the data
structures of the matching store emulator) and took several days to run to completion on an alternative VAX 11/780
system. A 6 queens version simulated i rapid time and was thus preferred to 8 queens. Selected test program
listings are included in appendix A.

5.3 Duplicate vs Replicate

During the execution of a dataflow graph, many tokens must be duplicated. This occurs explicitly, where
identifiers are used more than once in expressions, function calls, etc., and implicitly where the compiler uses
duplication in code templates. In the case where nodes are limited to two outputs, a resiriction found in many
dataflow implementations, it is necessary to plant a tree of duplicate nodes to produce many copies of one token.
For obvious performance reasons the duplicate tee is made height balanced, it requires one less node than token
copies to be made and has a height proportional to the log of the number of copies. Analysis of the test programs,
together with previous studies [41, 42], shows that the DUP nodes in these trees consistently account for about 40%
of all nodes, both static and dynamic (they form the majority of all one input nodes, which have themselves been
shown to account for typically 60 - 70% of all nodes executed).

As an alternative to the token duplication scheme used by DL1 (i.e., to plant a height balanced tree of DUP
nodes), a new node was defined called replicate. REP can generate any number of copies of its single input
token; it has an arbitrarily long output list and takes time O(n)} to process n tokens as opposed to O(log n) for a DUP
trec. A DUP tree contains n—-1 nodes which are randomly distributed by the compiler {an optimal strategy would
take advantage of the wave like processing of the tree to use as few elements as possible, but this would stll be at
least n/2 elements since the last wave should execute in parallel). REP uses only one processing element and will
clearly be more efficient for small n due to the large reduction in token traffic. However, a break even point will
exist between the execntion times of graphs with duplicate trees and those with replicate nodes.

To study these effects, a graph was simulated which had one (variable sized} duplicate tree, primed with
one token. The outputs of the tree were connected to dummy nodes, in this case AND with literal FALSE, in order to
correctly simulate the passage of the result tokens from the ree (these tokens would be discarded if the ree had no
output connections). The graph was simulated with ‘flattening’ on and off. With flattening on, DFSIM treats
duplicate trees as single replicate nodes with multiple outputs (the DL1 compiler is being modified to support
muitiple output nodes, as will be used in future node sets). The simulated result distribution unit steps through the
output list in a time proportional to the quene write time and token size (ch. 2},

- 61—

Ch. 5 Simulation Results and Analysis

Potential Concurrencies for
Duplicate Trees and Replicate nodes

Concurrency
30 = DUF Coenc,
25
20 o
15 4
10 4
5 ok REP Cong.
0 $ $ ¢ t } 4 {
0 20 40 50 g0 100 120 140

Number of Qutputs

FIGURE 5.1 Potential Concurrencies for duplicate trees and replicate nodes

Figure 5.1 stows the potential concurrencies for different tree sizes. Evaluation of the AND nodes is
included in this result. The concurrency rises linearly in the DUP tree case, as would be expected, since the nodes on
each level of the tree can potentially execute in parallel. However, for the REP node simulation, the concurrency
rolls off at a maximum approaching 4 which represents parallel activity in the destination processing elements. There
is 1o concurrency in the processing of the REP node itself.

Polential Execulion Time
for Duplicaie Tress and Replicate nodes

{p5ec)

150 1 - REP Time

140 +

1907 DUP Time

80 4+

4T

207

B r L " i I i g
T T T T ¥ 4 t

0 b=t e t5 20 23 390 35
Number of Outputs

FIGURE 5.2 Potential Execution Times for DUP Trees and REP nodes

Figure 5.2 shows potential execution times for these simulations. As expected, the time taken is logarithmic
for DUP trees and linear for REP nodes. The break even point is at about 15 outputs, but this figure is critically
dependent upon the times assumed for the various processing element activities involved and even the length of the
tokens used (in this case all tokens were untagged boocleans, 64 bits long). The effect is certainly present however,
and will play a large role in the selection of a maximum destination list size for nodes, if such a limit is imposed.
Alse, it would be useful in determining a reasonable size for any buffering that may be be required between the

o B2

Ch. 5 Simulation Results and Analysis

evaluation unit(s) and the resnlt distribution unit. Once a reliable figure for the break even point is established for a
particular machine, it can be used as the basis for compiler optimisation of the code planted for token distribution,
i.e., a DUP (ree (or even better, a REP free) can be used when the number of outputs exceeds the break even figure.

5.4 Influence of Node Set and Matching Functions

The effect of the special matching functions described in ch. 3 was studied by using compiler toggles to
contro} the code generation for several graphs, all of which deal with streams. By using stream graphs, the effect of
the advanced stream node set can be observed, while the results obtained for the extended node set have been found
10 apply to most graphs, whether or not streams are present. Three cases were considered: the basic node set (the
DL1 default, allowing monadic, diadic, storage and (now) first matching functions); the extended node set (allowing
the protect and prime functions, which allow cleaner, reentrant code, even in shared subgraphs); and the advanced
stream node set (allowing the special head, tail, stream and cons matching functions).

Three recursive stream graphs were considered: reverse, seria 1 sumand binary sum; listings are
given in appendix A. Some simple lazy and eager conditional expressions were also analysed to specifically show
the effects of combining the stream store (STS) node with gate nodes like pass_if true (PIT), efc.
(§4.3.8.4).

Table 5.1 lists the simulation results for these test graphs. The effects of the extended and advanced node
seis are quite pronounced, generally resulting in clearly improved performance in all areas. AH graphs were
simulated using a 128 element machine configuration, which results in a low machine utilisation (§5.7) and high
concurrencies, and gives a better picture of the execution charagteristics of the graph being simulated. Note the high
actual to potential yield in the table, being typically greater than 70%. If fewer elements were used, then achieved
concurrencies and execution times would be degraded and the element activity plots would be distorted by ‘backed
up’ activity due to high queue occupancy/latency.

Graph "reverse.il" (128 PEs)

Node Set Static Size Dynamic Size Concurrency
(nodes) {tokens) {nodes) {tokens) {potential} (actual}
basic 171 76 27783 37417 8.7 29.0 (74.9%)
extended 135 76 27544 35632 45.5 30.6 (67.3%)
advanced 67 50 10967 14009 24.9 187 (75.3%)
Node Set Execution Time (sec) Instructions/Sec Machine Utilisation.
{potential) (actual) (potential) (actual)
basic 0.032134 0042914 864598 647411 22.6%
extended 0.025726 0.038210 1070668 720858 23.9%
advanced 0.01973% 0.026211 555601 418412 14.6%
Graph "serial_sum.itl" {128 PEs)
Node Set Static Size Dynamic Size Concurrency
(nodes) {tokens) (nodes) (tokens) (potential} (actual)
basic 78 76 13581 18799 22.7 18.5 (81.5%)
exiended 56 76 11239 14338 22.9 17.8 (78.0%)
advanced 31 50 3624 5072 12.5 10.2 (81.8%)
Node Set Execution Time {(sec) Instructions/Sec Machine Utilisation
(potential) (actual) (potential) (actual)
hasic 0.026238 0.032178 517600 422053 14.5%
extended 0.020298 0.026031 553689 431748 13.9%
advanced 0.014314 0.017493 253172 207164 4.4%

— 63—

Ch. 8 Stmulation Results and Analysis

Graph "binary_sum.itl" (128 PEs)

Node Set Static Size Dynamic Size Concurrency
(nodes) (tokens) (nodes) {tokens) (potential} (acmal)
basic 231 76 56130 76912 61.6 43,6 (70.89%)
extended 165 76 46311 59793 60.6 40.1 (66.1%)
advanced 30 50 18346 25648 336 259 (77.0%)
switch/join 99 50 21023 28797 351 26.7 (76.1%)
Noade Set Execution Time (sec) Instructions/Sec Machine Utilisation
(potentialy (actual) (potential) (actual)
basic 0.041700 0.058932 1346059 952460 34.1%
extended 0.033659 0.050913 1375908 909619 31.3%
advanced 0.027376 0.035537 670161 516258 20.2%
swirchfjoin 0.028192 0.037079 745721 566983 20.8%
Graph "if_lazy,_ stream.itl” (128 PEs)
Node Set Static Size Dynamic Size Concurrency
(nodes) (tokens) (nodes) (tokens) {potential} (actnal)
basic 34 34 382 528 3.8 3.7 (97.8%)
extended 4 31 382 525 3.8 3.7 (97.8%)
advanced 15 31 155 228 2.6 2.6 (98.7%)
Nede Set Execution Time (sec) Instructions/Sec Machine Utilisation
(potential} {actual) {potential) (actual)
basic 0.002681 0.002742 142484 139314 25%
extended 0.002664 0.002725 143393 140183 2.9%
advanced (.001827 0.001851 670161 516258 2.0%
Graph "if_eager stream.itl” (128 PEs)
Node Set Static Size Dynamic Size Concurrency
(nodes) (tokens) (nodes) (tokens) (potential} (actual)
basic 25 32 298 402 7.9 6.7 {(85.7%)
extended 24 29 297 398 7.7 6.8 (88.6%)
advanced 10 29 127 172 14.6 51 (34.3%)
Node Set Execution Time (sec) Instructions/Sec Machine Utilisation
{potential) (actual) (potential) (actual)
basic 0.000970 0.001132 307216 263251 2.3%
extended 0.000991 0.001118 209697 265653 5.3%
advanced 0.000237 0.000686 535865 185131 3.9%

TABLE 5.1 Showing the effect of extended and advanced node sets on stream graphs

Figures 5.3, 5.4 and 5.5 show the simulated activity plots for the three larger stream graphs. Of particular
interest are the token and element activities (graphs 1 and 3) and the individual element activity picture. Graph 2
(System Time), shows how time is divided between machine tasks during the run and is discussed further in §5.8.

Ch. 5 Simulation Results and Analysis

MS and Total Tokens - Graph 1 - Graph Fie: reversa,ift frdividual Eleenent Activity - Graph File; reverse.id

" "B ", Sk
o “-“-’--m e g

e ' "‘-r.'_ .
-l !. [_?_ﬂ-;»: b : e . VTR
| — % s
“iiay. Lo R s enabis A
’
fh-l

160

145 B i R
o T -m-.
: o T %M%.\ 1

Hemant

120

Tekens

B0

ol

40 -

20 4 ¥

Toral
ME

@0 8.3 ¢6 0.9 1.2 .5 18 21 24

Time {Sees) x 10-2 Tine

Systern Tirms - Graph 2 - Graph File: reversa il Bement Acivity - Geaph 3 - Graph File: reverse.id

50
G0 -

36 .| Wriwe Q
40 -
T

eac O

80
Cumulagve Blemens 39 -
Percen .
t 50 - Active

48 -
@ 26 -

¥

20 l

Ko Wait

Tene (Secs) x 1042 Tane {Secs) x 1042

FIGURE 5.3 Activity plots for the stream reversal graph (advanced node set)

65—

Ch. 5 Simulation Results and Analysis

M3 and Teial Tokens - Graph |+ Graph File; serdal_sum it indhidual Element Acthvily - Graph Flle: serial_ sttt

]

AP g e
-....mw*:ﬁ*‘% AT
R e —

40 -

o T —
Toks B0 ﬂ '
wkens Blement '"""’"“m"rzwrcqf:':;iﬁ".'...mr..!“"-~
i ez e
\[\ M){ . Y m"u.{ ““" -

20 -

@ ol
LX) 9.2 04 :X3 5.8 .0 1.2 14 1.8

Time {Secs) x 1642 Thwe
Systam Time - Graph 2 - Graph File: serial _sumid Element Acsvity - Graph 3 - Graph File: serial_surm.id

100 -, vt

320 4
90 ~

MR O 28.0 o
80 -
4.0 -
70 - .
RS O
R
60 - 20.0 -
Cumuiative Eements
Percent | e WS Tims ActVE
16,0
J

49 -

12,8 -
30 4

8.0 -
20 o
10 < 40 -

o T 4 T T Y 3 T i K Walt 0.0
20 0.2 04 5] 0.8 1.0 1.2 ik 16 2.0

Time (Secél x 1Qh.2 Tima (Sees) x 1042

FIGURE 5.4 Activily plots for serial stream summation (advanced node set)

— 66—

Tokens
X 1083

60 -
Cumulatve

Pearcent

0.7 4

0.6 -

05

4

03 A

LN

00

Ch. § Simulation Results and Analysis

MS and Total Tokens - Graph 1 - Graph Fite; binary_sum.id

Pl

indiviczal Elament Activity « Graph File: binary_sum i$

VALl
. 2 e My

- s ',g‘{‘q:r“. fent i

TR 1_},_\ ARSI

i

Elesnent

-, ‘P‘\
- f
Hed

/ e
."rﬂi‘jl %
il

Total
MS

0.0

o0 -

&0 -

o

50 -

40

30 -

20 4

T T T T T T T T
A k] 12

Time (Secs) x 1042

Tune

System Time - Geaphr 2 - Graph Flg: binary_sum.ig Elernent Actvity - Graph 3 - Graph Fiie: binary_tom g

Ewval
50
Write O
40 -

ead O

Elements 30 -

S Tine Actve

20 -

K3 Wit o

Tarne (Secs) x 1042 Tima (Secs) x 1042

FIGURE 5.5 Activity plots for binary stream summation (advanced node set)

- 67 -

Ch. 5 Simulation Results and Analysis

The activity races for the three stream graphs, figures 5.3, 5.4 and 5.5, are for a single application of each
graph (using the advanced/siream node set) to a single input stream of 24 elements. They are all clean graphs which
finish with no tokens left in the matching unit/arc store, as indicated by the ‘MS and Total Tokens’ plots. All three
programs have recursive definitions which specify the solution as some operation on the head of the current stream
and a result returned by a recursive call(s) with the #ail of the current stream as input (binary sumisa ‘divide and
congquer’ algorithm which continually splits its input into two streams and adds the corresponding elements of these
sub-streams). A mivial result is returned (either scalar or stream) when the current input is the empty stream.

The individual element activity picture gives a lot of information on the precise execution of a graph ag it
distributes over the multiprocessor, The three stream graphs all show horizontal streaks due to the pipelinig effect of
the quened stream tokens. With reverse, the initial streaks reduce in length, while others can be seen increasing as
tokens are moved from the input stream to an output stream of eventually the same length (these effects are
concurrent because of the non-strict nature of stream consing). Serial sum is a simpler graph than reverse but
has similar horizontal streaks reducing in length as the input stream is absorbed until the recursion terminates.

Binary_sum has more nodes and generates more tokens at run time than reverse or serial sum Iis
activity is correspondingly denser and more distributed. The algorithm itself is not as simple or regular as reverse
or serial_sum, which also helps to randomise the computation. Again, horizontal sireaks can be detected in the
activity picture. Compared to reverse and serial sum,binary sum shows a larger increase in the number
of tokens generated than in potential or achieved concurrency, this is because a higher proportion of tokens are in the
matching store; activity/concurrency is more dependent on how many free tokens are generated.

Reverse and serial_ sum exhibit a diagonal pattern in their activity pictures because they use a
computed copy number subgraph call with a maximam occurrence of one. This increments the copy number at every
recursive call and the dynamic token addressing {(unravelling) causes the PE numbers to also increment by one
throughout the run. Imposed upon this pattern is the random static allocation used by the compiler at the top (and
thus every) level. Binaxry sum does not exhibit an obvious diagonal pattern because it has a maximum shared
subgraph occurrence of two, causing subgraph calls to scatter and wrap around the element range more quickly.

All three graphs have discernable “tails’ in their token and element activity plots (graphs 1 anid 3), which are
the return sequences at the end of the recursions. During periods of ‘stable’ graph activity, such as in these tails, the
change in the number of tokens over time is proportional to the integral of the element activity, since thig integral
represents the number of nodes fired. This effect can be observed over small intervals of most activity traces and is
clearly evident during the tail of serial sum. More often though, the effect is obscured when different graph
regions become blurred by their overlapped results.

Reverse ig written as a tail recursion without tail optimisation. Its tail performs no algorithmic
computation, but merely returns a final result (a siream) from the deepest context, cleaning the graph as it does so.
The tail overlaps with other computation, as the non-girict stream consing atlows the result stream to be returned as it
is created; it represents slightly less than 50% of the total execution time and exhibits high concurrency (at least
initially) due to the highly concurrent nature of stream processing. This high concurrency can be clearly seen in the
second half of the individual element activity picture for reverse.

Serial sumis not a true tail recursion, as it does its summation in the tail, but a low concurrency tail
region (with a concurrency between ! and 3) is clearly evident as the final result is computed and retumed. This tail
represents aboul 25% of the entire run and is a major source of inefficiency in this graph. Tt exhibits a linear fall off
in the number of tokens, nearly all of which are in the matching store. At the start of the tail, there are 72 tokens in
the machine, being 3 for every level of recursion (one for the return address, one for the as yet unused condition, and
one for the number to be added to the partial sum as it is returned). If this graph was rewritten as a tail recursion, the
summation would be done in parallel with the call sequence and tail optimisation would remove the tail section
altogether since the final result is then returned in one operation,

Binary sumis not tail recursive and like serial_sum does its summation during the refurn sequence.
1t exhibits relatively high concurrency throughout the rum and has a tail which falls away exponentially. As in the
duplicate versus replicate discussion, there will be a break even point at which the larger binary summation graph
becomes more ¢fficient than the simpler serial summation because it has a similar O(log n) vs O(n) execution time
advantage. In this particular case, binary_sum bas taken twice as long as serial_sum to process the same
stream.

68 -

Ch. § Simulation Results and Analysis

M35 and Total Tokens - Gigph 1 - Graph Fle: serial_basic. i Element Acivity - Graph 2 - Graph File: seriad_basic it
270 o
45.0 4
¥
240 4 J i
W' Total 40.0
i3
210 W |
5.0 4
186 ifv
30.6 -
Elements
Tokens of .
= 150 Actve oe g |
1204 200
s0 4 Ah/ 15,0
80 0.0 -
30 540
! ox
0 T : ‘ . T oo ; ‘ - r y ‘ Hin
Qg 0.4 0.8 2 1.6 2.0 24 28 az 290 0.4 e 1.2 16 2.0 24 2.8 32
Time {Secs) x 1042 Time (Secs) x 1042
M3 and Total Tokens - Graph 1 - Grophs Fiie: seriad_w.it Element Activity - Graph 2 - Graph Fife: serial_w.it

2()0-i

180 4 fm
o \f*‘f
) |

45.0

48.0

N
\/v\ﬂ/m i -
o] / S

46 o 10.0
204 30
& T T T 3 T T T v.0
00 02 [=2-] 0.8 12 15 1.8 2.1 2.4 0.c
Tine {Sacs) x 108.2 Time {Secs} x 1042

FIGURE 5.6 Token and element activities for seriai stream sum (basic and extended)

To further illustrate the difference between the node sets, figure 5.6 shows the token and element activities
for serial sum using the basic and extended node sets, The most obvious difference is the non-clean nature of
the simulations, with 216 and 72 tokens remaining in the matching store respectively. Also, more tokens are
generated than for the advanced node set (table 5.1), with a higher proportion in the matching store {similar to the
binary_sumsimulation).

5.4.1 Effect on Graph Size

reverse sertal_sum binary_sum if_lazy if_eager
extended 21% 28% 29% 0% 4%
advanced 61% 56% 61% 56% 80%
switch/join — — 57% — —_

TABLE 5.2 Static graph size reduction due to node set

s

Ch. 5 Simulation Results and Analysis

Table 5.2 shows the reduction in graph size due fo the use of the extended and advanced node sets for the
stream test graphs. The reductions with the extended node set are due w0 the different expansions of shared
conditional expressions where reentrant code is used (all examples used here are statically reentrant so that token
gueues can be pipelined safely through them; this can not generally be done in other dataflow architectures unless
additional tagging code is used to separate contexts). The smaller extended code templates of §4.3.4.4 clearly show
how these reductions arise. Also, the difference in size of the st ream-store (5TS) expansion between basic
and extended node sets (§4.3.8.4) is significant in the static graph size reduction (many copies of S7'3 arc planted).

The figures for the advanced/stream node set are consistent for most stream graphs observed to date and
represent a significant saving (~55-60%). They include the extended node set savings, as well as the extra savings
brought about by use of the special stream matching functions. The code templates for the expansion of all stream
functions were presented in §4.3.8.4. It is expected that enhancements of this nature, which lead to smaller and
simpler machine graphs, will improve the speed of compilation and machine loading, and aid in the design of graph
optimisation routines, although limited study has been done in these areas 1o dale.

The switch/join solution for the binary summation, which uses the advanced node set and a more optimised,
though complicated program structure, shows no obvious performance improvement over the original solution. This
will not be true in general however, since the straight forward conditional expression, as used in all these graphs,
lacks a significant optimisation when the same arc appears as an input more than once, i.e., such an arc need only be
gaied once, but presently the conditional code template will gate it each time it appears. Optimisations such as this
are currently being added to the compiler.

TEVErse serial_sum binary_sum if_tazy if_eager
extended 1% 17% 17% 0% 0%
advanced 61% 73% 87% 59% 57%
switch/join — — 63% S —

TABLE 5.3 Reduction in nodes executed due to node set

TeVETsSe serial_sum binary_sum if_lazy if_eager
extended 5% 24% 22% 1% 1%
advanced 63% 73% 67% 59% 57%
switch/join e —— 63%— —_

TABLE 5.4 Reduction in tckens used due to node set

Tables 5.3 and 5.4 show the results for changes in dynamic graph size, i.e., the number of nodes executed
and the number of tokens used, due to different node sets. These resuits show generally similar trends to the static
graph size figures, although they are more variable. In fact, the extended node set has not led io quite the same
improvement as in the static graph size analysis. This is because ceriain nodes in the extended node set, in particular,
ones that use the prime and protect matching functions, have more than one firing condition. This shows up in the
number of nodes fired, but not in the static size of the graph. A similar phenomenon is observed with the advanced
node sct figures becaunse of the nature of the special stream matching functions. Other factors which may lead to a
difference between static and dynamic figures are code sharing, unravelling, and reentrancy due to looping or
pipelining,

—70 -

Ch. 5 Simuiation Results and Analysis

5.4.2 Effect on Concurrency

Average Conhcurrencies

(= pEg’ for basic, extended and advanced node sets

{aiso switch/join version for bingry.sum}
TO -p

b e

raverse seria} binary

B3 potential actual

FIGURE 5.7 Changes in concurrencies (potential and actual) due to node set

Figure 5.7 shows the concurrency figures of table 5.1 graphically, while table 5.5 shows the percentage
change in potential concurrencies with different node sets. For each of the three graphs there is little difference in
potential concurrencies between basic and extended node sets, but both are reduced sharply by the advanced node
set. This is 10 be expected because of the nature of the code templates used in stream graphs. For example, with the
extended node set, fewer nodes are generated, but in a ‘wider’ distribution. This has the effect of reducing graph
execution time, even though the over all actual and potential concurrencies may not alter significantly.

With the advanced node set, including the switch/join solution, the potential concuarrency is decreased (table
5.5). This is mainly due to the number of nodes executed being greatly reduced (tabte 5.3). Clearly, care must be
taken to ensure that reduced concurrency does not cancel the benefits of fewer nodes, i.e., we should always seek to
reduce the critical path length. In this case, the loss of concurrency is less than the reduction in nodes fired, which
has lead to reduced graph execution time (§5.4.3).

reverse serial_som binary_sum if_lazy if_eager
extended -18% -1% 2% 0% 3%
advanced 36% 45% 45% 32% -85%
switch/join — e 439 — —

TABLE 5.5 Potential concurrency reduction due fo node set
5.4.3 Effect on Execution Times

In the final analysis, it is execution time that must be considered as the critical performance factor. Table
5.6 shows how the simulated potential execution times vary with the node set used.

The improvements are not as great as in the number of nodes executed (table 5.3), since the concurrency is
lower and the advanced stream nodes have greater execution times than the ones they replace. Never the less, the
gains for the advanced node set are substantial (~35-45%), showing that a tailored node set can more than make up
for any loss of concurrency inherent in its use.

~T1 -

Ch. 5 Simulation Results and Analysis

reverse serial_sum binary_sum if lazy if_eager
extended 20% 23% 19% 1% 2%
advanced 40% 45% 34% 329% T6%
switch/join - o 32% — e

TABLE 5.6 Potential execution time reduction due io node set

Simuiated Execulion Times

for basic, extended and advenced noda seis
(aiso switch/join version for binary}

0.06 =

.05 o

.04 o

0.03 ~

Q.02 -

0.01 =

R
reverse serial Dinarg

EA potential actual

FIGURE 5.8 Changes in potential and actual execution times with node set

Figure 5.8 shows the execution time results graphically, There is little variation in the ratio of potential to
actual execuiion times for these graphs, regardless of node set. In fact, this ratio depends greatly on graph allocation
and machine utilisation. In this case, the machine utilisation is consistently low, due to the simulaiion using 128
processing elements, so that the potential to actual execution time ratio is rather high. A similar effect is seen in the
concurrency graph of figure 5.7.

5.5 Unravelling

A modified trapezoidal integration program was used to study the effect of graph uravelling and related
factors o run ume performance. Several versions of the graph were used in order to analyse specific effects,
sefected listings are included in appendix A. Note that in most test graphs, output is done by directing tokens 1o a
predefined console node (at address (1,-32,0), i.e. element 1, system node 32, input (). This method has generally
been preferred to the DL write statement since that statement would resulf in a resource sharer being planted which
would tend to dominate graph size and obscure the effects under investigation.

Figure 5.9 shows the results of simulating the trapezoidal integration with dynamic machine addressing
disabled (§4.3.7). This forces each instance of the recursive shared subgraph to execute in a randomly determined
processing element distribution (the distribution being determined by the compiler). Graphs like this, which have
fewer nodes than there are elements in the machine (&1 vs 128 in this case), clearly rely on some form of dynamic
distribution to increase their machine utilisation figure, although this requires extra copies of the graph to be sent to
any processing elements which may be addressed at run time. The machine utilisation (MU) figure of 14.8% is
correspondingly low in this simulation. As with the stream graphs of §5.4, the efficiency of this graph is limited by a
rather low concurrency tail during the return sequence of the recursion.

s

Tokens
¥ 10°3

50 -
Curmifatve

Percent

S and Totat Tokens - Graph 1 - Graph File: v_no_hash.id

4.0 o

35

30 -

05

0.0

Ch. 5 Simulation Results and Analysis

tnaiividual Element Activity - Graph File: v_no_hash it

Element

T
8.0 o1 0.2 0.3

¢4 G5 08

Time (Secs) x 1041

System Time - Graph 2 - Graph File; ¥_no_hash.if

90 -

BO -

70 4

50

490 -

30

20 -J

e7

o0 [N 0.2 ¢.3

o5 08

Time (Secs) £ 1071

Static size
Dynamic size
Processing elements
Execution time {sec)
Concurrency
Instructions/Sec
Machine Utilisation

{nodes/tokens)
{nodesftokens)

(pot/act)
(pot/act)
(pot/act)

o7

Total
MS

Fvat

Mrite G

ead O
Elements
Active

S Tirrie

G Wait

81

30411

128
0.005931 .

240.2

5127293

14.8%

T WA

it bt e U Wl "5 WAL W P
e

S O e et I e e
§L A I TR L N T ——

[EPENE S NI E T WAL W

S AR TR TP Y G e sk ki,

P Y T TTE R T e T TR e e

PRt ol L A PP e

i

Time

Elemaent Actvity - Graph 3 - Graph File: ¥_no_hashid

4
Mﬁ}&ﬁ

o

4
40377

0.075085
19.0
405020

FIGURE 5.9 Simulation of tr_no_hash.it!

~73 -

Y T T
22 04 o5 8

Time (Secs) x 1041

(7.9%)

Ch. 5 Simulation Results and Analysis

MS and Totai Tokens - Graph | - Graph File: ¢ _1siementit Individual Element Activity - Geaph File: Q;_ie!eme"&iﬁ
45 -
50
35 A

3.0 -

Tt r
x:l::; 25 - p Element
1
2.0 o
1.5 4
10 o
05
00 et N e Tow .
2.0 03 0.6 0.9 1.2 1.3 1.8 2.1 24 7
Time (Secs) x 1042 Time
Systern Time - Graph 2 - Graph File: r_telementid Eierent Activity - Geaph 3 - Grapht fle: b_telementid
100 ~ Eval
120 -
8% -
30 Write Q
106G -
T
&0 - ad O BO
Cumutatve Elements
Parcent 10 Active
60
S Time
40 -
30 < 40 ~
20 4
20 4
10 -
o — S —— 0 L—"—/\JL .
a0 13 G6 0.9 .7 15 1.3 2.3 24 2y o8 03 (X 019 !IZ 1 ‘5 1“5 241 2‘6 2‘7
Time {Secs) x {642 Time {Secs) x 16+2
Static size (nodes/tokens) 81 4
Dynamic size (nodes/tokens) 30411 40377
Processing elements 128
Execution time (sec) {potfact) 0.005931 0.027776
Concurrency {(potfacy) 2393 51.1 (214%)
Instructions/Sec (pot/act) 5127293 1094874
Machine Utilisation 39.9%

FIGURE 5.10 Simulation of 'tr_1element.it

Figure 5.10 shows the effect of dynamic unravelling on this graph, this time with the random static PE
distribution disabled by compiling the entire graph into one element. This makes the activity picture resemble a
series of horizontal steaks spreading out over the PE range (each streak heing one instantiation of the graph
confined to a single processing element). The graph shows the ‘tree like’ effect of the compuied copy number
mechanism in generating tags or colours. The graph gradually expands its process space until it floods the entire
machine; any extra activity {which can be virtually unbounded in a graph of this nature) merely generates higher
queue occupancy while node evaluation caiches up with the token traffic. The bands at the top and bottom of each
processor group in the activity picture ‘waves' are due to the exclusive-or used in the hashing algorithm for
converting tags/static PE numbers into run time PE numbers (§4.3.7).

The graph generates exponentially increasing activity as it descends the doubly recursive call sequence. Iis
return sequence falls away exponentially but at a much faster rate since less compuatation is performed here. Each

—74 -

Ch. 5 Simulation Resulits and Analysis

‘streak’ exhibits 100% activity until a recursive call is made because destination nodes are in the same element, The
usual case however, is that the compiler generates a random distribution for each call, this achieves a faster
execution time and a greater machine utilisation due to higher concurrency within each instantiation.

The figures for average actual corcurrency (51.1) and machine utilisation (39.9%) are superior to those for
the ‘no hashing’ case (19.0 and 14.8%), showing that for graphs of this nature, dynamic distribution {unravelling)
between mstantiations is more important than static distribution within instantiations. Note that the figures of 51.1
and 39.9% give a poor estimate of the true nature of this graph, since the machine was virtally 100% active for a
targe proportion of the time. It is common practice among dataflow researchers to use average figures like these, but
they are really only a rough guide to true graph performance and should be used in conjunction with activity plots
like those presented here where possibie,

MS and Yotai Tokens - Graph 1 - Graph File: 1_deuble i Individual Element Activity - Graph File: x_doubleif

32
28
24

Tokens
x 1083 2.0 Eloment

0.8 o

\

00 Total
05 0.2 94 0B (X3 10 12 14 16

Tima {(Secs) x 1052

System Tine - Geaph 2 - Graph Fie: ¥_double. il

Element Activity - Graph 3~ Graph File: ¥_doutie if

] i T
| 120 v, i
” e T
39 -} Wirite O . : JL f"/ V\’#i
10 - ﬁ" (“
i
59 - ead Q BO - ’
Cumulaive Slemens 1
Percent 50 Active i
S Time #01
40 -
3G ~ 40
20 w0 d
10 I
o ‘ . : - - ‘ O Wit o M i . i M@f
[+K+] 0.z 0.4 [=X-) 0.8 1.0 1z 14 i8 oo 02 4.4 8.5 0:3 1.0 112 t‘d ![6
T’w.ne {Secs) x o002 Thae (Secs} x 1042
Static size (nodes/tokens) 81 4
Bynamic gize (nodes/tokens) 30411 40377
Processing elements 128
Execution time (sec) (pot/fact) 0.005931 0.016950
Concurrency (potfact) 243.5 852 (35.0%)
Instructions/Sec {pot/act) 5127293 1794138
Machine Utilisation 66.6%

FIGURE 5.11 Simulation of tr_double.it?, the unrestricted doubly recursive trapezoidal integration

— 75—

Ch. 5 Simulation Results and Analysis

In figure 5.11, the no hashing and one element restrictions are removed and the graph spreads out more
randomly, evenly and quickly over the machine. The number of nodes fired, tokens used and the final result are all
identical, but tr_double has a higher actual concurrency (85 2} and machine utilisation (66.6%}. The “bursty’
activity of tr_lelement has been smoothed out greatly in the unrestricted graph, although call and return
sequences are Still clear in the simulation.

MS and Total Tokens - Graph 1 - Graph File: t_single it Individyal Element Actviyy - Graph Fila: r_single.id

4G0 -

B O

L
R
el ”’ \ a‘\ S

350

360 |

250 -

Taokens Eternent

200

150 4

100 4

30 -

Total
0 T T T T T T T v TS
00 01 02 03 94 03 o8 07 08 09

Tima {Secs) x 1041

System Tima - Graph 2 - Graph File: ¥_single.d Element Actvity - Graph 3 - Graph File: ¥_sirglet

100 - Eval
90
80 4 Wite O
T
60] ead O 80
el T e
6.0
A0 S Time
36 - 40 4) stised . Foafd
et
20
20 -
a r - . r K3 Wait o0 , : . . y r : . " in
5.0 L8] 0.2 23 44 05 0.6 a7 a8 0.8 6.9 LA 13-4 0.3 o4 a5 0.6 0.7 .8 0.5
Tirne {Sees) x 104-1 Time (Secs) x 10%-1
Static size (nodes/tokens) 62 3
Dynamic size {nodes/tokens) 10835 14247
Processing elements 128
Execution time (sec) {pot/act) 0.091999 0.096138
Concurrency {potfact) 5.5 53 {(95.7%)
Instructions/Sec {pot/fact) 117773 112705
Machine Utilisation 4.1%

FIGURE 5,12 Simulation of 'tr_single.it!, a singiy recursive trapezoidal integration

Simulation of a singly recursive version of the trapezoidal integration using the same function, end poinis
and dx interval, is shown in figure 5.12. The graph is tail recursive and sums its result in the call sequence. The call
and return sequences are clearly visible in the execution profiles. Although many fewer nodes are executed (10835
vs 30411), the graph is still slower than the doubly recursive solution (0.09 vs 0.016 actual execution times) due to
the much lower actual concurrency (5.3 vs 85.2).

— 76

Ch. 5 Simulation Results and Analysis

The difference between these two solutions is even more obvious when one considers the potential
concurrencies of 5.5 for the singly recursive solution, and 243.5 for the doubly recursive solution. The latter figure
ensures that tr_double would execute even faster if more than 128 processing elements were available, whereas
little speed up would be observed above 5 elements in the case of tr_single. The divide and conquer algorithm,
with its O(log n) execution time is clearly superior to the singly recursive solution with an (n) characteristic, at
least for this many integration intervals (200). To improve the poor potential concurrency of graphs like
tr_single involves minimising the inefficiencies of shared subgraph calls and tagging overheads, this will be of
prime concern in the next generation machine design.

MS and Total Tokens - Graph ¥ - Graph File: fv.id frdiividual Element Activity « Graph File: i1

i

A R e Y LS AT B S I B, g

I A R P R M N T RO

el e 0 Bl 8L e N A B D e el 27

il

i

A e e R e et B Ml i v T A i e

R o

Tokens E!emem I“'ulm".‘i.'iﬂ.'..v\.'y"..ka.'.‘!M."-!-'th"u{.’i-“?!r‘lﬂ»'»m‘l“.‘.ﬂ.ﬁ.’m.'Iy'b".'vh"'..l&“,‘!.mﬂf-,‘\d?»mﬂ.‘h'“‘.?
SRR RN R N PNy T R Y Ry A RN R X AT d R e aR ar]
“E'r‘ﬁ‘!‘!'i‘H'l‘l'HY"T!l‘l'?’ﬁ‘!'!"l'ii’l’i'i‘l‘h'i LEL G R L LT L B N L L P ST
ild’idd'ﬂkit&ilﬂ’ﬁA"iﬁll-“l‘ﬂ‘d“‘if-‘i‘ﬁl#u‘lll‘iﬁil‘lil‘n'nﬂt‘i‘ll{td!»&é&i’f
. [..................
00 < U =
00 03 4.6 0g 1.2 1.5 1.8 2l 24 27
Time {Secs) x 1042 Tine
System Time - Greph 2 Graph Fileiv it Element Activity - Graph 3 - Graph Fie; irig
Eval
Wiite O ST g ey
Cumutatve ¢ 2 I%%MW ; ! 1k g
VI amants i Hf
Percent Active 50 m¥ A : LEy
AR el i A R b i A L e 1
ai!\jll. iiﬂ?l[\I\[I '[EH | L?ilﬁllul i iiimi i}»n{lil LI\TL.ifE I al Jf Haig
ead O
LR
8 Tierw
e M T 24 L“""
e }Owait 0.0 v T T T T El T T El Mir‘
[cX1] 4.3 4.8 0.9 i.2 1.5 18 21 24 2.7
Time (Sees} x 1042 Time (Secs) x 1042
Static size {nodes/tokens) 32 4
Dynamic size {nodes/tokens) 6432 8442
Processing elements 128
Execution time (sec) (por/act) 0.025611 0.027423
Concurrency (potfact) 7.6 7.1 (93.4%)
Instructions/Sec (pot/act) 251138 234544
Machine Utilisation 5.5%

FIGURE 5.13 Simulation of ‘itr.it!, an iterative trapezoidal integraticn

Figure 5.13 shows the simulation of 1tr.itl, a tagless, iterative version of the trapezoidal integration.
Like tr no_hash, itz does not unravel because no tagging is done, the matching store overhead (MSTime,
graph 2} is correspondingly lower than in the previous cases. It r has a low machine utilisation {3.5%), but executes

77

Ch. 5 Simulation Results and Analysis

far fewer nodes, with the result that the actual execution time is faster than tr_single (a 71% improvement) but
stll greater (by 62%) than tr double. Again, there is a irade off between a simple, fairly efficient O{n) graph
{itr.itcl)and a higher overhead O(log n) graph (tr_double.it1}. There will be a break even point above
which the ‘divide and conguer’ recursive solution is faster, but simpler iterative solutions must not be ruled out for
certain problems, afthough this is ofien impossible to resolve at compile time. Clearly, the cost of token tagging must
be weighed heavily against the efficiency of the final graph. In this study, tr single has achieved little speed up
duve io unravelling, the pipelining effect being far more important, We suspect that this could be true for a large
proportion of iterative/singly tail recursive graphs [2, 31

As a further example, consider the results of simulating the shared FFT graph of §5.6 with and without
unravelling, table 5.7 and figure 5.14. The actual execution time for s££th . it 1 (which is not unravelled) is more
than double that of s££t . it 1 (which is unravelled). Achieved concurrency, execution rate and machine utilisation
are all more than halved in s££¢h . it 1. This suggests that the benefits of unravelling are applicable (o a wider
range of graphs than just the recursive ones seen so far. In fact, anywhere that tagging is used to achieve code
sharing, or any other form of reentrancy, should benefit from unravelling. This result is discussed further in §5.9.3,
where it is shown that any sequence of queued tokens can be uniquely tagged in an attempt to generate more
CONCUITency.

%.6 Overheads of Tagging

In this section, the overheads involved with tagging are examined in more detail, by considering several
versions of a 16 point complex Fast Fourier Transform graph.

Graph Static Size Dynamic Size Concurrency
(nodes) {tokens) (nodes) (tokens) {potential} (actual)
ffr.tl 1760 144 1648 2416 41.2 33,3 (B0.8%)
sfft.itl 706 128 3776 3056 76.7 498 (64.9%)
sffth.itl 706 128 3776 5056 71.3 21.9 (28.3%)
Graph Execution Time (sec) Instructions/Sec Machine Utilisation
(potential) {actual) {potential} (actual)
et 0.001434 0.001774 1149634 929236 26.0%
sfft.ith 0.002474 0.003809 1526582 901466 38.9%
stfth.itl 0.002450 0.008660 1541539 436033 17.1%

TABLE 5.7 Summary of the FFT simulations

Table 5.7 summarises the three FFT simulations, while figure 5.14 shows the token and element activity
plots obtained. There are actually two complete data sets being piped through the graph in these simulations, so that
two instantiations of the graph are running together. This randomises and increases activity to a more appropriate
level for this study.

The first graph, ££¢ .1t 1, is a straight forward ‘flat’ FIFT with no shared code at all, existing entirely on
the optimised zero copy number/tag level. S££t. 1t 1 is the same program but with all subgraphs defined as shared
subgraphs. In the FFT program (appendix A}, a basic FFFT “butterfly’ operation is called both directly and indirectly
a total of 32 times. By making all subgraphs shared, there is only one actual copy of the butterfly, so it is vital that
the 32 instances be unravelled dynamically (in the unshared version, this is effectively done at compile time by
randomly disiributing 32 in line copies of this subgraph). The effect of inhibiting dynamic unravelling is shown by
the simulations of sf£th. it 1, where the hashing of destination element addresses is disabled {see also §5.5).

~78

Takens

Takens

Tokens

120 -

k]

1S “"\W/W“\wf’* V-

100 -
B0
60
40
20

Ch. 5 Simulation Resuits and Analysis

M8 and Total Tokens - Graph 1 - Graph Fils: fi Element Activity - Graph 2 - Graph Fie: Huig

50 -

\'Max
Totai Yo
T T 7 MS [. Min

-3

450

400 -

350 ~

300

250 4

200

150

50

i f
40
l\ Eements
! Artvs b

30 *T‘
20 -~

1

Y

O“E 0.‘4 a.is o8 I.‘EI

& 1.2 14 1.5 a0 0.2 04 .6 08 1.0 1.2 14 15

Time {Sees) x 1643 Time (Secsy x 1023

MS and Teotal Tekens - Graph 1 - Graph File: stitid Element Activity - Graph 2 - Graph File: stivid

Elements
Astive

T

i3
Plin

450
400 -
350 ~
300
259
200 -
\

160

50 ~

T 3

15 20 24 28 32 315

Time (Secs) x 10%3 Tine (Secs) x 1043

M35 and Total Tokens - Graph 1 - Geaph Fie: siithitl Elament Activity - Graph 2 - Graph File: skth.i¢

50 -

50 -

Elements
Active

0

20 4

J Max
[+

D

fin

T T T T Y T ¥
Qo 0.1 22 0.3 o4 05 0.8 .7

Time (Secs) x 1042 Time {Secs) x 1042

FIGURE 5.14 Simulations of the Fast Fourier Transform graphs

~T79 -

Ch. 5 Simulation Results and Analysis

Note that ££t execntes fewer nodes than there are in the graph itself because the compiler generates
multiple copies of priming iokens that are directed at duplicate trees, the duplicate trees are then bypassed by these
tokens. F £t executes about twice as fast as s££¢, while s££+th is twice as slow as sf£t. The shared versions both
execute 3776 nodes (using 5056 tokens) compared to 1648 nodes (using 2416 tokens) for the unshared graph, these
extra nodes and tokens (a 56% increase) are all involved in the shared subgraph call and return code. The static size
of s££t is much smaller than ££t because of the code sharing, but this has little or no influence on the actual
number of nodes executed in this case.

The overheads of tagging are not just due to extra nodes being required 10 manipulate the tags, but also
show up in the average token size used in the graph (tagged tokens are 32 biis longer then untagged tokens, although
this may change in futare implementations). In ££¢, all tokens are 5 words long (uatagged, 32 bit reals), while the
total traffic sent through the machine is 12080 words. For s££t, 2.5% of ail tokens are 5 words long (untagged
priming tokens), 87.3% are 7 words long (tagged, 32 bit reals), and the remaining 10.1% are 9 words long (tagged
64 bit environment tokens, used for shared subgraph argument returns). Of course, there is also a matching store
overhead incurred by tagged matches (§2.9), which further degrades the performance of s££t. For £ £t, matching
unit operations took 26.0% of the total time, whereas this {igure rises to 40.5% for s££t.

, Not all of these overheads are present in other architectures. For example, the Manchester dataflow machine
uses fixed size tokens which always carry a tag field. Also, the Manchester matching store is not optimised in any
way; it always performs a pseudo associative access based on node number and colour, which has been shown 1o be
2 limiting factor in the performance of that machine [291. The figures presented here suggest that the shared
subgraph call and return mechanisms used at RMIT to date, require careful attention in order to optimise them, A
similar argument applies to dynamic loop translations (§4.3.6.2), since the same tagging mechanism is also used
there.

5.7 Machine Utilisation

Machine utilisation was studied by varying the number of processing elements as well as the concurrency in
the simulation of the graph newt x.it 1. Thisis a version of the trapezoidal integration which had the number of x-
axis injervals varied in order 10 control its potential concurrency. Figure 5,15 shows the machine utilisation curves
obtained,

Machine Utitisation Curves for <newlrs

100 -

20 \ i P 0 778
gr e P e 475
BY -
| w276
70
Average
Machine
Utiisation 9] TPl = 156
(%)
50
|« 8B
40 -
1
|
I 304 1= 50
|
©20 | =28
10 T ¥ T T T T
o 20 40 80 - 80 100 120

Nurrber of Blements

FIGURE 5,15 Machine utilisaticr vs number of PEs and potential concurrency (P1)

— 80—

Ch. 5 Simulation Results and Analysis

Results from these simulations have been used to compute an excess concurrency ratio required to give
machine utilisations of 80% and $0% (for this graph) :-

Average Machine Utilisation 80% 90%
Excess Concurrency Ratio 3.0(6=.3) 6.7(c=.5)

where the Excess Concurrency Ratio = Potential Concurrency -+ Number of PEs

The excess concurrency ratio is a useful figore of merit for a dataflow architecture, since it shows how
much of the concurrency in a graph is absorbed by intra-processing element and intra-network activity, i.e., extra
concurrency is required to keep these pipelines full, Actual concurrency is also degraded by time delays, such as
tokens waiting longer than necessary in matching stores, or delays in network throughput,

The figures obtained can be accounted for by the length of the PE pipeline (three stages, being Input Queue,
Processor, and Output Queue) which absorbs some graph concurrency (DFSIM does not model the communications
network pipeline, but does account for delays due to destination clashes). The difference between PE pipeline stage
times, with processing time dominating in these simulations, will expand the apparent size of this pipeline, so that an
excess concurrency ratio greater than three would be expected for a high machine utilisation. Also, as the potental
concurrency figure is an average over the entire run, then for a graph with any kind of variation over time (i.e., most
graphs), a still higher excess concurrency ratic would be required. Finally, machine utilisation can never equal one
tor a graph which has a minimum activity less than Number of PEs X Pipeline Stages atany time in its
CXeCcution,

5.8 Distribution of Machine Activity

This section shows how the various modules of the simulated machine distribute the run time work load
under the simulation conditions described in §2.9.

Percentage of Active Time

IQ Read 190 (c=14)
OQ Write 190(c=14)
Matching Unit 377 (6=9.8)
Node Evaluation 236(6=72)
Network Wait 06(c=02)

TABLE 5.8 The distribution of machine activity

Table 5.8 shows aggregate results from all the test graphs used in this chapter. Matching unit operations
accounted for between 26% and 50% of total machine activity in all runs, while node evaluation accounted for
between 16% and 32%. In graphs with a high proportion of tagged tokens, the matching store activity was also high
(>40%); it was the number of tagged matches that affected this figure the most. Other factors, like the proportion of
two input nodes exccuted (usually between 30 and 30%), had less influence,

Node execution was most expensive in graphs with a high proportion of floating point operations, e.g., 32%
in the unshared FFT graphs, which also had the lowest matching overhead (26%) due to a total lack of tagged tokens
and despite executing a relatively high proportion of two input nodes (46%). The other results were more consistent,
e.g., network wait (the time lost due to destination clashes in the communications network) was always very tow and
directly proportional to the amount of traffic in the machine, No attempt was made to simulate the effects of
localising graph segments, so that there was a consistent 127/128 probability that result tokens would be destined for
external elements. This also shows up in the ‘Locality of tokens’ graph (see figure 2.10). Input queue read
and output queue write times were always roughly equal, which is consistent with the functional natore of the
dataflow machine graphs used. In cases where there are many more priming tokens than final results, these figures
could be expected to differ somewhat, although this effect is usually swamped by the number of tokens generated
internally.

w81 —

Ch. 5 Simulation Results and Analysis

5.9 Other Effects

5.9.1 Effect of Sequential Code Segments

MS and Totl Tokens - Graph 1 - Graph File: gre i Indivickial Element Activity - Graph Fife: g6.id
4.0 4
35
39 \
Tokens e ‘.\\
x 1043 \ Element
20 -
\/ |
7.0 4
A5
20 . \ 1 ; N
(4] LA 8.2 03 (X3 05
Time (Secs) x 1041 Tine
System Time - Graph 2 - Graph File: q6.id Eement Activity - Grapti 3 - Graph File: aré J§
|GO~[Evat
120
30 - w Ly
104 -4
|
- flead O 80
Cumdaive Elements
Pereent g - Active
MS Time §0 o
4G
36 - 40
A6
20 -4
10—
o owa . S N B S
9.0 0.‘1 G.IZ 0,’3 0}4 Q.‘ﬁ o0 D.‘% 0.‘2 0:3 Djd 0:5
Time (Sect} x 1641 Tine (Secs) % 1041
Static size {nodes/tokens) 864 74
Dynamic size {nodes/tokens) 78834 105244
Processing elements 128
Execution time (sec) {potfact) 0.031188 0.059744
Concwrency {potfact) 114.1 596 (52.2%)
Instructions/Sec {(pot/act) 2527735 1319532
Machine Utilisation 46.5

FIGURE 5.16 Simulation of 'qré’, a recursive solution to the & queens problem

In figure 5.16, the solution to the six gqueens problem is seen to generate large concurrency, but the
execution time is dragged out by a factor of two due to the very slow, sequential resource sharer which sends resolis
to the output stream. This must be done sequentially to prevent solutions from overwriting each other (the speed of
the output device is not the limiting factor in this example, rather, it is the overhead of the calls to the resource
sharer). In fact, there are only four solutions to this problem, but the eight queens case has 192 solutions and the
output bottie-neck becomes a severe problem (as does any other largely sequential graph segment). Naturaily, any
traditional solution suffers the same difficulty in writing the results to an output file, but at the same time, a

—82_

Ch. 5 Simulation Resuits and Anaiysis

uniprocessor could take 120 times as long to compute the solutions (the graph sustains an average potential
concurrency of ~120 during the recursion phase).

One approach that has been taken to sequential output is to output data with @gs intact and do any sorting
outside the machine. This relieves the machine of the burden of sorting tagged data and aliows the data to be output
as it is generated, but will not lead to greater concurrency/speed of output operations if the output device is the
fimiting factor. For example, the languages LAPSE and P35, on the prototype Manchester dataflow machine, perform
sequential output by usmg the index field of the tag to hold the current sequence number for the output stream.
Tokens destined for a given output stream have their index fields set to the current stream position by accessing a
counter token; {urther serialising code exists between different write statements. Similar details apply to input
operations, where tags on input tokens must be preset to appropriate (incrementing/unique) values.

5.9.2 Operations on Open Sequences
MS and Tatal Tokens - Graph 1 - Graph File: £id ’ Element Activity - Graph 2 - Graph Fife: §id
45.0

"

}f AR
!
i

]
Blemants
ALtive

Takens

200 <

15.0 ~r

10.0 4

50 A

0.0

0.0 0z Q4 L+ X3 0.8 1.6 12
Tirme (Secs} x 1042 Time (Secs) x 1042
Static size (nodes/tokens) 24 44
Dynamic size {nodes/tokens) 2421 3157
Processing elements 128
Execution time (sec) {pot/act) 0.008659 0.013763
Concurrency {potfact) 7.9 50 (62.9%)
Instructions/Sec {pot/act) 279584 173905
Machine Utilisation 3.9

FIGURE 5.17 Simulation of fi.itl", a digital filter using sequences and queueing

The simulation of the digital filter £1 .1¢1, figure 5.17, (listing in appendix A), shows how a very smlple
and efficient solution can be found to handling data sequences, such as encountered in signal processing
applications, on the hybrid architecture. Although relatively low concurrency is present in this simple example, a
typical signal processing graph would contain many such modules, thus ensuring a more even computation spread
and higher concurrency and machine utilisation. The regularity of the graph and its inherently sequential algorithm
make it well suited to pipelined execution (for real time or sequential data processing at least). One reason for this
this is the high proportion of data to control tokens. In this case, 90.5% of all tokens (2857) were 32 bit reals, with
only 9.5% (300) being used for control purposes.

An unravelled, tagged token approach would not improve the performance of this graph, indeed the extra
overheads involved would degrade the performance, as shown by the shared FFT graph of §5.6. In general though,
data dependencies may not be present at all between the elements of a queue and it should therefore be possible to
process those elements concurrently. The next section outlines an approach that uses tagging to achieve this effect.
5.9.3 Unravelling of Queues

It is recognised that many dynamic dataflow implementations (e.g., the Manchester and MIT tagged token
systems) have rejected the use of queueing in favour of tagging for reasons of hardware simplicity and performance

—83 -

Ch. 5 Simulation Results and Analysis

efficiency. Tagging can be used to extract maximum concurrency from dataflow graphs by eliminating any
unnecessary data dependencies implied by queued tokens, e.g., loop/recursion unfolding and run time distribution of
shared code. However, if was shown in §3.5 that simple iterative solutions can easily outperform their tail recursive
counterparts due to the efficiency of pipelined execution on the common ring structured dataflow processing
element. Also, queueing fits in well with the sequential nature of operations like i/o and filtering, where extra tag
manipulating code is not required.

Clearly, both the queued static and tagged dynamic dataflow systems have particular advantages and
disadvaniages, and the hybrid system should be able to combine the best features of both. To illustrate this ability, a
method will be described that allows the application of a function to the elements of a token queue {0 be unravelled
(i.e., each applicaiion is unfolded onfo a separate machine region).

+a<c>

CSC

a<d?/ d<ex

1]

b<dx

RCS

+b<c>

FIGURE 5.18 Unravelling the processing of a token queus

In figure 5,18, the machine graph macros CSC (create-and-set-colour) and RCS (restore-
colour-sequentially) allow the token queue on arc a, with colour ¢, 10 be ‘scattered’ and the application of
subgraph £ 1o unravel, CSC tags each input token with a unique colour, 4, in the same manner as a create—
colour/set~coloux pair does on shared subgraph entry (§4.3.5.2). A copy of the unigue colour-used, which is
different for each token in the queue, is tagged with the original input’s colour, and sent to the second output
(d<c>). Subgraph £ is now instantiated in distinct machine regions due to the dynamic addressing scheme used
(assume that each application of f is independent in the scope presented here, i.e., there are no data dependencies).
RCS receives an ordered queue of colours on its second input that indicates the order in which the outputs of £ must
be requened. RCS performs this requeueing and restores the original input colour.

CsC -

b d<c>

FIGURE 5.12 (a) CSC using the current node set

— 84—

Tokens
% 10°3

RCS

Ch. 5 Simulation Results and Analysis

b ;

FIGURE 5.19 (b) RCS using the current node set

Figure 5.19 shows implementations of CSC and RCS using the existing node set that are clean, non-strict
and reentrant. An ordered queue corresponding to the unique colour sequence generated by CSC is maintained on the
data input of the protect (PRT) node in RCS. This node provides non-strict operation by allowing the first
colour through, before any output has been produced. The uniguely coloured outputs of £ wait to be selected on the
data input of the pass~if-present (PIP) node. They are then tagged with their original colour byaset-
colour (STC) node. As each output of RCS is produced, the protect node is retriggered, allowing the selector
for the next output colour through. All other nodes are involved in the manipulation of colours, e.g., the yield-
colour (YLC) /set-colour (STC) pair performs a swap colour with value operation (this should be
implemented as one node).

M2 and Totai Tokens - Graph 1 - Graph File; path_qdy -

g { T T T T T
00 04 0.B 12 18 20 2.4 28

Tirae (Secsj x 1041

Static size (nodes/tokens)
Dynamic size (nodes/tokens)
Processing elements

Execution time (sec) (potfact}
Concurrency (pot/act)
Instructions/Sec (pot/act)

Machine Utilisation

-4

Hements
Aciive

Tota)
TMS

42

17064
128
0.327225
2.0
52148
1.6%

X

kL]

6.0

38

4.0

3.8

29 -

06

Hement Actvity - Graph 2 - Graph File: path_git

]

N -]

6.0

T

04

T t T T T T T
o8 12 f.6 2.0 24 2.4 3.2

Time (Secs) x 1981

2
21078

0.327522

2.0
52100

{99.9%)

FIGURE 5.20 (a) Simulation of path_q.il

—85-

Ch. 5 Simulation Results and Analysis
MS and Total Tokens - Graph 1 - Graph File: path_w.id Elemant Actvity - Geaph 2 - Graph File: path_u.it
140 n-r 1
7 50 IW] !
I
8.0 4

6.0 -

Tokens Elements ,
¥ 1043 1.0 - Active 50 é
68 4 40 - ek
0.8 - 3.0 ; \ X
il
°2 - 10 - ’ ‘L
o0 T T T 1 T T T T I&m 00 T T T T Y T i
9.9 Q.2 Q4 o6 [1.0 1.2 14 1.8 00 0.2 04 08 08 1.0 1.2 14 6
Time {Secs) x 1041 Time (Secs) x 10~1
Static size (nodes/tokens) 55 2
Dynamic size (nodes/tokens) 17098 21112
Processing elemenis 128
Execution time (se¢) {potfact) 0.167866 0.168474
Concurrency {pot/act) 3.9 39 (99.8%)
Instructions/Sec {pot/act) 101807 101440

Machine Utilisation 3.0%
FIGURE 5.20 (b) Simuiation of path_u.itl

Figure 5.20 shows the simulation of a ‘pathological case’, in which the function £ (} is defined as 18 (500
-~ id{n}), where id () is a recursive identity function that returns the value of its input, ri, in time O(n). Two
priming tokens are sent into this graph to make up the input quene, their values being 490 and 10 respectively, The
gueued outputs of the graph are therefore 10 and 490 in that order. When no unravelling shell is used around £ ()
{fpath g.itl), the ime taken is almost twice as long as in the unravelled case (path_u. it1). The concurrency
and instruction execution rate (both potential and achieved), and machine untilisation of path_u are all twice those
of path_g. The activity plots show that the results are effectively compnted serially for path g and concurrently
for path_u. The first result (490) emerges half way through the path_q simulation, whereas both results are
retumed in the same minimal time for path_u. The reason for the difference is that the results of the first call to
id () for each input token must be kept ordered by path_q, but not by path_u. Thus, in path_g, the input 10
1d{508 - 10}, which is the output of 1d {10), is delayed until the omtput of 13 (490) is computed. The
nuembers are such that the total execution time should be the same for both resulis, however this is prevented by the
artificial data dependency between the intermediate results in the queued graph.

If cs5¢C and RCS were implemented as single nodes (CSC is trivial, whereas RCS would require a new
matching function), then there would be no problem at all in switching between tagged and untagged cede in a
hybrid graph. The possibilities of this mode of operation are still under investigation, a process made simple by the
unique nature of the hybrid architecture. One important use of CSC/RCS is in the protection of non-reentrant code.
By ensuring that graph segments like £ () in the above example are never instantiated more than once in a given
context, it is possible to implement them using non-reentrant code. Thus, the lazy and eager merge macros of ch. 4
could be left in the simplified, non-reentrant form (i.e., using a simple nondeterministic merge) if they were always
surrounded by a CSC/RCS shell.

— 86—

Chapter 6
SUMMARY AND CONCLUSIONS

6.1 Simulation and the Design Process

Care must be taken when interpreting the results of simulations like the ones presented in this thesis, since
the resuits are only as good as the fundamental figures that the simulation is based on. In particular, simulation based
on timing figures from the prototype emulator is questionable. These figures are largely inappropriate for a
dedicated, discrete processing element design because of the radically different architectures envisioned. Never the
less, they provide a feel for the factors most likely to influence over all performance before any serious design
decisions are made. With this in mind, development of the next generation processing element will involve use of
the new sixteen element emulator hardware to more accurately simulate the precise architectures of interest.

One of the more important factors yet to be fully analysed, is the effect of imbalance between the execution
rates of different stages in the PE pipeline. While it seems reasonable to make average throughput equal for afl
stages, the effects of different node evaluation times, different matching rates (due to matching functions, tagging,
etc.}, different result distribation times (due to variable numbers of outputs) and so on, must all be considered in new
designs. The most advanced work done in this area to date is by the Manchester group, who have demonstrated the
need for exira buffering at the output of their matching unit, and who are currently studying the advantages of an
optimised input quene that should improve the utilisation of the matching store resources [291.

6.2 Recommended Modifications to DL1

Although compilers for new languages are being developed for the RMIT system (§2.1), DL1 will remain
as a very useful system development tool. Iis unique combination of high and low level features allows its use as a
powerful, arbitrary graph construction tool. The newer languages, with greater support for complex data structures,
higher level functions, functional and logic programming, etc., are expected to become the preferred user
development tools; they will provide a means of benchmarking and source level compatibility already accepted by
other researchers in the field. As the DLI code generator provides a rather direct and efficient translation from
program graph to machine code, the langnage should be suitable as an intermediate form for other compilers and
preprocessors. A cut down version of the DL1 compiler is being adapted for this purpose.

In order to facilitate this use of DL.1 as an intermediate language for other compilers, and to allow even
greater control over machine graph generation, it is recommended that a node() function call be added to the
language. This function would accept as inputs the type of node to be laid and a list of arcs or identifiers to be linked
to the inputs of the node. It should also be possible to specify special matching functions, literal data, absolute
physical location (to override the compiler generated graph address), etc.. This style of graph description is actually
a symbolic assembly language for the dataflow machine, that is superior to the lower level ITL format described in
appendix D.

Currently, identifiers can only be ‘typed’ in the parameter lists of subgraphs, but a more satisfactory
approach would be to allow the type of an identifier to be specified anywhere that the identifier is used or defined.

This would allow statements such as
a: int + b: int -> c: real;

Since DL1 allows identifiers to be used before they are defined, type specification is sensible even inside
expressions, as in this example.

To specify result types statically, it would be possible to have a cast operator, as in the C programming
language. This can be done using a similar format by allowing entire expressions, not just identifiers, to be ‘typed’,
e.g.,

& {a: int + b: int): real -> c;
In this example, consistency checks can be applied to ‘¢’ to check any following uses or declaration that may occur.
To aid program brevity and readability type specification should be optional in all cases, with ambiguities being
flagged by the compiler and resolved by the programmer with appropriate declarations. When a declaration is made,
it should only be necessary on the first occurrence of an identifier, be that a definition or a use.

87—

Ch. 6 Summary and Conclusions

With this scheme type coercion can be more easily controlled by the programmer, removing much of the
need for run dme checking and coercion. This would result in a very significant saving in the current PE emulator
code, since for many nodes type checking and coercion are more expensive than the node function itself. However,
run time type checking also serves as an important error detection mechanism and should not be abandoned lighiy.
The best solution would be t© have an extra class of nodes that perform type checking without coercion. Such an
instruction set is used by the MIT group, where arithmetic nodes are available with and without automatic type
coercion [91.

Although subgraph parameters must currently be ‘typed’ in DL1, this i not actually essential to the
compiler, since parameter source and destination nodes can be checked for consistency when the subgraph is called.
Even if a program has no type specifications at all, the compiler can still deduce the types of many idemtifiers by
their definitions; any remaining checking must be deferred to run time.

The compiler is currently lacking in its ability to handle complex data types. This may be acceptable if DL1
is to be used solely as an intermediate form for other languages, but a facility for arrays and records is considered a
minimum requirement for general program development. Records in particular would be very helpful in simplifying
software design, since the current informal record/expression list constructions can lead to complex and verbose
coding technigues. Arrays are more of a problem because of their unigue implementation requirements, the current
level of support being limited 1o direct access to a single indexed storage node per PE. The next generation machine
will include distributed deferred access structure store units for efficient, random access data storage and retrieval.
Any implementation of arrays or records should be made compatible with the DL1 *no unnecessary typing’
philosophy. Therefore, arrays and records should be declared without the need to specify component type(s); it is
only the structure of the data thar is necessary for program graph generation, and not the base rypes of the structare’s
components.

The advantages of unravelling have been discussed in §5.5, however there is also the disadvantage of
needing copies of dynamically addressable graph segments in all processing elements participating in their
execution. Thus, shared subgraphs and other unfolded code blocks are not really shared at all during loading and at
run time, afthough they do reduce the static graph size. In the original FL.O system specifications no provision was
made for unravelling, so that shared subgraphs were loaded just once and actually were shared at run time with a
corresponding reduction in concurrency and performance (see §5.6, and refs [2, 41]).

6.3 Suggestions for Further Research

The dataflow project at RMIT is expected to provide benefits in many related research areas. For example,
the 16 element emulation facility designed around the dual M68020 PE prototype emulator and a high speed 16 way
buffered delta switch network (§2.1, [52]), will provide an ideal test bed for general multiprocessor research. To this
end, a global bus with shared memory access would be a worthwhile addition to this hardware.

Areas of immediate concern to the dataflow project will be the development of a multiprocessor operating
system, establishment of on line mass storage, and completion of a high speed interface to the CSIRO host
computer. Also, the development of the next generation processing element will require substantial research into
ways of building a practical, very high performance dataflow machine using state of the art hardware technology.

One of the interesting possibilities for future processing element designs is the prospect of combining the
matching store and structure store units. This is suggested by the similarity of their operations, particularly in the
area of deferred access queueing. 1t is especially relevant to the hybrid implementation because the hybrid matching
store already supports such queues in the form of tokens queuneing on the same input of a two input node. The
difference between the queued matching operation and deferred structure store accessing is that the Jatter provides
indexing, data persistence, and satisfies all deferred accesses with one data item {as opposed to matching with just
one waiting token). In fact, the hybrid matching unit will also satisfy several waiting tokens with one matching data
item since this is precisely the operation of the proposed complex protect matching function (§3.4). The marching
unit could also be made to support indexed structure storage with suitable modifications to its memory organisation.

Of particular relevance to the efficiency of the emulation rig is research into combined dataflow/control
flow machines, which have the potential of combining the best features of both architectures [32]. In a combined
machine, the granularity and functionality of the node set is entirely arbitrary, unlike most dataflow node sets that
are fine grain for reasons of graph stability (for even distribution of activity) and high concutrency. Large grain node
functions would be ideal for execution on the emulator, since they can exploit the speed of the von Neumann
processors in each processing element, free of the significant overheads currently involved in the communications of
data wokens. The combined model actors, or nodes, also communicate through matched fokens (both data and control

— 88 -

Ch. 6 Summary and Conclusions

tokens are available), but the ratio of computation to communication is usually far higher than in a low level
dataflow model. Control tokens take the form of messages and semaphores that enable the synchronisation of
communicating processes for determinate shared memory accessing, etc.. Data tokens have their usual dataflow
interpretation,

Consideration must also be given to means of very low level optimisation of dataflow based execution. Can
the significant performance improvements achieved in von Neumann architectures through the nse of caches,
instruction prefetching, ‘RISC” concepts, etc., be applied to dataflow computers? Many of these fechniques rely on
the predictability of program counter control flow, even 10 the extent thal some state of the art processors attempt o
predict the outcome of instructions that alter this flow (e.g., Branch Target Lookahead). Although the highly
asynchronous nature of dataflow computing appears to preclude many optimisations of this nature, research is
certainly warranted in this area. In addition, the potential for highly concumrent computing ithat dataflow machines
provide opens up a completely new field of research into specialised optimisation techniques which requires much
attention,

6.4 Conclusions

A hybrid dataflow implementation has been described, together with machine and language features
designed to take advantage of its unique characteristics. In particular, ways 1o optimise the use of token queueing
have been outlined, including the use of hybrid matching functions and corresponding features in the programming
fanguage DL1 (e.g., reentrant code generation, gueues and streams, ¢ic.). Additonal features such as an informal
record mechanism (generalised expression lists), improved code templates, and eager and lazy conditionat evaluation
have made DL1 a practical dataflow langnage for the purposes of this and future research. Also, the principles of
tagged token dataflow evaluation, including machine graph unravelling, have been successfully applied t the RMIT
system with quantitative simulation results confirming the expected performance improvements generated by these
techniques.

- 80

Appendix A
TEST PROGRAMS

A.1 DL1 Source Listings

This appendix includes source listings of selected test programs used in this thesis. Several limitations of
DL1 are clear in these examples, ¢.g., the lack of arrays and named records is immediately obvious from the listings
of Recursive_Queens and Fast_Fourier. Also note that DL} sacrifices some elegance for low level control, e.g., the
numerous compiler options (see also appendix B), and primitive statements like prime, switch, ctc.. Never the less,
it has proven to be an excellent tool for research at both program and machine graph levels, since it combines the
convenience of structured programming with a very necessary degree of low level machine graph control. However,
use of DL1 as a development language is expected to decline when the compilers described in the introduction of
chapter 2 are commissioned, although a simplified derivative of the DL1 compiler will be used as an intermediate
form for the new languages.

{ A preogram ta find all soluticns to the six gueens problem using multiple recursion. |}
[w+]
program racursive_Gguesns;
{
Noter-
This program is based on a solution found in ref [(18].
All subgraphs are functional (some return dummy results), this is B
a hangover from the sequential selutien which keeps a running sum
of the results found and the number of placements tried. This is not
possible in the recursive parallel search solution. Never the less, the
results of all functilon calls are still used as signals to maintain clean code.
- This code suffers from the lack of formal, named records and arrays,

e.g. 'mark' uses a bltstring as an array of booleans and 'Write_array'
uses an informal record of & integers as an array.

sharaed subgraph try(rdn, ldn,ccls: boolean; r0,rl,r2,r3,r4,r5,row,col: integer): boolean;
subgraph next try{rdn,ldn,cols: hoolean; r0,rl,r2,r3,r4,r5,row, col: intager): hoolean;

subgraph write beard(r0,rl,r2,r3,r4,r5: integer): boolean;

subgraph row{pcs: integex): char;
bagin { row |

if pos = 0 then 'Q' elge

if pos = L then ¢, Q. . . .' elsse

if pos = 2 then '. . ¢, . .' else

if pos = 3 then ! Q. L' else

if pos = 4 then ! . Q. else

if pos = 5 then . Q' elge '? ? ? 2 2 2
-3 oW

and { row };

subgraph ww(r0, rl,r2,r3,r4,r5; char): boolean;
bagin
{ A resource sharer Lo protect the cutput stream from garbled solutions |
en when{rl,rl,r2,r3, r4,r5 %hen labellenable! -> set;
{ ‘enable* grants the resource }
on enable then r0,rl,r2,x3,r4d,r5 ~» rlg,rlyg,r2q,r3g, rdg, rdg;

{ now strip the sclution of its colour }
yield{rGg}) ~> r0d,null;
yield{rlg} «> rid,null;
yield{r2g) -> r2d,null;
yvield(r3g) -~> r3d,null;
vield{rdg) -> rdd,nuill;
yvield{r3g} ~-» r3d,null;

writeln{output, r0d,chr(10},rid,chr {10),r2d,chr{l0),
rid, chr {10}, rdd, chr {10}, z5d, chr {10}, chr{(1l0}) -> ack;

- 9]

Ap. A Test Programs

vield{set) -> setd,sete;

{ 'setd' releases the rescurces }

protect setd with ack;

setcopy (setd, setey -> ddd;

setdest (ddd, ddd) -> null; { return the release signal }
and;

begin | write_board }

{ Print the solution, discard the result }

WwW {row (r0) , row (rl} , row (r2) , row{r3}, row{rd) ,row (r5y} ->» null;
end { write board };

bagin { next try }

{ the code branches here |}

awitch row < B

then rdn, idn,cols,r0,ri,r2,r3,rd,rs,row,col

-> rdnt, ldnt, colst, rot, rlg, r2t, r38, rdt, 8¢, rowt, colt
alse null,null, null, r0f, r1f,r2f, r3f, rdf r5f,null, null;
{ true branch.. go to the next row }

rowt + 1 -> nrow;

try {rdnt, ldnt,colst,rit,rlt,r2c, r3t, r4t, rat, nrow, 0 ~> nul
try {rdnt, ldnt ,colst,r0t, rlt,r2¢,r3t, rd4t,r5t,nrow, 1} -> nul
try (rdnt, ldnt,colst, r0t, rlt, r2¢, r3t, rdt, r5t, nrow, 2} => nul
try(rdnt, ldnt,colst, r0t,rlt, r2e, r3t, rd4t, r5t, nrow, 3) -> null
trytrdnt, ldnt,colst, r0t, rlt, r2e, r3t, rit, r3v, nrow, 4} -> nul
try{rdnt, ldnt,colst, 0, rlt, r2t, r3t, rd4t, 5t, nrow, 5} =-> nul

[false branch. a solution has been found, print it 3
write board{r0f,rlf,r2f,r3f,rdf, x56) ~> null;

on row then false -> next_try;
end { next try I;

subgraph mark {(rdn,ldn,ccls: boolean; row,cel: integer; val: boolean)
-> (rdnoc,ldno,colsc: boolaan);
bagin { mark }
if wval
than setblit (rdn, rew-col+8)
alse clearbit {rdn,row-col+3)
-> rdno;

if val

then setblit (ldn, row+col)
alse clearbit (ldn, row+col)
«> ldno;

if val
then setbit {cols, col}
alse clearbilt (cols,col!
-> ¢olso;

end { mark };

subgraph advance{rdn, ldn,cols: boelean; rG,rl,r2,r3,rd,r$, row,col: integer): boolean;

subgraph write array{r0,rl,r2,r3,r4,r5,1: integer; val: integer)
~» {r0o,rlo,r2o,r3o,rdo,r5o0; integer);
begin { wrlte array !
{ rQ to r5 are treated as an array of integqerg |}
if i=0 then val salse rl -> rlo;
if i=1 then val else ri1 -> rilo;
1% 1i=2 then val aelse rZ -> rlos
if i=3 then val else r3 ~> rio;
if i=4 then val else ri4 -> rio;
if 1=5 then val alse r5 -> rSo;
end | write_array };

bagin { advance)
! place the gqueen and recurse }
write array{rC,rl,r2,r3,r4,r5,row,col) -> r0x,rix,r2x,x3x,r4x, rox;
mark {rdn, ldn, cocls, row,col, false} -> rdni,ldni,colsi;
next_try{rdni,ldni,colsi, rOx, rlx, r2%, rix, r4x, rox, row, col) -> advance;
end { advance };

subgraph test {rdn,ldn,cols: boolean; row,col: integer): boolean;
bagin { test |}

testblit {cols, col} and

testbit {ldn, row+col} and

testbit {rdn, row-col+3} -> Lest;
and { test |;

pegin { try |}
{ test if safe to place queen }

if test {rdn,ldn,cols,row,col)

then “advance{rdn, ldn, cols, rC,xl,r2,r3,r4,r5, row, col)

else false -> try;

~97

end { try };

cgueens }
{ initiszlise board (no gueens placed)
prime true -> rdn, lidn, cols;
prima 0 -» r0,rl,r2,r3,r4,r5;
{ recurses & ways at every level,

begin {
}

solutions die as soon as an unsafe placeme

Ap. A Test Programs

nt is found |

try (rdn, idn, cols, r0,rl,r2,v3,r4,r5, 0, 0} => nuli;
try {(rdn, idn, cols, r0,rl,r2,r3,r4,r5, 0, 1} => null;
try (rdn, idn, cols, r0,rl,r2,r3,r4,r5, 0, 2} =-> null;
try {rdn, ldn, cols, r0,rl,r2,r3,r4,r5, 0, 3} -> null;
try{rdn, ldn, cols, rf,rl,r2,r3,r4,r5%, 0, 4) -> null;
try{rdn, ldn, cels, ©C,rl,r2,r3,r4,r%, 4, 5} ~> nuli;
end { 6gqueens |.
{
A 16 peint complex FFPT program. Derivations of this graph have
been used extensively in testing the new 16 element emulator hardware.
The FFT connectlivity 1s established in the parameter lists.
}
iw +]

program Fast_ Fourier Transform;

constant
ZERG = 0.0;
PIONB 0.39289908;
DION4 = 0.78539816;
PIZONB = 1.317809725;
PIONZ = 1.57079633;
PISONE = 1.86349341;
PI30N4 = 2.35618448;
PI70NE = 2.7488%357;
subgraph fft {alpha, a, b, ¢, d: real) ~> {ao, bo, co, do: real);
bagin
sin{alpha} «> gina;
cos (alpha} ~-> cosa}
d * sina ~> dsina;
o * cosa -» coesar
d * cosa ->» deosay
¢ * sina «> ¢c8ina;
a + ccesa + dsina ~> ao;
b ~ csina + decosa ~>» boj
a - ccesa - dsina -» cof
b - deesa + csina ~>» do;
and;
subgraph £££2(£0, £i0, £fi, fil: real) ~-> (Lc0, £io00, fol, ficl: real);
begin
£fe {2ERC, f0, fi0, f1, fiil) -> fo0, flo0, fol, fiols
end;
suvbgraph ffud{f0, £i0, f1, [ii, L2, fi2, £3, [i3: remal)
->» {fo0, fiel, fol, fiol, fo2, fio2, fo3, fioi: real);
begin
ffL2{£Q, f£i0, fi, £ily ->»> z0, zid, =zl, zi1i;
£f£2{f2, f£f12, £3, £i3} ~-» z2, zi2, 23, zi3;
Fft (2ERO, 20, 210, 22, zi2) -» fao0, fio0, fo2, fia2;
ffv {pPTONZ, zl, =zi}, z3, zild) -» fol, filol, fo3, fiol3;
and;
subgraph fft8(f0, fio, f1, fil, f2, fiz, f£3, fi3, f4, fi4, £5, £i5, £6, £i6, £7, fi7: real)
-> {foll, fio0, fol, fioi, fo2, flo2, fo3, fioc3, fod, fica, fo%, fioh, fo6, fichk, fo7, fio7: real);
begin
£EL4(£0, fi0, f1, fil, f2, £12, £3, fi3} -> 20, zi0, =1, =zil, =22, zi2, z3, zi3;
ffe4 (£4, f£i4, 3, [£i3, £6, fis, £7, {17 -> z4, zid, 25, z2i5, 28, z16, 27, zils
£fC (ZERQ, =z0, z1i0, z4, zi4) -> foQ, fio0, fo4, fic4d;
£fL (PION4, zi, zil, =25, zl135} -» fol, fleol, fob, fices;
£ (PION2, 22, 212, 26, zig} ->» fo2, fio2, {06, fict;
FET{PIZON4, 23, zl3, 27, ziT) -» fo3, flo3, fo7, fio7;
and;
subgraph fIt16{f0, fi0, fi, fil, f£2, fi2, £3, fi3, f4, fi4, £5, fis, fe, fie, £7, fi7,
f8, fis, f£3, f£i9, 10, fi1 £ii, fi1li, f£12, filz, f£i3, f£i13, f£14, fiid, f15, £i15: re
-> (fo0, fie0, fol, fiel, fo2, fio2?, fo3, fiol, fod, ficd, faoS, fioS, fo&, flo6, fal, fio?, f
fio8, fo9, fie9, fol0, field, foll, fiell, fel2z, fiocl2,
fold, £fioll, fol4, fiold, foll, ficl%: real);
bagin
EftB (£f0, Fi0, f1, fil, f2, £i2, £3, fi3, f£4, £id4, f£5, £i5, £6, £i6, £7, ELiT)
-> z0, 210, zl1, =zii, =22, zi2, =z3, =zi3, =4, zi4, z5, =zi5, z6, zie, 27, zi7;
free(fs8, fis, f£8, fie%, £10, filo, f11, f£ii1, f12, fiiz, f13, fil3, £14, rfil4, £15, £119)
~> z8, zi8, 2%, 219, 210, zil0, =211, =zill, =212, =zil2, z13, zil3, =214, ziid, zi5, zil5;
Fft (ZERO, 20, 2i0, 28, zid) -> fo0, fioC, foB8, fio8;
ffL {PIONS, z1, zil, 29, zi9) -> fol, {iocl, fo9, fio9;
ffe{PIONg, 22, ziz, 210, zilG) -> fo2, fie2, folQ, fiolQ;

—93

a

Ap. A Test Programs

fEC{PI3ONB, 23, z13, =211, zili} ->» fo3, fie3d, fall, filolil;
£fL{PICONZ, zd4, wid, z12, zil2} =-> fo4, fiod, fol2, fioll:
£t {PIS0NB, 25, 2zis, =13, 2i13} -> feb, fies, fol3, fiel3;
£t (PI30N4, z6, zi6, zl4, zil4) -> fo6, fioé, fol4, field;
£EL{PITONE, 27, 217, 218, zil5) -> fo7, fio7¥, fols, £lolb;:
end;
begin { Fast_Fourier Transform }
{ test input is a unit step function |
{ the input Imaginary part }
on start
then 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, G.4, 6.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 9.0, 0.0
-» ald, ail, aiz, ail3, ai4, ai%, aié, ai?, aig, al9, aill, aill, &il2, alll, aili4,
{ the input real part }
on start
then 0.0, ¢.0, 0.0, 6.0, 0.0, ¢.0, 0.6, 0.0, 1.2, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
-> a0, al, a2, a3, a4, a3, a6, a7, a8, a% al0, all,.alZ, all3, al4, ally;
{ now gall fft, the test results are discarded |
£felé{al, aild, a8, aiB, a4, aid, al2, ailz, a2, ai2, all, ail0, a6, alé, ald, ails,
al, all, a9, ai®, a%, als, al3, ail3, a3, ail3, all, aill, a7, ai7, al35, ails)
~> null, . ; { 16 nulls |}
prime true -> start;
end.
{ A ‘I-domain’ bandpass filter program that uses tokens as state variables |
[G:1%) { put this graph in 16 elements !}
program HandPassFilter;
constant
a 2.56820E-0%;
b = 3.000C0E+00;
c 5.77264E-01;
d = 4.21794E-01;
e = §,62998E-02; 4
begin
{ these definitions generate unit time delays |
®=> 22;
z2 -> 24}
z& ~> z6;
z6 > zB;
zZ8 -> z10;
z10 -» z12;
chz2-d*zd+erz64+x -> U}
u*a-n*z8+h*z10-212 -> (1,-32,0})s { result to coascle |}
{ initialise the state variables, assume input was zero for negative time }
prime 0.0,0.0 -> z2,24,26,128,210,212;
{ feed the input with 100 points (i} of a unit step (¥} |
prime 0 -> i;
switch 1 < 100
then i+1l, 1.0 -> i,x;
end.
{ A doubly recursive trapezeidal integratien program }
{2, 2} { set occurrences for double recursion }
{w+ { extended code generation turned on }
program Lty double;
shared aubgraph area(a, b, dx: real): real;
subgraph f{x: real): real;
censtant
pi = 3,141582654;
mean = 0,0;
sdo= 1.0;
begin
1.0/ {sd* (sgqrrt (2.0%pi))) *exp {~0. 5*sgr (¥~mean) /sqrisd)) -> f;
and;
bagin { area }
[NB. Lazy evaluation of “true’ conditieonal branch is necessary for recurslon,
also used in ‘false’ branch to eliminate unnecessary calls to “£°
if (bwa}] » dx
then “areaia, (b + a) / 2.0, dx) + areal{b + &} / 2.0, b, dx]

- 94 —

alse “F{a) *
~> area;

{b - aj
end

kbegin { main }
area(a, b,
prime
bagin

d=) -> {1,-32,0)f

0.0 => a;
2.00 -> b;
0.01 ~> dx;
and
and .

Ap. A Test Programs

{ A singly {(tall) recursive trapezoidal integration program)

{02Z,2]
[w]

{ set occurrences for double recursion }
{ extended code generation turned on |
program tr_ single;

ghared aubgraph area(x, b, dx, real;

sum: real):

subgraph f{x: real): real;

congtant
pl o= 3.141592654;
mean = 0.0;
sd = 1.0;

bagin

1.0/ (sd* (sqre (2.0%pl) }) *exp (-0.5%sqgr {(x~mean} /sqr(sd)) ->
end;

begin { area |}
{ define the tail recursion }

if x > b
then sum
alse "area(x + dx, b, dx, sum + £{x) * dx}
-> area;
and;
begin { main |}
areafa, b, dx, sum} -» (1,-32,0);
prime
begin
G.0 -» a, sum;
2.00 => b;
.01 -> dx;
and
and .,
{ An iterative traperoidal integration program }
program itr;
subgraph area(inita, initb, initdx: real}; real;
subgraph [(x: meal} -> {y: eal);
begin
sqr{x} =-> y
and;
begin { int }
{ this leoop is not (safely} reentrant (could be ‘protected’) |}
merge {newx, inita) -> x;
merge {newsum, initsum} -> sum;
merge {newb, initbh) =-> b;
merge {(newdx, 1lnitdz} -> dx;

switch x < b

then sum + £{x} * dx, x + dx, b, dx
-> newsum, nawx, newb, newdx
alse area, null, nulil, nullp
prime .0 -> initsum;
end;
begin { main }
write{output, int{a, b, dr}) -> null;
prime
bagin
0.0 =» a; 2.0 »» b; 0.01 »«> dxyf
aend

and.

- 95 .

Ap. A Test Programs

[Stream reversal program }
[a+, wt, 0L, 1]
program stream_ reversal;
shared subgraph reverse(_in: any): any;

shared subgraph revl(_inli, _in2: any): any’

bagin

[moves the head of iInl to _in2 }

get {_inl) ~»> h, _t;

cons {h, _in2} -> _x:

if empty (_t} then x aelsa * revi{ t, _x} -» raevl;
end;

begin { _reverse }

if not empty(_in) then ‘";evl(_in, 1} elsa "] ~> _Treverse;
end;
bagin
reverse{_a} -» (1,-32,0}; | output result to the predefined conscle node |
prime 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,18,20,2%,22,23,24,1 =-> _a;
end,

‘

{ & program that serially sums the elements of a stream }
{at,w+,0l,1] | turn on advanced and extended code generation }

program serlal sum;

shared subgraph serial{ input: integer): integer;

bagin
if empty{_input} then U else "head{ input) + serial{tail{ input}} =-> serial;
end;
begin
serial (_a) ~->» (1,-32,0);
prime 1,2,3,4,5,6,7,8,%,10,31,12,13,14,15,16,17,18,15%,20,21,22,23,24,] -> _ar
and.

{ A tall recursive equivalent of serial_sum {(not optimised) }
[a+,w+,0l, 1
program serial_stream_sum;

shared subgraph serial {partial_sum, _input: integex): integer;

regin
if empty (_input}
then “partial sum
else ‘serial(partial_sum + head(qinput), tail(_input))
-> serial;
aend;
bagin
seriali{a, _a) => (1,~32,0); { serial(C, _a) is slightly more expensive, since it requires a trigger
prime {0 -> a;
prime 1,2,3,4,5,¢,7,8,%,10,33,12,13,14,15,16,17,1%,19,20,21,22,23,24,} -> a;
and.

Binary stream element additjon using a recursive divide and conguer algorithm and

lazy evaluation for protection agalnst indefinite recursion and empty streams.
'

[w+,a+,02,2]
program Binary strsam_sumy
shared gubgraph alternate(x: imtager} -> { xl, x2: integer};
subgraph altl{ t: integer) -> { tl, tZ2: integer);
begin
get {_t) -> thead, _trall;
alternate(_ttail} -> _t2, t3;

cons{thead, _t3) -» _tl;
snd;

begin { aliternate }

if empty{ x} then "],] else "alti{ x} -» _xl, xZ;
etid;

96—

shared subgraph binary add{ input: integer} -> (sum: integer};
subgraph binl{ input: integer): intager;

subgraph binZ(_}nput: integer}: integer;
begin
alternate(_input) -> _x, y;

pinary_add{_x} + binary_add(_y) -> bin2;
end;

begin [binl }
get {_input} -> hhead, taill;

if empty (_tail) then hhead elae ‘binZ(_lnput) ~> bini;
and;

begin { binary add)

if empty{_input) them 9 alse “bini{_ input} -> sum;
end; .
begin { Binary_stream sum }
prime
1,2,3,4,56,7,8,9,10,11,12,13,14,15,16,17,18,13,20,21,22,23, 24,

-
binary add(_a) -> (1,-32,0);

and.

_a;

Ap. A Test Programs

Binary stream alement addition using switeh snd join are used for conditional execution

without needing the auxiliary functiens ‘*binl‘ and ‘bin2r,
1

[wt+,a+,02,2]
program Binary stream sum;
ahared subgraph alternate(_x: integey) -> { xl, x2: integer};

subgraph alti{_t: integer} -> {_t1l,_t2: integer);

begin
get {_t} -> hhead, _ttail;
alternate{_ttail} -> _t2, t3;
cons (nhead, L3} -> £l

end;

begin { alternate |
i¥ empty{ x®} then |, | else “altl{ x} ~>

XL, ®2;
and;

shared subgraph binary_add(_input: integer): integer;
hogin
empty (__lnput) -> cl;
switch ¢l then _input -> else _inputl;
get{ inputl) -> hi, tl:
empty{_tl}) -> ¢2;
gwiteh ©2 then hl, _inputl -> h2,null else null, Input2;
alternate(input2) ~-» X%, v¥;
join ¢2 then n2 else binary add{_x} + binary add{ y) ->» sum;
jein cl then 0 alse sum -> bilnary_add;
and;

begin { Binary stream_sum }

prime 1,2,3,4,5,6,7,8,9,10,1%,12,13,14,15,16,17,18,19, 20, 21, 22, 23, 24, }

- ay
binary add(a) -> (1,-32,0); -

end.

—97 -

Appendix B
DL1 REFERENCE

B.1 Introduction

This appendix gives technical information on the DL1 dataflow programming language. Included are
syntax diagrams, compiler options, reserved words and predefined functions. The information presented here
supersedes all previous versions.

B.2 Using DI.1

The compiler accepts source in a *.dl1’ file (the extension is supplied by the compiler) and generates a *.lis’
file with compile fime statistics and an optional compiler generated listing. In the case of a successful compilation, a
“uf’ file 1s produced which contains the intermediate target language (ITL}), textual machine graph and priming
tokens description. The “.itl” file is used as input to the simulator, DFSIM, or to the ITL 10 machine binary {ranslator,
ITL68K. Errors are reported to standard output as well as being logged in the list file.

B.3 Syntax Diagrams
An extensive user’'s manual exists, that gives many examples and explanations of the features of the
language {39). The syntax of DL1 is simple ‘LL’, the compiler being recursive decent, one symbol/one character

look ahead, with no backtracking. Block structure is fully supported where sensible, but reference can not be made to
non local variables due to possible implications of non-functionality.

—99-

Ap. B DLI Reference

[ram
PROGRAM ident O j, block ———O
block
ONS‘T A ident ’/:\ constant
. . _/
N
4 0/
/?\
4 _/ ™
N forward.decl 4
v

] subgraph.decl

\‘—'(BEGIN }——

statement.list

forward.decl

FORWARD

m{ ENQ}“‘“‘F

SUBGRAPH }—

ident

interface

-

SHARED }-

SUBGRAPH}—

interface

ident 1

4—— block

— 100 -

Ap. B DLI Reference

intarf
e | aram.list O aram.list
p v p T
type.list
param.list »aram.elem
param.elem —_id.list —-@— type.list |[—#
N
>/
ident - type T—’
>/ o/
ident

ype

™
v

letter

digit

QBE
d

.

~ 1M -

BOOLEAN

CHAR “1

DEST

{ INTEGER

- REAL]
STREAM }

Ap. B DL1 Reference

statement list
statement
—0
statement
R functional.definition
e switch.statement
N—| join.statement
___ protect.statement
]

prime.statement

kkkkl

- 102 -

Ap. B DL1 Reference

functional. definition
— expr.list @ output.list p——_ip>
swiich statement

___(swwc@_.. expr —(THEN)— expr.list
[.L output.list . ELSE)— output.list 7—>

join.statement

————CJOEN-)—— expr —{THEN))
(expr.list -—(ELSE)—:— expr.list —@-— output.list =9

it . men 4
—_ PROTECT arc.list —-CW;TH)——- arc.list o=
N
>/
prime.line
prime.line

arc.list p——m——9

constant.list

O

- 103 -

Ap. B DLI1 Reference

arc — jdent

literal.dest

_®— constant _O— constant _O_ constant

{element) {(node) (input)
()
exprassion list (—/)
Al expr e

N subgraph.call |/

N conditional.expr

N deferred.expr /

conditional.expr

—(IF}' expr {THEN@ expr.list

expr.list

——(ON)— expr —(THEN}— expr.list

- 104 —

Ap.B DL1 Reference

Xpr ion

—i simple.expression

simple.expression o

imple.expr ion ierm

factor

factor?

7 factor? T——b : ~t factor3
\;®——/ constant
%——J factor3

- 105 -

Ap. B DLIi Reference

factord

~ arc
| constant
- @ expr @
\._..(NOT) factor3
A subgraph.call
- unary.conditional
. unary.deferred

raph.call

-1 ident @ expr.list @
nary.conditional nar ferr
conditional.expr o et - deferred.expr

— 106 —

Ap. B DL1 Reference

B.4 Compiler Options

DL1 allows several options to be present in the source file, which provide control over code production,
compile tme statistics, listings, etc.. Options are imbedded between square brackets, e.g2., to provide run time node
tracing and an informative but brief compile time display, the option string [x+k+,i+,]-} could be used. The options
have been used extensively in gathering the results of chapter 5; they have proved very useful as a way (o vary
compile time parameters to generate comparative results.

Option/Default Effect
a- advanced node set for code production
b- byte node addressing
c+ compressed ITL listing
d- determinate/reentrant code production
¢+ verbose error monitoring
f- fine grain for exponentiation (LNE/MUL vs PWR)
h- heap checking for debugging
i- display of arc usage
k- compiie time information
I- compiler generated listing
m+ use new occurrence data format {<maxocc.occ>)
¢ 8.8 top and max occurrence for shared subgraphs
r+ constant reduction for literals
§ - scanner output for debugging
t- type checking
W - extended node set for code production
X- run time trace between [x+] and [x-]
{0:127] element range for following node assignments
B.5 Reserved Words
Graph Delimiters

program, constant, forward, shared, subgraph, begin, end
Statement Delimiters

switch, join, oldif, protect, prime
Expression Delimiters

if, then , else, either, endif, on, endon, with
Predefined Constants

true, faise, eos (or ‘1", end of stream), null {the token bucket)
Type Identifiers

any, boolean, char, copy, dest, integer, real, stream
Operators

and, or, egv, xor, not, mod, div
1/Q) Streams

input, output, bend, elbow, twist, waist, grip, swivel, floout1-, floinpl-

B.6 Predefined Functions

Arithmetic
abs, In, exp, log, pwr, round, trunc, sqr, sqrt, sin, oS, tan, arccos, arcsin, arctan
Bit string
¢learbit, setbit, testbit
Character
chr, ord
/0
read, current, write, writeln, las
Stream
head, tail, get, empty, cons, bracket, unbracket
Misc
compare, first, issue, merge, pred, succ, store, when, setdest, setcopy, vield, label

~107 -

Appendix C
ADVANCED NODE SET DEFINITION

C.1 Introduction

This node set definition describes all of the node functions currenty defined in the RMIT dataflow variant
and used in this thesis. This includes all original ‘FL.O° nodes still in use, as well as the extended and advanced
nodes mentioned in this thesis, The format includes a description of the matching functions and their operation. Also
given are timing figures for the emulator hardware. A new node=set is currently being defined which will incorporate
the suggestions made in this thesis and other work at RMIT [25], The node set definition given here should therefore
be taken as a guide only,

The entry for each node function consists of the Intermediate Target Language (ITL) mnemonic followed
by an informal description of the function. The matching function or firing rule of the node is indicated by entries of
the form diadic, protected, eic,, Future node sets will have maiching functions specified independently of the node
function, as different matching functions may make sense on the one node.

C.2 Multiple Output Destinations

Most nodes allow their results to be distributed to a maximum of two destination nodes. In the node
definition table, nodes with two outputs have their output arcs referred to explicitly, i.e. cut.0 and out.1. For one
output nodes the output arc is simply referred to as out, but will occupy the position of out.0 in the actual node
description.

The simulator has a special mode to allow trees of duplicate nodes to be collapsed into a single
replicate, with multiple outputs. In future node sets, all general purpose nodes will be able to send multiple
copies of their output(s), specified by a destination list. This will handled by the Result Distribution Unit (figure
2.1,

C.3 Transparent Transmission of End of Stream Tokens

To reduce special case processing, end of stream tokens (eos, or]} are passed transparently for several
functions. In the case of diadic functions, both argument tokens must be end of stream, unless one input is a literal.
This atlows efficient scalar operations on the elements of a stream.
C.4 Exceptions

Exceptions are generally handled by propagating the reason, operands and the name of the node at which
the exception occurred as an ‘exception’ or 7 token to successor nodes which, in most cases, will propagate the 7
token further, In cases where the successor node is not known or is ambignous, e.g. an attempted use of a non-
boolean (bits) token as the selector on a path control node, the resulting ? token is sent directly to the processing
clement’s exception node (see system nodes).

C.5 Node Definitions

The following notes are referred to in the node definition table:

6} Applies for the real int case also

) Always gives real result

&) Integer division

)] Exponentiation using log and multiply

(5 Unary minus

(6) Automatic type coercion where sensible

o Exponentiation base e

8 Angular argumernts and results are in radians

) Same operation as XOR

{10) Empty storage node fetch generates an exception

- 109 -

Ap. C Advanced Node Set Definition

(an
(32
(£3)
{14
(19
(16)
(17
(18)
(1%
(20
(21)
(223
(23}
248
(25}

C.5.1 Arithmetic

Mnemonic
diadic
ADD

SUB

MUL

DVD

DIV
MOD
PWR

monadic
NEG
ABS

LNE
LOG

EXP
SQT
SOR
SIN

COS
TAN
ASN
ACS

ATN

Special node with multiple (>2) outputs

Type should be bits

Exception if inp.0 is not protected, ne queneing on mp.1 (vet)
Sends several results to same destination

Uses the literal as inp.1, else inp.1 will clear the node

Returns two outputs in this case

Destination not coded as part of node description

The clock generates boolean true tokens (i.e., bits $FFFR)

A = size difference, m = longest, n = shortest (all in words})
No evaluation is performed for this operation

Not yet implemented by the emulator

A second pair indicates timing with AMD9511 hfware support
The number of cycles is given for an 8MHz clock (4MHz 9511)
The thime for this operation is not included in the execution
Time depends upen length and type of resulting token

Op Input Types Output Types
+ int int int
int real’ real (1)
real real real
- int int int
int real real (1)
real real real
* int it int
int real real (1)
real real: real
+ int int real'(2)
int real real (1)
real real real
div 3} int int int
mod int int int
A4y int int reat
int real real
real real real
—{5) int N int
real - real
abs int’ - int
real - real
log, int - reat (6)
real - real
logyg int - real (6)
real - real
e* (7 int - real (6)
real - real
v int - real (6)
real - real
square int - real (6)
real - real
sin (8) int - real (6)
real - real
cos int “ real (6)
real “ real
tan int . real (6)
real - real
arsin int = real (6)
real - real
arcos int - real (6)
real - real
artan int - real (6)
real - real

- 110 -

Timing (Usec (#cycles))

22.75 (182 (22)

248 (1984)
152 (1214)
22.75 (182)
246 (1965)
149 (1195)
22.75 (182)
274 (2189)
177 (1419)
423 (3387)
290 (2321)
194 (1551)
25 (197)

25 (201)
S061 (40485)
4964 (39715)
4868 (38945)

6.5 (52)
10 (79)

7.5 (62)

10 (79)

1969 (15754)
1853 (14826)
2113 (16907)
1997 (15979)
2978 (23824)
2862 (22896)
1612 (12894)
1496 (11966)
@y

_@1)

4112 (32894)
3996 (31966)
4049 (32394)
3933 (31466)
8163 (65307)
8047 (64379)
3725 (29798)
3609 (28870)
3745 (29960)
3629 (29032)
1836 (14684)
1720 (13756)

152 (1215)
129 (1035)

154 (1233)
132 {1053)

138 (1107)
116 (927)
201 {1605)
141 (1131)
119 (951)

2699 (21589)
2639 (21115)
2617 (20935)

11 87)

10 (79)

1497 (11972)

1454 (11635)
1541 (12324)
1498 (11987)
1174 (9390)
1132 (9053)
296 (2370)

254 (2033)

1165 (9322)
1123 (8985)
1180 (9436)
1137 (9099)
1437 (11498)
1395 (11161)
1861 (14886)
1819 (14549)
1913 (15306)
1871 (14969)
1531 (12246)
1489 (11909)

Ap. C Advanced Node Set Definition

C.5.2 Logical and Set

Mnemonic Op input Types Output Types Timing (usec (#eycles))
diadic
AND A bits bits bits 27+3A+4m (216+22A+34m) (19)
IOR v bits: hits bits 25+4n (206+34n)
XOR @ bits bits bits 25+4n (206+34n)
IMP = bits bits bits 28+3A+4m (224+22A+34m)
EQV = bits bits bits 27+3A+4m (216+22A+34m)
NQV #= (9 bits bits bits 25+4n (206+34n)
TSB test bit int bits bits 26 (205)
STB set bit int hits bits 26 (205)
CLB clear bit int bits bits 26 {205)
monadic ’
NOT — bits - bits S+4.5n (72+36m)

C.5.3 Relational

diadic
EQ =
NE =
GE 2
GT >
LE <
LT < int int bits 16.9 (135)
int real bits (1) 212 (1699) 64.9 (519)
real real hits 86.7 (694) 26.1 (209)
char char hits 27.4 (219
CPT compare types
any any bits 5.6 (45)
€.5.4.Sequence
monadic
SUC suce
PRE pred char - char 6.6 {53)
int - int 10.4 (83)
C.5.5 Stream
monadic
BRA bracket <mnp.0 -> out; eos ->» out>
any - any, eos 5.8 (46)
UNB unbracket <if type_of (inp.0) # eos then inp.0 -> out>
any - any {— eos) 5.5 (44)
head
HD head <head of stream(inp.0) -> out>
any - any {— eos) _ 2D
tail
TL tail <tail of stream(inp.0) -> out>
any - any {— eos) _@GD
stream
STS stream store <for each element of stream(inp.0) copy of inp.1 -> out>
any - any (- eos) _an
CORS
CON cons stream cons(inp.0, inp.1) > out
any any any _ 2D

- 11 -

Ap. C Advanced Node Set Definition

C.5.6 Type Coercion
Mnemonic Op Input Types Qutput Types
monadic
ORD ord int - int
char - int
CHR chr int - char
char - char
RND round int - int
real - int
TRNMN ounc int - int
real - int
FL.T float int - real
real - real
C.5.7 Storage
storage
) storage
store <inp.0 is stored>
any - ao output
retrieve <copy_of_last inp.0 -> out (10)>
- any any
.5.8 Replicate and Identity
monadic
bup dup any - any any
REP rep any - any.., (11)
merge
ID identity <merge(inp.0, inp.1) -> out>

any

The identity function may be used to enforce explicit merging of two arcs onto one arc without using the

any any

communications network to do so. This merge is non-strict and non-reentrant.

C.5.9 Path Control

diadic
PRS presence <on inp.0, inp.1 then true -> ou>
any any bits
PIT pass if true <if inp.1 then inp.Q -> out>
any bits any
PIF pass if false <if —inp.1 then inp.0 -> out>
any bits any
PIP pass if present <on inp,1 then inp.0 -> out>
any any any
Swi switch <if inp.1 then inp.0 -> out.} else inp.0 -> out.0>
any bits any any
SYN synchronise <on inp.9, inp.1 then inp.0 -> out.0; inp.1 -> out. 1>
any any any any
non-strict diadic
ARB arbitrate <earlier of inp.0, inp.1 -> out.0, laver -> out.1>

any

any any any

- 112~

Timing (usec (#eycles))

3.3 (26)
12.5 (100)
13.1 (105)
3.3 (26)
3.3(26)
110 (880)
3.3 (26)
117 (939)
121 (966)
7.8 (62)

155 (1243)

78.5 (628)
61.9 (495)

*(20)

13 (10

3.8 (30)
- (1)

- QD

2.3 (18)
17 (136)
17 (136)
1.3 (10)
16 (128)

- 21

- @n

Ap. C Advanced Node Set Definition

Mnemonic Op Input Types Output Types Timing (usec (#cycles))
protected (initially unprotected)
PRT protection
passing <if unprotected{inp.0) then inp.0 -> out; protect(inp.0)>
any - any _ 2D
blocking <if protected(inp.0) then quene(inp.0)>
any - no output —(21)
clearing <on inp.1 then unprotect(inp.0) (13)>
- any - no output _ 20
refriggering <on inp.1, protected(inp.0) then inp.0 -> out (13>
- any any 20
EMC ¢ager merge control
passing <if unprotected(inp.0) then inp.0 -> out.0, out.1; protect(inp.0)>
any (12) - any (12) any (12) 2
blocking <if protected(inp.0) then queuve(inp.0)>
any (12) - no cutput _(2n
clearing <gon inp.1 then unprotect (inp.0); (13)>
. any 1o output - 2h
retriggering <on mp.1, protected(inp.0) then inp.0 -> out.0, out.1 (13)>
- any any {12) any (12) 2D
LMC lazy merge control
passing <if unprotected(inp.0) then
if inp.0 then inp.0 -> out.0 elge out.1; protect(inp.0)>
any (12) - any or any (12) 2D
blocking <if protected(inp.0) then quene(inp.0)>
any (12) . - 1no output ¢y
clearing <pn inp,1 then unprotect {inp.0); (13>
- any no output 2
retriggering <on inp.1, protected(inp.0) then if inp.0 then inp.0 -> out.0 glse out.1; (13)>
- any any or any {12} 2D

Switching and passing of tokens is conditional on the least significant bit of the bit-string (bits) token on
inp.1. The internal convention adopted for generated true and false values is all bits set for true results and all bits.
cleared for false resuits,

C.5.10 Token Sfructure
monadic
D decode <decode(inp.0) -> out>
any - any... (14) _2n

The fields of the input token are returned as a stream of tokens. A specific use of this node is to decode ?
tokens. The inverse funciion, which may be used when forming graphs, has not yet been implemented.

C.5.11 Priming

first monadic

FIR first
passing <if not seen(inp.G) then inp.0 -> out; seen(inp.0)>
any - any 1.3 00
blocking <if seen(inp.0) then discard(inp.0)>
any - 110 Output *(20)
clearing <on inp.1 then not seen(inp.0)>
- any O Guiput *(20)

-113-

Ap. C Advanced Node Set Definition

Mnemonic Op Input Types Output Types Timing (usec (#eycles))
PRM prime
priming <if not seen(inp.0)
then literal, inp.0 -> out; seen{inp.0)>
any any (15) any... (16) 7.3 (58)
passing eise inp.0 -> out>
any - any 4.3 30y
clearing <gn inp.} then not seen(inp.0)>
- any 1% output * (20

The first and prime functions may be used for priming shared subgraphs. Both of these functions may be
reset by a token of any type on inp.1. If not reset, state information (indicating seen{inp.0}) wiil be retained in the
matching store, i.e., an unclean graph will result.

(.5.12 Destination
diadic
STb set destination <inp.0 -> [inp.1]>
any dest any (17 6 (48)

As this node and the nodes of C.3.3 change the connectivity of the graph dynamically and thus introdnce
nondeterminism, they should be used with some care.

C.5.13 Colour

monadic
YLC vield colour <inp.0 with colour O -> out.0; colour of inp.(-> out. 1>
any - any colour 4.8 (38)
diadic
STC set colour <inp.0 with colour inp.1 -> out>
any colour any 6 (48)
(.5.14 Shared Subgraphs (1)
monadic {always with literal occurrence/link)
A arg eny <inp.0 with copy newcopy -> out>
any occur any 10.8 (86}
R return entry <pn inp.! then link <occurrence, dest> -> out>
link any link 12 (96)
diadic
E exit <inp.0 with copy newcopy -> [inp.1.dest]>
any link any 10.5 (84)

Argument tokens for the subgraph are provided by arg-entry (A) nodes. Appropriately wiggered (by a
subgraph argument for example) return-entry (R) nodes provide the destinarions to which exit (E) nodes send
subgraph result tokens. Arg-entry and return-entry nodes are associated with the invoking context. Exit nodes are
associated with the body of the shared subgraph itself.

On entering a shared subgraph the token’s copy number is computed as:
newcopy = {(eldcopy * maxoccurrence) + OCCUIIence

On exiting, the copy is computed as;
newcopy = (oldcopy - link.occurrence) div maxoccurrence
(if E receives a link)

If the new copy (or colour) is not zero, then the copy presentt/coloured bit is set in the result token’s

destinauon fields and rewcopy/newcolour is appended. Occurrence is the number of the static graph instance at the
cailing graph level.

-114 —

Ap. C Advanced Node Set Definition

C.5.15 Shared Subgraphs (2)

Mnemonic Op Input Types Ountput Types Timing (Usec (#cycles))
monadic _
CRC create colour <on inp.1 then unigue colour qualified by optional inp.0 -> out>
occur any colour 2D
SRL set return link <on inp. 1 then environment <colour inp. 1, literal dest> -> out>
link colour env _ 2D
diadic
STC set colour <inp.0 with colour inp.1 -> out>
any colour any - @1
E exit <inp.0 with colour env.colour -> [inp.1.dest}>
any env any 10.5 (84)

These functions form an alternate context mechanism that relies upon unique (nonrecurring) colours as
opposed to computed (recurring) copy numbers. CRC generates a unique colour which is appended to arguments by
S§TC nodes and used by SRL nodes to generate environment (return address) tokens. The advantage of using
nonrecurring tags is that some code templates may be greatly simplified and run much more efficiently, e.g., lazy
merge macros can be eliminated altogether, to be replaced by a simple merge operation. In addition, graph
snravelling 1s more effective with nonrecurring tags.

C.5.16 Predefined Nodes

A number of system nodes are predefined in every processing element. In addition, input and output nodes
are also predefined, but are associated with specific devices which are in turn associated with specific processing
elements; this association varies between installations and ensures that resource managers can handle i/o sireams
without fear of garbling them through multiple accessing,

C.5.17 System Nodes

Non ifo system node names are reserved, with their node descriptions existing in all processing elements; e
is the processing element number.

Although a particular system node may be referred to at 2 namber of places in the graph, it represents a
single resource. Multiple referencing therefore implies indeterminate merging on the node’s input points. Unless this
is intentional, the node should be referenced once only within an encapsulating resource manager.

monadic
e.-1 Node Store <inp.0 -> node store>
node - no output .. (24)
e.-2 Set max occur <inp.0 -> max occurrence>
oceur - no output 24
e.-3 Exception Node
setting <set destination for exception tokens to inp. 1>
- dest no output _(24)
firing <exception tokens -> {last inp.1]>
- - ? _(25)
e.-4 Trace Node
setting <get destination for trace tokens to inp, 1>
- dest no output _ (24
firing <trace tokens -> {last inp. 11>
- - ? _(25)
e.-3 Clock Node
setting <set destination for timing tokens to inp.1>
- dest RO output (24
firing <timing tokens -> [last inp. 11>
- - bits (18) _2n

- 115 -

Ap. C Advanced Node Set Definition

C.5.18 Input and Output

As input and output nodes have physical devices associated with their node names, there will be restrictions
on the type of tokens produced or accepted by these nodes. Type and length information is preserved in all input and
output operations. Node n is the i/o stream identifier while element ¢ has the appropriate device driver,

Name Op Input Types Output Types Timing
monadic
e.n INPUT
seiting <get destination for device tokens to inp.J>
- dest no output 2D
reading <gn inp.0 then device.token -> [last inp.1]>
any - any (17) B¢y
e.n OUTPUT ’
setting <get destination for acknowledge to inp.1>
- dest no output 2y
writing <inp.0 -> device (data); inp.0 -> {last inp.1] (ack)>
any - any (17) sy

In the case of output nodes, provision of an acknowledgement destination on inp.! is optional.

~116-

Appendix D
EMULATION DETAILS

3.1 Emulator Hardware

This appendix includes descriptions of the prototype emulator hardware and the binary token and node
formats that it uses [40, 26]. Also included is a description of the textual intermediate target language (ITL) format
which also reflects a format designed around the 16 bit emulator hardware.

The prototype emulator board inchades two Motorola M68000 CPUs (referred to as CPU1 and CPU2) with
128k RAM and 4k ROM each. The RAM is directly expandable to 512k for each CPU simply by replacing the 64k
DRAM chips with 256k chips. CPU2 has access to an AMD9511 floating point arithmetic chip which may be used
to evaluate many of the primitive node functions. The four, 2k x 16 bit FIFOs are implemented using Signetics
8X60N Fifo Ram Controller (FRC) chips with two 2k x 8 static RAM chips each, CPU1 has control over the input
FIFO (for resetting, interrupt handling, etc.) and CPUZ2 has control over the output FIFO. Both CPUs have access to
the pipe and local FIFOs. In addition to the input and output fifos, both CPUs have extra external interfaces
consisting of one § bit input port and one 8 bit output port each.

As part of an exercise to evaluate the potential of a stand alone CPU module, CPU2 was programmed to
handle all of the defined nodes by itself, including floating point functions, so that the 9511 can be done without if
so desired. A tming analysis of the nodes implemented to date on the emulator is presented in appendix C.

The hardware and software of the emulator have been designed to allow either polled or interrupt driven
operation but it was quickly discovered in programming the emulator that polled operation of the CPU/FIFQ
interface would out-perform interrupt driven operation quite easily. It was found that the FIFOs were running near
empty (between tokens) z lot of the time and the cost of servicing FIFO empty interrupts was very high. In the time
taken to service one interrupt, the CPU could poll the FIFO several times over. Another, more subtle problem was
found with interrapt driven operation in that when the last word of a token was read out of a FIFQ, so that the FIFO
went empty, then the CPU was stalled from processing that token while it waited for the FIFO to go non-empty (an
event which would never occur at all if there were no more tokens). Again, this situation arose because the FIFQOs
ran much closer to empty than was anticipated.

3.2 Token Format

Tokens carry all intermediate results around the dataflow machine, as well as the initial graph descriptions
in the form of node type tokens. The currently defined token formats are:-

<token> re= <destination> [<tag>] <data>

«destination> = <element#> <tag present> <input peint> <nodef>
<tag> = <copy> | <colour> (see D.3)

<data> = <data header> <data value>

<element#> = 16 bit number, (can include an 8 bit Contexr fiekd)
<tag present> = 1 bit boolean: { false ltrue)

<input point> = 1 bit scalar; {011)

<node#> = 14 bit number

<data> = see below

- 117

Ap. D Emulation Details

D.3 Data Types

Tokens carry a <data header> field which describes the type and length of the data value which follows.
The <data type> field allows for dynamic type checking and coercion, in addition it greatly simplifies debugging and
tracing of graph execution. The <data length> field gives the number of 16 bit words taken up by the data value
itself. The currently defined data types are:-

<data> = <data header> <data value>

<data header> = <data type> <data length>

<data type> = & bit scalar (sce <data value>)

<data lengih> = § bit number (see <data value>)

<data value> = <real> | <integer> | <bits> | <chars> | <eos> |
<dest> | <colour> | <occur> | <link> | <env> |
<7> | <node>)

<real> = 32 bitreal

<integer> e 16 bit integer

<bits> = variable length bit vector (for sets and boolean arrays)

<chars> = variable length char vector (for chars and strings)

<eOs> = zero length end-of-stream

<dest> = 32 bit untagged token destination fields

<colour> = 32 bit tag (copy or colour)

<oceurs> = 8 bit occurrence, 8 bit maxoccurrence

<link> = <occur> <dest> {for old tagging scheme)

<env> = <colour> <dest> (for new tagging scheme)

<> = variable length exception (sec D.4)

<node> = variable length node description {see D.5)

Character strings (chars) with an odd number of characters are terminated by a null character whereas even
sized strings have no terminator, their finish being implied by the data length itself. A single ascii character is
represented as a null filled string of length one (word).

Bit strings (bits) are used for sets, packed boolean arrays and simple booleans. The least significant bii is
used as the value of a boolean. When two bit strings of unequal length arrive at a diadic node, the shorter bit string is
padded to the length of the longer string with leading zeros. The output of such a node will have a length equal to

that of the longest input.

D.4 Exceptions

Run time exceptions that occur as a result of a nodes execution or some other condition {errors, tracing,
¢te.) are handled by generating a token of type exception or 7. The variable length data field allows information as
to the source of the exception, the location of the error, the node function, and the data involved to all be carried on
the one token. The format for exception tokens is:-

<T> = <reason> <location> [<node header>] [<arguments>]

<reason> = 16 bit scalar (notdest, notcolour, notenv, notlink, nothits,
argtype, arglength, overflow, underflow, emptystore, nonode,
msover, nsover) (see reference {25] for further details)

<location> = <dest> [<tag>] (the original location of the exception)

<node header> 1= (the header of the exception generating node, if any, see D.5)

<grguments> = <data vatue> [<data value>] (the original input(s), if any)

- 118 -

D.5 Nodes

Ap. D Emulation Details

The loading of a dataflow graph into the multiprocessor is achieved by directing binary tokens of type node

to the predefined node-store node in each processing element which uses that node. The binary node format is:-

<node> tx= <node#> <node header> [<literal>] [<dest™>] [<dest*>] [<link>]

<nodet> = 14 bit number (bits 14 and 15 not used)

<node header> = <one input> <data present> <trace> <function>

<ome input> = 1 bit flag

<data present> = 1 bit flag

<trace> = 1 bit flag

<extended> = 1 bit flag (indicates an ¢xtension, see <link>)

<funcdon> = 11 bit scalar {see appendix C for defined nodes)

<literal> = <data> (optional literal data saved in node store)

<dest*> = <dest> (with <tag present> = (1)

<link> b 16 bit pointer (for nodes longer than 5 words)
D.6 I'TL Format

The intermediate target language, or I'TL, is an ascii representation of dataflow machine graphs and priming
tokens. Each line in an ITL file describes either a node or a priming token, special entries to set simulation
parameters will not be described here but can be found in {23].

<ITLNODE:> = N <element#> <node#> <TR> <IN> <DP>

<MNEM:> [<ITLDATA>] [<ITLDEST>] [<ITLDEST>]
<TR> = : 1* (irace this node)
<IN> = FIT (this node has one input, {matching function})
<DP> = F1T (this node has literal data present)
<MNEM> = 1-3 char string (see appendix C for defied mnemonics)
<ITLDATA> = ascii type and value (of the literal data)
<ITLDEST> = <element#> <node#> <input point>
<[TLPRIME> = T <ITLDEST> <ITLDATA>

-119 -

REFERENCES

m

(2]

(3]

{4]

(5]

(6]

I
(8]

(9]

{10]

[11]

123

[13]

[14]

{15]

[16]

{17]

(18}

(19]

D. Abramson and G.K. Egan, “The RMIT Data Flow Computer: A Hybrid Architecture”, Dep. Comm, and
Elecn. Eng., Royal Melbourne Institute of Technology, Tech. Rep. TR-112-057R, 1987.

D. Abramson, G.K. Egan, M.W. Rawling, and C. Baharis, “The RMIT Data Flow Computer: Benchmarks”,
Dep. Comm. and Elecn. Eng., Royal Melbourne Institute of Technology, Tech. Report TR-112-058R, 1987.

D. Abramson, G.K. Egan, M.W. Rawling, and A. Young, “The RMIT Data Flow Computer: The
Architecture”, Dep. Comm. and Elecn. Eng., Royal Melbourne Institute of Technology, Tech. Report TR-
112-061R, 1587,

W.B. Ackerman, “Dataflow Languages”, JEEE Computer, vol. 15, no. 2, Feb. 1982, pp. 50-69.

M. Amamiya and R. Hasegawa, “Dataflow Computing and Eager and Lazy Evaluations™, New Generation
Computing, 2, 1984, pp. 105-129,

Arvind and D.E. Culler, “Data-flow Architectures”, Laboratory for Computer Science, Massachusetis
Institute of Technology, Tech. Memo TM-294, 1986,

Arvind and K.P. Gostelow, “The U-Interpreter”, [EEE Computer, vol. 15, no. 2, Feb. 1982, pp. 42-50.

Arvind, K.P. Gostelow, and W. Plouffe, “An Asynchronous Programming Language and Compating
Machine”, Dep, of Information and Computer Science, University of Catifornia, Irvine, Dec. 1978,

Arvind and R.A. Iannucci, “Instruction Set Definition for a Tagged-Token Data Flow Machine”,
Computation Structures Group Memo 212-3, Laboratory for Computer Science, Massachusetts Instinute of
Technology, Sep. 1982,

Arvind and R.A. lTannucci, “A Critique of Multiprocessing von Neumann Style”, in Proc. 10th Ann. Symp.
Computer Architecture, Stockholm, June 1983, pp, 426-436.

Arvind and R.E. Thomas, “I-structures: An Efficient Data Structure for Functional Languages”, Laboratory
for Computer Science, Massachusetts Institute of Technology, Tech. Memo TM-178, 1981.

P. Barahona and J.R. Gurd, “Simulated Performance of the Manchester Multi-Ring Dataflow Machine™, in
Parallel Computing '85, M. Feilmeier et al (Eds.), pp. 419-424,

AL Catro and J.R. Gurd, “Nondeterministic Dataflow Graphs”, Information Processing 80, $.H. Lavington
(Ed.), North Holland Publishing Co., 1980, pp. 251-6.

M. Chase, “Data Flow Processor Speeds Imaging Tasks”, Electronic Imaging, Dec. 1984, pp. 42-46,

M. Comish, D.W. Hogan, and 1.C. Jensen, “The Texas Instruments Distributed Data Processor”, in Proc.
Louisianna Computer Exposition, Lafayette, La., March 1979, pp. 189-193,

J.G.D da Silva and 1. Watson, “Pseudo-associative Store with Hardware Hahing”, JEE Proc., Vol. 130, Pt
E, no. 1, Jan. 1983,

AL, Davis, “The Architecture and System Method of DDMI1: A Recursively Structured Data Driven
Machine”, in Proc. 5th Ann. Symp. Computer Architecture, New York, 1978, pp. 210-215,

AL, Davis, “A Maximally Concurrent, Procedural, Paralle] Process Representation for Distributed Control
Systems”, Tech. Report UUCS-78-108, Dep. Comp. Science, University of Utah, July 1978.

1L.B. Dennis, G.A. Broughton, and C.K.C. Leung, “Buiiding Blocks for Data Flow Prototypes”, in Proc. 7th
Ann. Symp. Computer Architecture, LaBoule, France, May 1980.

- 121 -

References

[20)

(21]

(22]

{23}

124

(251

{26]

27

(28]

(29]

(30]

31

1321

(33]

[34]

[35]

[36]

(37]

[38]

[39]

J.B. Dennis, G.R. Gao, and K.W. Todd, “Modeling the Weather with a Data Flow Supercomputer”, IEEE
Trans. Computers, vol. C-33, no. 7, July 1984, pp. 592-603.

J.B. Dennis and D.P. Misunas, “A Preliminary Architecture for a Basic Data-Flow Processor”, in Proc. 2nd
Ann. Symp. Computer Architecture, New York, May 19735,

D.M. Dias and J.R. Jump, “Packet Switching Interconnection Networks”, IEEE Computer, Dec. 1986, pp.
43-53,

G.K. Egan, “FLO: A Decentralised Data-flow Syster, Parts 1 & 27, Internal Document, Dep. Computer
Science, University of Manchester, 1980.

G.K. Egan, “Data-flow: Its Application to Decentralised Control”, Ph.D. dissertation, Dep. Computer
Science, University of Manchester, 1979.

G.K. Egan, “The RMIT Data Flow Computer: Token and Node Set Definition”, Dep. Comm. and Elecn.
Eng., Royal Methourne Institute of Technology, 1987.

G.K. Egan, C. Baharis, ML.W. Rawiing, and A. Young, “Royal Melboume Institute of Technology Data-
flow Project”, in IREE Proc. 2nd Australian Computer Engineering Conference, Sydney, May 1986.

D.D. Gajski, D.A. Padua, D.J. Kuck, and R.H. Kuhn, “A Second Opinion on Dataflow Machines and
Languages”, JEEE Compudter, Feb, 1982, pp. 58-69.

JR.W. Glauert, “A Single-Assignment Language for Data Flow Computing”, M.Sc. dissertation, Dep.
Computer Science, University of Manchester, Jan. 1978.

J.R. Gurd, C.C. Kirkham, and I. Watson, “The Manchester Prototype Dataflow Computer”, CACM, 1985,
vol. 28, no. 1, Jan, 1985, p. 34,

I.R. Gurd, I. Watson, and J.R.W. Glauert, “A Multi-Layered Dataflow Coniputer Architecture”, Manchester
Dataflow Group Report, July 1978.

I1.R. Gurd, P.C. Treleaven, and 1. Watson, “A Data Flow Computer Architecture”, Manchester Datafiow
Group Draft Report, 1977.

R.P. Hopkins, P.W. Rautenbach, and P.C. Trelevean, “A Computer Supporting Data Flow, Control Flow
and Updateable Memory”, University of Newcastle upon Tyne, Tech. Report No 144, Sep. 1979.

P.E.C. Jones, B.P. Kidman, and R. Morello, "Code Generation from Expressions in a Dataflow Language”,
In Proc. ACSCS, Aust. Comp. Science Conf., 19835.

P.E.C. Jones and B.P. Kidman, “Common Subexpression Detection in Conditional Expressions in a
Dataflow Language”, In Proc. ACSC9, Aust. Comp. Science Conf., 1986,

J. McGraw, 8. Skedzielewski, et al, “SISAL: Streams and Iteration in a Single Assignment Language,
Language Reference Manual”, Lawrence Livermore National Laboratory, Livermore, California.

D.P. Misunas, “Deadlock Avoidance in a Data-Flow Architecture”, Computation Structures Group Memo
116, Massachusetts Institute of Technology, Feb. 1975,

R.S. Nikhil, K. Pingali, and Arvind, “1d Nouvean”, Computation Structures Group Memo 263, Laboratory
for Computer Science, Massachusetts Institute of Technology, July 1986,

A. Plas et al, “L.LAU System Architecture: A Parallel Data-driven Processor Based on Single Assignment”,
in Proc. 1976 Int. Conf. on Parallel Processing, pp. 293-302.

M.W. Rawling and C.P. Richardson, “The RMIT Data Flow Computer: DL User’s Manoal”, Dep. Comm.
and Eleen. Eng., Royal Melbourne Institute of Technology, Tech, Report TR-112-(59R, 1987.

- 122 -

[40]

{413

[42}

[43]

[44]

145]

[46]

47

[48)

[49]
(50]

(51}

(521

[33]

References

M.W. Rawling and E.A. Zuk, “A Dataflow Processing Element Emulator™, 4th Year Design Manual, Dep.
Comm. and Elecn. Eng., Royal Melboumne Institute of Technology, 1982.

C.P. Richardson, “Object Recognition using a Data-Flow Machine: Algorithms for a Laser Range-finder”,
M.Sc. dissertation, Dep. Computer Science, University of Manchester, 1979.

C.P. Richardson, “Manipuntator Control Using a Dataflow Machine”, Ph.D. dissertation, Dep. Computer
Science, University of Manchester, 1981,

J. Sargeant, “Efficient Stored Data Structures for Dataflow Computing”, Ph.D. Thesis, University of
Manchester, April 1985.

T. Shimada, K. Hiraki, K. Nishida, and S. Sekigucki, “Evaluation of a prototype data-flow processor of the
SIGMA-1 for scientific computations”, in Proc. 13th Ann., Symp. Computer Architecture, pp. 226-234.

3. Skedzielewski and JL.R.W. Glauert, “IF1, an Intermediate Form for Applicative Languages”, Lawrence
Livermore National Laboratory, Livermore, California, June 1984.

V.P. Srini, “A Faolt-Tolerant Dataflow System”, I[EEE Computer, March 1985, pp. 54-68.

A. Takeuchi and K. Furukawa, “Parallel Logic Program Languages”, in Lecrure Notes in Comp. Science no.
225, G. Goos and J. Hartmanis (Eds.), 1986, pp. 242-254,

K.R. Traub, “A Compiler for the MIT Tagged-Token Dataflow Architecture”, M.Sc. dissertation, Dep.
Elec. Eng. and Comput. Sci., Massachusetts Institute of Technology, Aug. 1986.

K. Ueda, “Guarded Homn Clauses”, D. Eng. dissertation, University of Tokyo, Graduate School, 1986,

K.5. Weng, “Stream Oriented Computation in Recursive Data-Flow Schemas”, Laboratory for Computer
Science, Massachuseits Institute of Technology, Tech. Memo 68, Oct. 1975.

P.J. Whitelock, “A Convention! Language for Dataflow Computing”, M.Sc. dissertation, Dep. Computer
Science, University of Manchester, 1978,

A. Young, “Interconnecting Dataftow Machines”, M.Eng. thesis {to be submitted), Dep. Comm. and Elecn.
Eng. Royal Melboume Institute of Technology, 1938.

T. Yuba and H. Kashiwagi, “Japanese Project for Supercomputing Systems”, in Parallel Compuiing 4,
Elsevier Science Publishers, North-Holland, 1987.

-123 -

