Stress Analysis of
Highly Jointed Rock
Using Parallel Processing

Technical Report 31-011

G.K. Egan
MA. Coulthard*
W.Heath

*CSIRO
Division of Geomechanics
Mount Waverley 3149

Version 2.0 Original Document 1/3/90

Key Words: parallel processing, seismic modelling, distinct element method

Abstract:

Computational stress analysis is now widely used in geomechanics for back analysis of
observed rock mass behaviour around surface and underground excavations and as a tool
for excavation design in mining and civil engineering. The distinct element (DE) method,
represents a rock mass as a discontinuum, and has been shown to be more realistic than
finite element (FE) or boundary element (BE) (continuum) methods for modelling systems
such as subsiding strata over underground coal mine excavations. In this initial study a DE
code been implemented in the applicative parallel processing language SISAL, explicit
parallel Pascal and compared with the performance of the original FORTRAN
implementation The work presented here is part of a larger study into the implementation
of DE methods on parallel computer systems.
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1. Introduction

Computational stress analysis is now widely used in geomechanics for back analysis of
observed rock mass behaviour around surface and underground excavations and as a tool
for excavation design in mining and civil engineering. The distinct element (DE) method,
which represents a rock mass as a discontinuum, has been shown to be more realistic than
finite element (FE)} or boundary element (BE) (continuum}) methods for modelling systems
such as subsiding strata over underground coal mine excavations. However, whereas
even 3D FE and BE analyses can now be performed readily on engineering workstations
or the more powerful personal computers, the DE method generally requires orders of
magnitude more computer processing time for analyses of comparable complexity. This
has so far prevented the DE method from being applied widely in excavation design in
industry.

Most DE codes are based upon an explicit time integration of Newton's laws of motion for
each DE, usually involving many thousands of time steps or solution cycles in a full
analysis. The explicit numerical method implies that, within each cycle, calculations for
each DE can be carried out in parallel. With the growing availability of moderately priced
medium range multiprocessors, multiprocessor workstations and parallel language
systems there is the potential to obtain satisfactory performance at a reasonable cost.

In this paper we develop parallel processing versions of a relatively simple 2D DE stress
analysis code. This code, originally implemented in FORTRAN, has been implemented in
SISAL a modern applicative language, and Pascal an imperative language.

The changes made to the program and its translation into SISAL and Pascal will be
outlined, times for the original SISAL and Pascal versions reported, and some preliminary
conclusions drawn regarding the usefulness of various parallel processing options for DE
stress analysis codes.

2, The Distinct Element Method

The DE method of stress analysis was introduced in [1] to deal with problems in rock
mechanics which could not be treated adequately by the conventional continuum methods.
The earliest DE programs (e.g. program RBM in [2]} assumed that the DEs were rigid, so
that all deformations within the system took place at the DE interfaces. A second program
described in {2], SDEM, allowed modelling of three simple modes of deformation of each
DE - two compressive and one shear mode. The DE programs which are most widely
used at present are UDEC [3] and 3DEC [4]; the DEs in each of these may be modelled as
fully deformable via internal finite difference zoning.

2.1 Theoretical basis

Most DE programs are based on force-displacement relations describing DE interactions and
Newton's second law of motion for the response of each DE to the unbalanced forces and

moments acting on it.

The normal forces developed at a point of contact between DEs are calculated from the
notional overlap of those DEs and the specified normal stiffness of the inter-DE joints.
Tensile normal forces are usually not permitted, i.e. there is no restraint placed upon opening

of a contact between DEs.

Shear interactions are load-path dependent, so incremental shear forces are calculated from
the increments in shear displacement, in terms of the shear stiffness of the joints. The

maximum shear force is usually limited by a Mohr-Coulomb or similar strength criterion.

1
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The motion of each DE under the action of gravity, external loadings and the forces arising
from contact with other DEs is determined from Newton's second law. A damping
mechanism is also included in the model to account for dissipation of vibrational energy in
the system.

The equations of motion may be integrated with respect to time using a central difference
scheme to yield velocities and then integrated again to yield displacements. The velocity
dependent damping terms have been omitted here for simplicity, but the same form of
equations hold even when damping is included.

uj(t+AD) = uj(t) + (TF;(0)/m +gp) . At (1)
u (t+AD) = Uy(t-AD + 1} (HHAD) . At 2)

where 1= 1,2 correspond to x and y directions respectively;
u; are the components of displacement of the DE centroid;

F; are the components of non-gravitational forces acting on the DE;
g; are the components of gravitational acceleration;
m is the mass of the particular DE.

The equation of rotation for each DE can be integrated similarly. Note that, in the integrated
equations, DE velocities and displacements are expressed explicitly in term of values at a
previous time and so may each be calculated independently.

The calculation cycle proceeds, with the calculated displacements being used to update the
geometry of the system, and thence to determine new DE interaction forces. These, in turn,
are used in the next stage of the explicit integration of Newton's equations.

This explicit time integration scheme is only conditionally stable. Physically, the time step
must be small enough that information cannot pass between neighbouring DEs in one step,
thus justifying the independence of the integrated equations of motion.

2.2 DECYL

DECYL is a simple program which analyses 2 dimensional systems of interacting, rigid
circular DEs of equal radius [5]. It is based on the same explicit integration algorithm used in
DE programs for practical stress analysis of highly jointed rock. DECYL. assumes that any
of the circular DEs comprising the system being modelled may be in contact with any other
DE; contact lists are not maintained and physical locality is not exploited. The diagramatic
representation of a DECYL. system is is shown in Figure 1. The general flow of computation
in DECYL is shown in Figure 2.

moment normal and shear forces

Figure 1, a DECYL system
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while not stable do
for jin 1 to no_DEs+1 do

foriin j+1 to no_DEs+1 do
if touching DE[i] and DE}j] then
compute normal force
if normal force > 0 then
compute moment
compute shear force
if slipping then
adjust shear force
resolve force components
accumulate forces and moments acting on DE[j} and DE[i]

integrate accelerations on DE[j]
compute new position of DE[j]

Figure 2. DECYL computational flow
3. Machines and languages
3.1 Machines

The machines used in this study were two Encore Multimax multiprocessor {one with four
XPC processors at ~4MIP each and the other with 20 slower APC processors at ~2MIP
each), an IBM RS6000/530 uniprocessor workstation and a Cray YMP. The IBM
workstation was chosen as its CPU performance will be representative of CPUs in future
medium cost multiprocessors. The Cray YMP single processor performance provides a
reference point.

3.2 Languages

The languages used in the study were SISAL, explicit parallel Pascal and, as a language
reference point, sequential FORTRAN.

SISAL [9] is an applicative language which has been targetted at a wide variety of systems
including uniprocessors, current generation muitiprocessors such as the Encore Multimax
and research dataflow machines {10]{11][12]. The textual form of SISAL, in terms of control
structures and array representations, (Appendix) provides a relatively easy transition for
those familiar with imperative languages and the optimising SISAL compiler (osc) from
Colorado has yielded performance competitive with FORTRAN [13]{14]. SISAL requires no
directives or annotation at the source level.

The SISAL compiler exploits loop concurrency. Loops with no dependencies between
cycles are 'sliced’ into several loops each over some some number of cycles of the original
loop. The number of slices is determined at runtime with the slices being executed
concurrently.

For the Pascal implementation we used the standard UNIX fork primitive and the parallel
programming primitives available in the Encore Multimax.

5. Results

The system used for the studies was a stack of 500 DEs for ten iterations. A 'movie of a
smaller system of 100 DEs over 8000 iterations is shown in Figure 3.
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DECY, iteration:2088

SECYL iteration:{4t0

BECYL iferat jon 8600

DECYL Hteraton: 1000

BECYL iterat jon: 3000

BECYL iterat jon: SO0

Figure 3. DECYL Movie
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5.1 FORTRAN

Some elementary optimisations were performed on the FORTRAN including the elimination
of division operations (Appendix A). The times (user+system) for unoptimised and
optimised FORTRAN versions on the Encore Multimax and RS6000 are shown in table 1.
. These optimisations were carried over to the SISAL. and Pascal versions. The run times for
FORTRAN are used for reference against the SISAL and Pascal results which follow.

System Compiler original optimised difference
Encore Multimax (XPC) £77-0 73.8 31.3 -58%
IBM RS6000/530 xIf -O 6.9 4.3 -38%

Table 1. unoptimised and optimised FORTRAN times

5.2 SISAL

DECYL was translated into SISAL (Appendix B). No particular difficulty was encountered
in this process as the original formulation in FORTRAN was well written with no side effects
through COMMON and EQUIVALENCE statements. These FORTRAN statements can
cause significant difficulties when recasting FORTR AN application codes into SISAL [16].
The speedup obtained for SISAL is presented in Figure 4.

" speedup 10

=R W s o sy

- Figure 4. Speedup of DECYL in SISAL (Encore)

Further improvement in SISAL performance is expected, reducing overheads due mainly to
the array construction and access mechanisms of the current implementation of SISAL.
SISAL permits structures to change size at runtime involving indirect access to matix
elements via a vector of pointers to each matrix row. There are also consequential memory
allocation overheads as structures are progressively constructed. The potential gains from
static allocation of structures have been acknowledged by the developers of SISAL and will
be seen in later SISAL versions [15].

5.2 Pascal

To amortise the startup cost of loop slices it is best to maximise the work deone for each slice.
The strategy then 1s to parallelise outer loops where possible; inner loops need only be
parallelised if the bounds of the outer loop are such as to not provide sufficient slices to load
the machine.
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The speedup for DECYL with the inner loop annotated explicitily (appendix () is shown in
Figure 5a and with the outer loop annotated (appendix D) in Figure 5b.

Figure 5. Speedup of DECYL in Pascal (Encore)

The collected times for SISAL, Pascal and FORTRAN on the YMP, IBM RS6000 and
faster four processor Encore Multimax are given in table 2a and times for the slower Encore

in table 2b.

FORTRAN
Sisal

Pascal seq
Pascal inner
Pascal outer

FORTRAN
Sisal

Pascal seq
Pascal inner
Pascal outer

cpus

FORTRAN
Sisal

Pascal seq
Pascal inner
Pascal outer

YMP 1 cpu

0.52
5.15
4.66

YMP 1 cpu

0.956 (97%)
33.4%
34.0%

163.0
75.1
104.3
85.3

User + Sytem (seconds) speedup in ()
RS6000/530

Encore (XPC) 1 cpu Encore (XPC) 4 cpus

4.25 31.3 -
11.78 57.9 257 (23
202 34.0 -
- 40.3 23.6  (1.7y*
- 34.6 9.0 (3.9)%
Wallclock (seconds) speedup in ()
RS6000/530 Encore {(XPC) cpu  Encore (XPC) 4 cpus
43 31.7 -
11.8 58.2 289
2.1 34.3 -
- 40.8 260  (1.6*
- 349 1.1 (3.D)F
(@)
User + Sytem (seconds) speedup in ()
4 8 16
970 (1.68) 73.0 (22) 420 (39 260 (63}
504 (2.0) 258 (40 260 (40)
427 20y 216 (40) 1.1 (.7) 7.9 (10.8)*
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Wallclock (seconds) speedup in ()

cpus 1 2 4 8 16
FORTRAN ?

Sisal 164.18 9824 (1.7y 741 (22) 433 (38 2604 (6.3)
Pascal seq 5.1

Pascal inner 96.9 532 (1.8) 292 (33 299 (3.2

Pascal outer 86.7 443 2.0y 237 @7 137 (633) 117 (1.4L)*

* systems heavily loaded
YMP FORTRAN compiler (¢f77 -Zp -Wf)
(b)

Table 1. Times and speedup () for 500 DEs and 10 time steps

6. Conclusions

This initial study has shown that it is possible to obtain good speedup on current
multiprocessors. These processors have relatively poor scientific performance but it is certain
that next generation processors will be greatly improved in this respect.

SISAL has performance competitive with FORTRAN and shows promise for implicit parallel
programming. Its portability over a wide range of current parallel and high performace
computer systems and next generation systems makes it attractive for studies in parallel
prograrnming.
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APPENDIX A: Optimised DECYL in FORTRAN

co0oo0Do0O00O000CO0000C0O000C0CO0O0O00000000CcO0000000000000600000000000

program decyl

This program was used by Dr. Loren Lorig at an internal workshop
on distinct element modelling at the Division of Geomechanics
in September 1985, just before he returned te the U.5. to join
Itasca Consulting Group, Inc., in Minneapolis

It is a very simple distinct element code, for 2-~D analysis of the
mechanical interactions of a number of cylinders with each other
and a fixed horizontal plane., (2-D implies that the axes of all
the cylinders are parallel with each other and with the fixed
plane; analysis is on a perpendicular plane through the system.)

The cylinders all have the same radius and are rigid. Their
elastic interactions are governed by normal and shear stiffnesses
{(which yield interaction forces according to the calculated
"overlap! at their points of contact). If the calculated shear
force exceeds the specified frictional strength, the cylinders
will slip at that point of contact; if a tensile normal force is
calculated at a contact, that contact will be 'broken®, i.e.
assumed zero tensile strength.

The equations of motion for the system are solved by explicit
numerical integration, with some imposed artificial damping to
represent loss of energy within the system and to prevent it
‘ringing' interminably.

In the case which i1s hard~coded into this version of the program,
twoe cylinders are resting on the horizontal plane, touching each
other. The third cvlinder is dropped from a point on the plane
of symmetry. After about 2000 cycles, the cylinders come to
rest, with the third one sitting between the other two on the
plane.

We will amend the code shortly to input the geometrical and othern
data, and to draw a simple plot ¢f the system of cylinders, as
rhe job runs or at the end of an analysis.

Variables:
ncyl = number of cylinders
{‘cylindexr' ncyl+l is the horizontal plane)

fn(i,j) = normal force between cylinders i and j

m{i,3j} = moment due to shear interacticn between i and j
du(i) = u-coordinate of centroid of cylinder i

dv(i) = v~ " " v " " "

da(i) = a-angle of cylinder from starting position

u{i) = u-component of velocity of " "

v (i) = yv— " n " " " ¥

w(i) = angular velocity of cylinder i

ddu{i)= increment in u—component of displacement of cylinder i
ddwv (i}= " "o " ' " " " "
gamma (1)= " " rotation of cylinder i

fxsum{i)= u(x)}—component of total force acting on cylinder 1
fysum{i)= v{y)~ " " " " " " " "

msum(i} = total moment acting on cylinder i1
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Optimisation G.K. Egan
Laboratory for Concurrent Computing Systems
Swinburne Institute of Technoloagy

rho = density

g = diameter of cylinders; r = radius

g = acceleration due to gravity

mu = goefficient of friction at contacts

mass = mass of cyclinders; moi = moment cf inertia

akn = normal stiffness at contacts; akn = shear stiffness
alpha = damping constant

tdel = time step

CaOaGooacno00eaganon

parameter {(ncyl=500)

parameter {iside=100}

parameter {(nn=ncyl-+l)

dimension fn{nn,nn), m{nn,nn), fxsum((nn}), fysum{nn), msum({nnj},
u{nn), vinn}, winn}, dua(nn), dvi{nn), gammai{nn),
ddu {nn), ddvi{nnj},
da (nn)

real m, msum, mass, mui, moi, rmoi, rmass

cgke

med{d, )= i-(i/3)*]

pi=4.*atan(l.)

rho=2000.

d=100.

rd=1.0/d

dsgr=d*d

r=d/2.

rr=2./d

g=-10.

mu=Q ., 1

mass=rho*pi*r*r

rmass=1,0/mass

moi=mass*xr*r/2.

rmoi=1.0/moi

akn=1.e%

aks=1.e9

frac=1.00

freg=0.2090

alpha=2 *pi*frac*freqg

tdel=2.*sqgrt (mass/akn) /10.

conl=alpha*tdeli/2.

ripluslconl = 1.0/ (1.0+conl)

Initial coordinates of centroids cof cylinders

centroid of (ncyc+lith cylinder located at -z,
to give effect of fiwxed horizontal plane at v=0
cgke stack of cylinders
do 222 i=1,ncyl
du(i)=mod (i, iside) *d
dv (i)={i/iside) *d+r
222 continue
duf{nn)=0.0
dv{nn}=-x

OO0 00
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Q00 0Q

o}

c%99

Initjalise forces, velocities etc.

deo 7 j=1,nn
do 8 i=j+l,nn
£fn(j,1)=0.
m{j,1)=0.
continue
fxsum(3}=0.
fysum{3)=0.
msum{j)=0.
u(3)=0.
v{j)=0.
w(3)=C.

ddu (j)=0.
ddv (31)=0.
gamma (3} =0.
continue

Set up counters for time integration stepping
- maximum no. of steps = its
kount used to print progressive results every 50 steps

its=10

iframes =1
ikount=its/iframes
kount=ikount

write (6, *)ncyl, its, iframes
write{6,102) alpha,mu

102 format (' Program decyl (L. Lorig 1985) with alpha =',£6.2,

. toand mu =',£6.2)
do 4 n=1,its
if {(kount.eq.ikount) then
do 998 ii=1,ncyl
write(6,*) n-1, r,du(ii),dv{ii),da(ii)
kount=0
endif
keount=kount+1
Loop over cylinders
do 3 j=1,ncyl
Place {(ncyc+i}th cylinder ‘opposite?® jth
du{nn)=du {3}
Set gamma for {ncyc+l)th so get no shear interaction between

Page

jth cylinder and flat plane if former is rolling rather than

sliding
gamma {nn)=-ddu (J) *rr
Look for interactions with cylinders with higher numbers
k=341
do 2 i=k,nn
dudif=du () -du (i)
dvdif=dv () ~dv (1)
is the cylinder (i) touching cyclinder (j) 72
z=dudifr*dudif+dvdif*dvdif
if{z.le.dsgr) then
rz=1./sgrt (z)
dudif=dudif*rz
dvdif=dvdif*rz
ddudif=ddu (i) -ddu (3)

11
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ddvdif=ddv (i) ~ddv (j}

c calculate the normal force fn(j,1i)
dfn=akn* (Gdvdif*dvdif+ddudif*dudif)
fn(j,i)=Ffn (i, i)+dfn
if{fn{(j,i).ge.0.) then

c calculate moment
theta= (ddvdif*dudif-ddudif*dvdif) *rd
dm=—aks* (gamma (3) +gamma {1) ~theta)
m{j, 1)=m(j, i) +dm

¢ calculate shear force
ft=m{3,i)*rr
< is slip occurring?

ff=mu*&n(j, 1)

abft=abs (ft)

if(abft.gt.ff) then
fr=ff*fr/abft
endif

m{j,i)=r*ft

ol calculate force components {(£x,fy)
fx=fn{j,1) *dedif~ft*dvdif
fy=fn {3, i) *dvdif+ft*dudif

c forces on cylinder 3
fxsum{j)=fxsum(j) +Ix
fysum () =fysum(j) +fy
msum () =msum{j) +m{j, 1)

ol reactions back on ¢ylinder j
fxsum{i)=fxsum{i)-fx
fysum(i)=fysum(i)~£fy
msum{i)=msum{i}+m{j, i)
endif
else
fn(j,1)=0.

m(j, i)=0.
endif
2 continue

c integrate accelerations to find displacements
u(dy={u{3)*{l.~conl)+({fxsum(j) *rmass) *tdel) ) *rlplusconl
v ={v{j)*{l.—conl)+ {{fysum{]) *rmass+g) *tdel) ) *riplusconl
WP ={w (1) * {1l —conl)+ {{msum(j) *rmoi} *tdel) ) *rlplusconl
ddu (3)=u{3) *tdel
Adv {3)=v {3) *tdel
gamma {J) =w (]) *tdel
du{jy=du{j)+ddu ()

dv (J)=dv {J) +ddv (J)
da {(j}=da {j) +gamma (3)
fxsum{j)=0.
fysum{j)=0.
msum () =0.

3 gontinue

4 continue
stop
end
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APPENDIX B: DECYL in SISAL

o

Original program decyl by Dr. Loren Lorig in FORTRAN.

Sisal G.K. Egan Laboratory for Concurrent Computing Systems 1930
Swinburne Institute of Technology loosely based on a version by Warwick
Heath.

@ e o

define main

type vegtor = array [reall; % Data rep. copiled from orig.
type dudv rec = recordidu, dv : real] % Just for output.

global sgrt{x: real returns real)

function main{ returns arraylarrayidudv recl])

for initial

% auto generate a stack of cylinders

necyl:integer = 500;

iside:integer := 100;

i,3rinteger;

itg:integer := 10;

n : integer := ncyl+l;

pi : real := 3.141592654;

rhe : real := 2000.0;

d : real := 100.0;

dd :real := d*4;

rd :real = 1.0/4;

r ; real := d/2.0;

rr: real := 1.0/r;

initialdu: vector := for i1 in 1,ncyl

returns array of real(i-(i/iside)*iside)*d end for;

initialdv: vector := for 1 in 1,ncyl
returns array of real{i/iside)*d+r end for;

g : real := —-10.0;

mu :real := 0,1;

mass : real := rho*pi*r*r;

rimass @ real := 1.0/mass;

moi : real := mass*r*r/2.0;

rmol: real = 1.0/moi;

akn : real := 1.0e3;

aks : real := 1.0e9;

frac : real := 1.0;

freg : real := 0.20;

alpba : real := 2.0*pi*frac*freq;

tdel : real := 2.0*sgrt(mass/akn)/10.0;

conl : real := alpha*tdel/2.0;

rlpiusconl:real := 1.0/(1.0+conl);

fn : arraylvector] :=
for 3 in 1,ncyl returns array of
for i in j+1,n
returns array cf 0.0
end for
end for;
m : array{wvector] := fn;
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:= array fill({(i,ncyl,0.0};
vector = u;

v i

w @ vector = u;

ddu : vector = u;

ddv : vector := 1;

gamma : vector = u;

du : vecter := initialdu;
dv : vector := initialdv;

iter : integer := 1;
cylinders : array[dudv_rec] :=
array fill{il,ncyl,recerd dudv_rec[du:0.0;dv:0.0]);

while (iter <= its) repeat % for number of iterations

fxsumij, fysumi, msumi, fn, m := for j in 1,ncyl

alldu : vector := array addh{cld du,o0ld duli]);

alldv : wvector := array_addh{cld dv,-r);

allddu : vector := array addh(cld ddu,0.0);

allddv : vector := array addh(cld QAdv,0.0);

allgamma : vector := array addh(cld gamma, {-old dduljl)/z);
fxsumiji, fysumii, msumji, fnji, mjii = for i in j+i,n

dudif : real := alldufjl] - alldulil:;
dvdif : real := 2lldvi[i] - alidvii]:
z : real := dudif*dudif + dvdif*dvdif;

% Interactions with other cylinders???
fxsumji, fysumiji, msumii, fnji, mii : real :=
if {z > dd | j = 1} then
0.0, 0.0, 0.0, 0.0, G.O

else
let
rz = 1.0/sqgrt(z);
zdudif :real := dudif*rz;
zdvdif :real := dvdif*rz;

ddudif :real := alldduli]l - allddul]jl:
ddvdif :real := allddv([i] - alidav[jl:
% calculate the normal force between 1 and j
dfn : real := akn * (ddvdif*zdvdif + ddudif*zdudif);
testfn : real := (old fnl3,1i}) + dfn;
retfzsum, retfysum, retmsum, retfn, retm : real :=
if {(testfn < 0.0) then
0.9, 0.0, 0.0, 0.0, 0.0
else
let
% Calculate moment
theta : real :=
{ddvdif*zdudif ~ ddudif*zdvdif) *rd;

dm : real := —aks *(allgammal[]j} + allgamma[i] - theta};

mii : real := old m[j, 1] + dw;
% Calculate shear force
testft : real := mii*rr;

% Is slip occurring

£ff : real := mu * testfn;
abft : real := abs(testit);

£t : real :=

14



Stress Anatysis of Highly Jointed Rock Using Parallel Processing

if (abft > f£1f)
alse testit
end if;

retmiji = r*ft;

% Calculate force components
(testfn*zdudif) -
{testfn*rzdvdif)

fx : real
fy : real :=
in
fx, fvy,
end let
end if;
in
retfxsum,
end let
end 1if;
returns
value of
value of
value of
array of
array of
end for;
returns
array of
array of
array of
array of
array of
end for;

retmii,

retfysum,

sum fxsumii
sum fysumii
sum msumji
fnidi
mii

fxsumii
fysum]ji
msumji
fnji
mji

de oe

el

u,v,w,ddu,ddv, gamma, du,dv:=
for 4 in 1, ncyl

wi,vi,wi,ddulj,ddvy, gammayj, duj, dvi:=

if 3=1 then

testfn,

retmsumn,

Page

then ff * testft / abft

(fx, £y)
{ft*edvdif);
+ (ft¥zdudif);

retmji

retfin, retm

Now integrate accelerations to find displacements

({(fxsumi[d]*rmass) *tdel} * rlplusconl,

{({fysumi[i]*rmass+g) *tdel)

* riplusconl,

{ (msumj [31*rmoi) *tdel} * rlplusconl,

0.¢,
G.0,
{(masumj[j]*rmoi) *tdel}
0.0,
6.C
else
let
tuj:real:=(old ul{ji*(1l.0-conl)

tvirreal:={cld v{jI*(1.0-conl)
twisreal:={(old wi{jl*(1.0-conl)
tddud:i=tui*tdel;
tddvi:=tvi*tdel;

tgammaj:~twi*tdel
in

* riplusconl,

+ {(fxsumj[3] *rmass) *tdel})

*riplusconl;

+ ({fysumi{j]*rmass+g) *rdel)
*rlplusconl;

+ ((msumiljl*rmol) *tdel))
*rlplusconl;

15
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tuj,
tvi,
twi,
tdduj,
tddvi,
tgammad,
old du{jl + tddui,
0ld dv{jl + tddvj
end let
end if;
returns
array of uj
array of wvij
array of wj
array of dduj
array of ddvj
array of gammai
array of duj
array of dvj

end for;
iter := old iter + 1;
cylinders := for j in 1,ncyl
returns

array of record dudv_recldu:duijl; dv:dv[3jl]
end for;
returns
array of cylinders when (mod{iter,its) = 0)
end for % number of iterations
end function % main

Page
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Page

APPENDIX C: Explicitily annotated DECYL in Pascal - Version 1

program decyl {input, output);

{Original by L.Lorig 198% (visitor to CSIRO Geomechanics Melbh,Australia)}
{Pascal version by G.K.Egan 1950

Laboratory for Concurrent Computing Systems

Swinburne Institute of Technology |}

label

999;
const

ncyl
iside
nn
frames

type
lock

500;

100;

501 {ncyl+l};
1;

volatile char;

barrierrec
ptrhbarrier =

volatile array[0..31] of integerx;
“harrierrec;
var
ip,procs,p,i, jrniinteger;
rz,
Z,
dfn,
theta,
dm,
ft,
abft,
£F,
£x,
Ly,
dudif,
dvdif,
ddudif,
ddvdif;real;
shared
klock: lock:
k: integer;
init barrier,
acc_barrier:barrierrec;
fn,
m:
fxsum,
fysum,
msum,

array [1..on, 1..nn] of real;

Uy

Ve

Wy

du,
dw,
da,
A,
ddu,
ddv:
mass,
rmass,

array [1..nn}l of real;
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mu,

meil,

rmei,

pi,

rho,

d,

dsgr,

rd,

Iy

rr,

gy

akn,

aks,

frac,

freq,

alpha,

conl,

rlplusconl,

dn,

tdel:real;

kount,

ikount,

ii,
its: integer;

{DECLARE lock=volatile char; ptrbarrier="integer}

procedure spinlock(var l:lock); nonpascal;
procedure spinunlock({var l:lcck); nonpascal;

procedure fbarrier init(var b:barrierrec;count:integer;var pi:integer};
nonpascal;

procedure fbarrier(var b: barrierrec); nonpascal;

function fork:integer; nonpascal;

procedure wait (i:integer); nonpascal;

procedure exit (i:integer); nonpascal;

procedure new barrier{var b:barrierrec:count:integer}.var pid:integer};

begin
fbarrier init (b,count,pid);
end;

function nfork{nprocs:integer) integer;
var proc,child:integer;
begin
child:==-1;
proc:= nprocs — 1;
while (child <> 0) and {proc > 0) do
begin
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child:=fork;
if child <> 0 then
proc:=pred{proc);
end;
nfork:=proc
end;

procedure nijoin{id,nprocs:integer);
var j:integer;

begin
if id = 0 then
for 3 := 1 t¢ (nprocs — 1)} do
wait (0)
else
exit {0)
end;
begin

pi = 4.0 * arctan(l,0);
rho := 2000.0;

d := 1060.0;

rd:= 1.0/d;
dsqgr:=sqr (d) ;

r :=d / 2.0;

rr:=2.0/d;

g = — 10.0;

ma = 0.1;

mass := rho * pl * r * r;
rmass:=1,0/mass;

moi = mass * sgr(r) [/ 2.0:
rmoi:=1.0/moi;

akn = 1.0e9;

aks := 1.0e8;

frac := 1.00;

fregq := 0.200;

alpha := 2.0 * pi * frac * freg;
tdel := 2.0 * sgrtimass / akn) / 10.0;
conl := alpha * tdel / 2.0;
riplusconi:=1.0/(1.0+conl);
{stack of cylinders}
for i:=1 te ncyl do begin
dufi}:={1i mod iside) *d;
dv[il:=(1i/iside) *d+xr;
end;
dvinn} := - r;
{Initialise forces, velocities etc.}
for 3 := 1 to nn do

begin
for i := 1 to nn do
begin
fnid, 411 = 0.0;
wm[j, 11 := 0.0;
end;
dafj] :=0.0;

Exsum{j] := 0.0;
fysumi{i] := 0.0

’

Page
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msum| i)
ulJl]
vijl
wijl
ddufii =
ddvij] =
gamma [ ]
end;
its = 10;
ikount:=its div frames;
kount := ikount;
writeln(ncyl, ' ',its,’

i
D DD e

', frames) ;
writeln (‘procs ? ');
readln(preocs) ;

new barrier(init karrier,procs,p);
new rkarrier(acc_barrier,procs,p};

spinunlock (klock);
pr=nfork(procs):

for n := 1 to its do
begin {Locp over cylinders}
if p = ¢ then begin
if kount = ikount then
begin
(for j:= 1 to ncyl do
writeln{(n-1,' ', r,'
kount = §;
end;
kount
end;
for 3:= 1 to ncyl do
begin {Place {ncyc+i)th cylinder
if p=0 then begin
dufnn} := dufjl:

fodulil, !

r= keount + I;

fedviil,

‘opposite’

{Set gamma for {(ncyc+l)th so get no shear
ith cylinder and flat plane if former is

sliding}

gamma [nn] := - ddul(j] / x;

Page

"or,daljiliil

jthi

interaction between
rolling rather than

{Look for interactions with cylinders with higher numbers)

k =3 + 1;
end;

fharrier(init barrier) {(to protect k} ;

repeat
spinlock (klock);
ip:=k;
kr=k+1;
spinunlock (klock);

1f ip <= nn then begin
dudif := duljl - duiipl:
dvdif := dav[3j] - dviipl;
{is the cylinder [ip] toeouching

cyclinder [3] 72}

20
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z = dudif * dudif 4+ dvdif * dvdif;
if z <= dsqgr
then
begin
rz := 1.0/sqrt(z):
dudif := dudif * rz;
dvdif := dvdif * rz;
Addudif := ddufip] - ddul3];
ddvdif := ddvi{ip] ~ ddvl[3}:
{calculate the normal force fni{i,ipl}
dfn := akn * {(ddvdif * dvdif + ddudif * dudif):;
fn{j, ip} = fni{j, ipl + dfn:
if fnij, ipl >= 0.0
then
begin
{calculate moment}
theta := (ddvdif * dudif -~ ddudif * dvdif) * rd;
dm := — aks * (gamma[j]l + gammal[ip] - theta);
mij, ipl := m(j, ipl + dms
{calculate shear force}
ft = m{3, ip] * xrr;
{is slip occurring?}
abft := abs (ft); '
ff = mua * fn{j, ipl:
if abft > f£f then
fr = £f * £t / abft;

m{j, ipl := r * £t;
{calculate force components (fx,fv})}
fx = fnij, ipl * dudif - ft * dvdif;
fy := fni{j, ipl * dvdif + £t * dudif;
{forces on cylinder 73}
frsuml[3l = fxsum[3j] + £x;
fysum[3] := fysum[i] + £y:
msum{3j] := msumi{i] + m[3, ipl:
{reactions back on cylinder 3}
frsum[ip] = fxsumlip] - f£x;
fysum[ip] := fysumi{ip] - fy;
msum{ipl} := msum{ip]l + m{3j, ipl:
end
else
begin
fn(d, ipl = 0.0;
m{i, ipl := 0.0;
end
end
else
begin
fnljy, ip] := 0.0;
mii, ipl := 0.0;
end;
end;

until ip>= nn;

{integrate accelerations te find displacements}

fharrier (acc _barrier);

if p = 0 then begin

ul3] = (ui3d] * (1.0 = conl) + {((fxsumi{i] * rmass) * tdel)} *
riplusconl;
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v{3l = (v[j] * (1.C - conl)
wlil := (w{j]l * (1.0 - conl)
dduljl = uij] * tdel;
ddv ({3l := vi{j] * tdel;
gamma [j] := w{jl * tdel;
dufijl = duljl] + ddul3]l:
dviji := dvij] + ddv[3);
da[jl:=da([jl+gammal[j]l;
fxsum{j} := 0.0;
fysumi{i} = 0.0;
msum[3] := 0.0;
end,;

end;

end;
writeln('finished *,p:l);
nijoin{p,precs);
999:
end.

+

+

Page

({fysum[j] * rmass + g} * tdel))

rlplusconl;
({msum{j] * rmoi)
rlplusconl;

* tdel))

*

®

22



Stress Analysis of Highly Jointed Rock Using Parallel Processing Page 23

APPENDIX D: Explicitily annotated DECYL in Pascal - Version 2

program decyl (input, output);

{original by L.Lorig 1985 (visitor to CSIRC Geomechanics Melb.Australia)}
{translated to Pascal by G.K.Egan 1989

Laboratory for Concurrent Computing Systems

Swinburne Institute of Technology }

label
999;
const
ncyl = 500;
iside = 100;
nn = 501 {ncyl+li};
frames = 1;

type
lock = wvolatile char;
barrierrec = volatile array[0..31] of integer;
ptrbarrier = "barrierrec;
var
procs,pri, .k, nrinteger;
rz,
Zy
dfn,
garmmant,
dunn,
theta,
dﬂl,
ft,
abft,
£f,
£x,
fy,
dudif,
dvdif,
ddudif,
ddvdif:real;
shared
acclock, jlock: lock;
i global,
3 global: integerxr;
init_barrier,
end acc_barrier,
acc_barrier:barrierrec;
fn,
m: array [1..nn, 1..nn] of real;
fxsum,
£ysum,
msu,
u,
Vi
Wr
du,
dwv,
da,
gamma,
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ddu,
ddv: array [l..an] of real;
mass,
rmass,
mu,
moi,
rmei,
pi,
rho,
4,
dsqgr,
rd,
I(
rr,
g
akn,
aks,
frac,
freq,
alpha,
conl,
riplusconl,
dn,
tdel:real;
kcunt,
ikount,
ii,
its: integex;

{DECLARE lock=volatile char; ptrbarrier="integer}

procedure spinlocki{var l:lock); ncnpascal;
procedure spinunlock(var l:lock); nonpascal;

procedure fbarrier init(var b:barrierrec;count:integer;var p:integer);
nonpascal;

procedure fbarrier{var b: barrierrec); nonpascal;
function fork:integer; nonpascal;
procedure wait {(i:integer}); nonpascal;
procedure exit (i:integer); nonpascal;
procedure new barrier(var b:barrierrec;count:integer; var pid:integer);
begin
fharrier init (b,count,pid);
end;
function nfork (nprocs:integer) rinteger;

var proc,child:integex;
begin
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child:=-=1;
proc:= nprocs — 1;
while (child <> 0} and {proc > 0) do
begin
child:=fork;
if child <> 0 then
proc:=pred(proc) ;
end;
nfork:=proc
end;

procedure nijoin({id,nprocs:integer);
var j:integer;

begin
if id = 0 then
for j := 1 to (nprocs - 1) deo
wait {0)
else
exitc (0)
end;

begin

Pi 1= 4.0 * arctan{l.0);
rho = 2000.0;

d := 100.0;

rd:= 1.0/d;
dsgr:=sqr (d) ;

r =4/ 2.0;

rr:=2.0/d;

g = — 10.0;

mu = Q.1;

mass := rho * pi * r * r;

rmass:=1.0/mass;
moi = mass * sqgr{r) [/ 2.0;

rmoi:=1.0/moi;
akn := 1.0e9;
aks := 1.0e8;
frac := 1.00;

freq := 0.200;
alpha := 2.0 * pi * frac * freg;
tdel := 2.0 * sqgrtlmass / akn) / 10.0;
conl := alpha * tdel / 2.0;
riplusconl:=1.0/{1.0+conl);
{stack of cylinders}
for i:=1 to ncyl do begin
duli]:=(i mod iside) *d;
dvii]l:=(i/iside) *d+tr;

end;
dvinn] = - r;
{Initialise forces, wvelocities etc.}
for 3 := 1 to nn do
begin
for 1 = 1 to nn do
begin

fnlj, il := 0.0;
ml[3, 1] = 0.0;
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end;
dalj] :=0.0;
fxsum([j] := 0.0
fysum{j] := 0.0;
msum([3] = 0.0;

’

ufi] = 0.
viil =
wiijl :=
dduijl
ddvijl
gamma {j] :=

end;

its = 10;

ikount:=its div frames;

kount := ikount;

writeln(ncyl,"' ',its,' ',frames);

’

o oo

0;
L0;
0.0;

Lan T ai B o T i I o

]

writeln{'procs ? *};

readln (procs);

new barrier(init_barrier,procs,p};
new barrier(acc_barrier,procs,p);
new_barrier(endmacc_barrier,procs,p);

spinuniock (acclock)
spinuniock {(jlock);

pr=nfork (procs);

for n 1= 1 to its do
begin {Loop over cylinders}
if p = 0 then begin
if kount = ikount then

begin
{for k:= 1 to ncyl do
writeln(n-1,' ', r,' ',dulk],’
kount = G;
end;
kount := kount -+ 1;

J_glcbal:=1i;
ji global:=1
end;

fharrier (init barrier);

repeat
spinlock {jlock);
j:=3 global;
j _global:=j_global+l;
spinunlock {jlock);

if j <= ncyl then

trdvikl, ' t,daikl)gl

begin {Place (ncyc+l)th cylinder 'opposite' jth}

dunn := dulil;

Page

{Set gamma for (ncyct+tl)th so get no shear interaction between
ith cylinder and flat plane if former is reolling rather than

slidingi
gammann := - ddufi] /

26
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{Look for interactions with cylinders with higher numbers})
ko= 3 + 1;

for i:= k te nn de begin
if i = nn then
dudif := dulj] - dunn
else
dudif = dulj] - duli];
dvdif := dv{j] - dv[il;
{is the cylinder [i1] touching cyclinder {37 7}
z = dudif * dudif + dvdif * dvdif;
if z <= dsqgr

then
begin
rz := 1,0/sgrt{z);
dudif := dudif * rz;
dvdif := dvdif * rz;

ddudif := dduli] -~ ddulil:

ddvdif := ddv[i] - ddv[ijl:

{calculate the normal force fn[j,i]1}

dfn := akn * (ddvdif * dvdif + ddudif * dudif);

fn{j, i} := fnlj, i1 + dfn;
if fnlj, 1] »>= 0.0
then
begin
{calculate moment}
theta := (ddvdif * dugdif - ddudif * dvdif) * rd;
if i = nn then
dm := — aks * (gammal[j] + gammann - theta)
else
dm := -~ aks * (gammal[j] + gamma{il - theta}):
m{3, 411 = m[j, i] + dm;
{calculate shear force}
ft = m{3, i} * rr;
{is sl1i occcurring?}
abft = abs (£t}
ff = mu * fnij, il:

if abft > ££f then

ft = £f * ft / abft;
m{i, i} = r * £t;
{calculate force components (fx,fy}}
fx := fnl[j, 1} * dudif -~ £t * dvdif;
fy := £fn{j, 1} * Advdif + ft * dudif;
{forces on cylinder 7}

fxsumiil = fxsumi3] + £x;
fysum[i] := fysumi{ijl] + fy:
msumii] := msum{3j] + m([3j, 1]:

{reactions back on cylinder i}
spinlock (acclock);

fxsum[i] := fxsumii] - £x;
fysum{i] := fysumf[i] - fy;
msum{i} := msum{i] + m[3, i1;
spinunlock {acclock)};
end
else
begin

fnls, i1 = 0.0;
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m{j, 1] := 0.0;
end
end
else

begin
£n(j, 1] = 06.0;
mlg, 11 := 0.0;

end;

end;

end;

{integrate accelerations to find displacements}
until J>= nn;

fbarrier(acc_barrierj};

repeat
spinlock (jlock});
j:=33 global;
33 global:=3jj global+l:
spinunlock (i1lock);

if 3 <= ncyl then begin

ald] = {(u{j] * (1.0 - conl) + {(fzxsumlj] * rmass) * tdel)) *
rlplusconl;

v[ij] = {v[3] * (1.0 ~ conl) + {(fysuml[3] * rmass + g} * tdel)) *
rlplusc
onl;

w3l = {(wl[3j] * (1.0 ~ conl) + {((msumf{ij]l * rmoi) * tdel)) *
rlplusconl;

dduljl := uli]l * tdel;

ddvi{j] := v[i] * tdel;

gamma (1] = wl3] * tdel;

duljl := dulj] + ddul]l;

dv (il 1= dv(3i] + ddv[i]:

dal[j]:=dalj]+gammal[i];

Exsum[3] = 0.0;

fysum{3] := 0.0;

msua{j] := 0.0;

end;

until 3>= ncyl;
fbarrier(end_acc_barrier);
end;
writeln('finished *,p:1):
njoin(p,procs);
995:
end.



