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ABSTRACT

A one-level barotropic spectral Numerical Weather Prediction (NWP) model has
been implemented [4] in the high-level parallel functional language SISAL [3]. In
furthering that work, our attention has been focused on identifying the sources of
the sequential sections in the concurrency profile for the timeloop section, and in
parallelising a very significant serial code section in the initialisation section of the
spectral model. The solutions of the encountered problems and their effects, the
subsequent code refinements and performance, and the study of issues related to the
effective use of current and next generation multiprocessors raised as a result of the
analysis are discussed in this paper.
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ABSTRACT

A one-level barotropic spectral Numerical Weather Prediction (NWP) model has been
implemented [4] in the high-level parallel functional language SISAL [3]. In furthering that
work, our attention has been focused on identifying the sources of the sequential sections in
the concurrency profile for the timeloop section, and in parallelising a very significant serial
code section in the initialisation section of the spectral model. The solutions of the
encountered problems and their effects, the subsequent code refinements and performance, and
the study of issues related to the effective use of current and next generation mulliprocessors
raised as a result of the analysis are discussed in this paper.

INTRODUCTION

Numerical Weather Prediction (NWP) is acknowledged as being of vital importance to the
Australian and world economies. The demand that NWP places on computing System
performance has increased dramatically since the introduction of computer systems. As
technological limits are approached in component performance, many computer manufacturers
are turning to multiprocessor configurations o obtain increased performance. Although the
underlying application may exhibit large amount of inherent parallelism, in many cases this
has been lost in the formulation of sequential and vector systems; additionally there is a strong
suggestion that existing language systems will prove inadequate for the new multiprocessors.

In our earkier feasibility study [4], we implemented a one-level barotropic spectral NWP model
[1] using the high-level parallel functional language SISAL (Streams and Iteration in a Single
Assignment Language) [3]. The analysis of the initial resalts which were obtained using an
Optimising SISAL Compiler (OSC) [2] for a shared-memory ENCORE Muliimax with 16
APC (32332/32081) processors leads to further analysis and results presented in {5] and the
continned study of issues related to the effective use of current and next generation
multiprocessors [6].

In furthering the earlier work, our attention has been focused on identifying the sources of the
sequential sections on the concurrency profile of the timeloop section (Figure 2), and in
parallelising a very significant serial code section which evaluates Legendre polynomials in the
initialisation stage of the spectral model (Figure 1). The research has indicated that the current
fixed global parallel execution cost estimator in OSC may lead to unsatisfactory results in
some cases. The subsequent code refinements and the resulting model performance of the
implementation will also be discussed.



1 MATHEMATICAL DESCRIPTION OF THE MODEL [1]

For the purpose of the feasibility study, the one-Ievel spectral model is representative of a full
multi-level spectral model. Inspection of the equations describing the one-level model suggests
very high potential concurrency. In its primitive form, the model is expressed in terms of the
vorticity and divergence of the horizontal wind field as shown in Equation 1 to 8.
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Integration of the primitive equations is facilitated by a spectral grid ansform technique which
arises in evaluation of the nonlinear products. The first step of this technique is to obtain the
truncated expansions for approximating the stream function, geopotential height and two
derived wind fields U and V illustrated in Eqnations 10 to 15,
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This is followed by a Fast Fourier Transformation (FFT) of these fields to the Gaussian
latitude-longitude grid on the globe. The nonlinear products of Equations 4 10 8 are those on
the left hand sides of Equations 16 to 20. They can now be obtained by direct multiplications
in the grid domain.
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The next step is an inverse FFT of these terms as described in Equations 16 to 20 and the final
step is to transform these fields back to the spectral domain. The final spectral {forms of the
maodel are described in Equations 21 to 24.
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The detailed mathematical expressions and descriptions of this NWP model can be found in [1)
and [S]. In this paper, the model size is expressed in terms of its resolution number J. The
spectral truncation limits jx, jxx and mx are related to J where jx =mx=J + land jxx =J +
2. The number of latitudes of the globe and the number of longitudinal poings on each latitude
are also related to I by ilat = (5 * J + 1) / 2 and ilong = 3 * J + 1 respectively.
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Figure 1: The concurrency profile of the full model from the implementation in [4]
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Figure 2: The concurrency profile of the timeloop extracted from the model
2 SEQUENTIAL CODE SECTIONS IN THE TIMELOQOP !

The parallelism profile of the initial SISAL implementation for a model size of J = 30 with
16 processors sharing the workload (Figures 2) indicates that the inter-function sequential or
Amdahi [7] notches in the timeloop caused by data dependency have a second order effect on
potential speedup. There still remain however three significant serial sections which consume
approximately 13% of the total execution time and grow with problem size.

The sequential sections are due to three specific functions, all of which are involved in
building single dimensional arrays from singly nested parallel FOR loops which contain
small loop bodies. A number of subsequent experiments have shown that the OSC's slicing
and paralielisation of small body singly nested parallel FOR loops which produce single
dimensional arrays are globally determined by the compile time routine which estimates the
parallel execution costs, and these loops are not sliced due to the failure of the OSC cost
estimator to recognise the critical path significance of these functions. Discussions of a
similar issue, but for a dataflow architecture, on the relationship between the body of a parallel
FOR loop and the exploitable concurrency residing in if can also be found in {6].

2.1 SINGLY NESTED PARALLEL LOOP WITH A SIMPLE LOOP BODY

SISAL presently does not implicitly support the data structure for complex numbers. Hence a
complex number is represented by a record of two numbers, Repart and Impart in our
implementation. Figure 3a shows one of these functions which explicitly converts four arrays
of real numbers, each having an array size of jx * mx * 2, to four corresponding arrays of
complex numbers of array size jx * mx each. Regardless of the number of processors used, the
total length of the serial code on the concurrency profile undesirably increases with the size of
the loop bound.

Nevertheless, this code can be locally compiled with the maximum slicing of the parallel
FOR loop enforced by using the -H1 pragma of OSC. The Local Maximum Slicing or LMS
curves in Figures 4a and 4b illustrate the desired improvement to this code as a result.
However, the present OSC does not support the linkage to a separately compiled routine, and
therefore the amount of slicing of parallel FOR loops can only be specified as a globally
effective OSC pragma at compile time. Unfortunately a pragma value of -H1 results in slicing
of the routines of interest but leads to over-parallelisation of the rest of the program [2]. This
in tarn resolts in an execuation time of 30 seconds compared with the original 8 seconds for the
model size J = 30.



ctl, eC, ptC, ztC =

FOR complex_index IN 1, jxmx

index := complex_index * 2

RETURNS ARRAY of RECORD CplexReal[Repart : ct[index - 1]; Impart : ctfindex}]
ARRAY of RECORD CplexReal[Repart : efindex - 1}; Impart : efindex]]
ARRAY of RECORD CplexRealfRepart : pt{index - 1); Impart : pt{index]]
ARRAY of RECORD CplexRealfRepart : zifindex - 1]; Impart : zt{index]]

END FOR

Figure 3a. A singly nested parallel FOR loop with a small loop body

ciC, eC, ptC, z1C ==
FOR mIN 1, mx
ctC, eC, ptC, ztC =
FORJIN 1, jx
complex_index = jx * (m - 1)+ j;
index = complex_index * 2
RETURNS ARRAY of RECORD CplexReal[Repart : ctlindex - 1]; Impart : ctfindex]]}
ARRAY of RECORD CplexReal[Repart : efindex - 1]; Impart : efindex}] :
ARRAY of RECORD CplexReal[Repart : ptfindex - 1]; Impart : pt{index]}
ARRAY of RECORD CplexReal[Repart : zt{index - 1}; Impart : ztfindex]]
END FOR
RETURNS VALUE of CATENATE ctC
VALUE of CATENATE eC
VALUE of CATENATE piC
VALUE of CATENATE ztC
END FOR

Figure 3b: A quasi doubly nested loop

A possible solution to this problem is to augment the cost estimation of OSC by providing
the number of processors available on the target machine as an additional pragma. The likely
effect of this solution can be demonstrated by explicitly slicing these loops using a quasi
doubly nested (QDN) technique, which retums in this case the desired single dimensional
arrays. The technique may be used effectively to force appropriate decisions from the current
OS8C cost estimator.

2.2 QUASI DOUBLY NESTED TECHNIQUE

Using the QDN technique, as shown in Figure 3b, the inner paraliel FOR loop of loop bound
jx computes the correct array indices. This loop resides inside an outer parallel FOR loop, of
loop bound mx, which concatenates every temporary array it produces. The loop body of this
outer loop hence becomes larger and an order of complexity higher. This technigue produces a
slightly larger code size but the overbead is felt only when one processor is employed.
Furthermore, the execution time and concurrency profiles prodaced using this technique are the
same as those produced when the original code is locally compiled with maximum slicing, as
already discussed in the previous section. Figures 4a and 4b illustrate the more efficient
exploitation of concurrency and an execution time of 3.5 times faster for this code relative to
the original unparailelised code.
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Figure 4a: The comparison of execution time as a function of the number of
processors (I =30)
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Figure 4b: The comparison of concurrency profiles as a function of the number of processors
(J=30)

3 CONCURRENCY IN THE COMPUTATION OF SPHERICAL
HARMONICS

The serial computations for the Legendre polynomial of the first kind which produce the
spherical harmonics of the globe [1] dominate the initialisation stages of both the FORTRAN
and the initial SISAL models. These sequential computations when parailelised significantly
speed up the initialisation stage.

3.1 SERIAL IMPLEMENTATION

The model groups the latitudes of the globe into ilat / 2 number of North-South latitude
pairs. For each latitude pair, the function LEGENDRE computes jxx * mx number of
spherical harmonics. The conventional implementation is sequentially conceived where both
the computations for each of the harmonics on the same latitude pair and for each frame of
latitude pairs are executed sequentially. In other words, there are a total of ilat / 2 * jxx * mx
harmonics produced and hence the same number of corresponding serial array updates
performed. The SISAL equivalent of the FORTRAN version, from direct transliteration, is
shown in Figure 5a.



alp := FOR INITIAL
WORKlgn = ARRAY_fill(1, jxxmx, 0.0d0);

far_level :=1;

alp_LGN = LEGENDRE(ir, irmax2, jxxmx, coaiy{l], siaiy[1], deltaiy[1],
WORKIgn)

WHILE lat_level < ilat / 2 REPEAT

lat_level ;= old lat_level + 1;

alp LGN ;= LEGENDRE(r, irmax2, jxxmx, coaiy[lat_level], siaiy[lar_level],

deltaiyflat_levell, old alp_LGN);
RETURNS ARRAY of zlp LGN
END FOR

Figure 5a: A sequential computation of the spherical harmonics

alp := FOR lat_level IN I, ilat /2 .
alp_ LGN := LEGENDRE(ir, irmax2, jxxmx, coaiy[lat_level], siaiy{lat_level],
deltaiyflat_level]);
RETURNS ARRAY of alp LGN
END FOR

Figure 5b: A parallel computation of the spherical harmonics
3.2 PARALLEL IMPLEMENTATION

The above SISAL routine can be conveniently parallelised using the SISAL forall construct
(Figure 5b). In this version, all frames of latitude pairs (LEGENDRE) are computed
concurrently because they are found 10 be data independent of each other. Figure 6a and 6b
show the dramatic improvement in the run time and concurrency of the initialisation stage of
the model for I = 30,

The improved performance over the initial implementation as illustrated in Figure 6b suggests
that all processors have been kept busy throughout. LEGENDRE could be coded as a
"wavefront” algorithm leading to additional improvement however, due to the satisfactory
gains already obtained, this is not presently being pursued.
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Figure 6a: The concurrency profile of the sequential SISAL implementation
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Figure 6b: The concurrency profile of the parallel SISAL implementation
4 MODEL PERFORMANCE FRCM CODE REFINEMENTS

The available dataset only allows the model size to be increased up to J = 30. In order to show
the capability of the new SISAL implementation in the exploitation of concurrency of larger
model sizes, and its potential in providing substantial speedup over the sequential FORTRAN
version, J has been extended beyond 30 by building additional dummy datasets which stili
perform the same amount of computation.

Figures 7a and 7b illustrate the performance of the refined implementation. The execution time
profile (Figure 7a) indicates that the runtime of a small model size saturates quickly with
increasing number of processors because there is not enough available parallelism to be
exploited. However, when the model size grows larger, the increased available concurrency
fowers the rate of saturation. The "Ideal” line shown assumes three unrealistic conditions that
the SISAL code is perfectly parallel, the compiler is overhead free and the ENCORE Multimax
architecture is fully capable of exploiting this paralielism. It is nonetheless included to show
that the actual run time for model size J = 30 approaches ideal,
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Figure 7a: The model execution time profile
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Figure 7b: The concurrency profile of the model for J = 30

Tha FORTRAN and the new SISAL Barotropic mode! implementations generally consist of
an initialisation section in which alf iookup tables and the initial values of weather variables
are sorted, and a timeloop section in which the future weather states are computed. For a 24
hour forecast using the model size J = 30, the models wili need to iterate 48 times in the
timeloop, which therefore dominates the computation. Hence, the performance of the timeloop
is particularly important.
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Figure 8a: The speedup profile of the timeloop for the present implementation
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Figure 8b: The concurrency profile af the timeloop (J = 30) for the present implementation



Figures 8a and 8b illustrate the performance of the timeloop with varying model sizes for the
present implementation. The importance of these results has produced further analysis in the
eager memory deallocation routine of the OSC run time system [5]. That analysis proposes a
better static analysis to determine that the array sizes are invariant through loop iterations and
may be re-allocated in addition 10 a "lazy” deallocation of memaory structures in parallel with
the main computation only when necessary. The product is the removal of a significant
section of serial code at the end of each time step in the timeloop, in the form of a long 'tail’
(Figure 8b).

Figures 9a and 9b shows the effect that more efficient memory deallocation could have [5]. In
this example we removed the deallocation code entirely. The result is a loop iteration with
better scalability and significantly improved speedup characteristics.
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Figure 9a: The would be concurrency profile (J = 30) of the timeloop with an efficient

implementation
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Figure 9b: The would be speedup of the timeloop with an efficient implementation
6 CONCLUSIONS

In this paper, we have described how a significant serial code section in the initialisation
section of the adopted weather model was parallelised. We have also identified that the current
global parallel execution cost estimation routine of OSC runtime system can lead to
unsatisfactory results in some circumstances. We have suggested solutions and demonstrated
the effect these solutions have on execution times. We have shown that the resulting improved
SISAL implementation exhibits good scalability. This research will lead to further work by
ourselves and the OSC developers in the implementation of a more appropriate memory
deatlocation scheme and parallel execution cost estimation function.
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