LABORATORY FOR
CONCURRENT COMPUTING SYSTEMS

COMPUTER SYSTEMS ENGINEERING
School of Electrical Engineering

Swinburne Institute of Technology

John Street, Hawthorn 3122, Victoria, Australia.

Proposals for SISAL and OSC

Technical Report 31-014

Pau §. Chang
Greg K. Egan

Version 1.0 Original Document 31/01/90
Version 1.1 Original Document 22/02/90
Version 1.2 Original Document 01/03/90
Version 1.3 Original Document 26/04/50

ABSTRACT

SISAL and its compiler for conventional multiprocessors OSC are relatively new.
Documented in this memo are the proposals of some of the improvements necessary
for OSC and SISAL which otherwise will keep posing as potential drawbacks of
the compiler and the language. They arise from the our experience in the
implementations of a two dimensional FFT model and a spectral weather simulation
model.

\:

[(




Proposals for SISAL and 0SC Page I

Introduction

SISAL is a relatively new functional language whose efficacy in expressing the potential
concurrency of scientific computational models is yet to be judged by practical application
studies. Although it was originally targeted as a dataflow language, programs written in
SISAL have also been successfully compiled and run with good speedup on
multiprocessors based on conventional architecture. Nonetheless, some features still need
to be added to the language to improve its expressive capability.

Many optimisation stages have been added in the first released Optimising SISAL
Compiler OSC received by us in early 1989. Nevertheless, given the newness of the
compiler, there are still a number of improvements necessary to make the compiler more
reliable and effective. The known features are the need to adopt the FORTRAN-like
expression of multiple dimensional array construct which is closer to the mapping of the
physical memory rather than the present SISAL expression of multiple arrays of arrays,
and the need to have only one form of loop construct instead of the present sequential and
parallel loop constructs.

Presented in note form in the following sections are the proposals for additional
improvements in the compiler (sections 1 to 6) and the language (sections 7, 8 and 9).
They arise from our experience in the implementations of a two dimensional FFFT model
and a spectral weather simulation model.

1. Starting Index of "FOR array RETURNS VALUE OF CATENATE"
If we write

FOR i IN 0, bound
RETURNS VALUE OF CATENATE i
END FOR

we would expect the results to be an array with a starting index of 0. However, the front
end SISAL compiler generates IF1 graphs which have a starting index of 1. Additionally,
both the Dataflow Interpreter and the C code generated by OSC give the results with a
starting index of 1 even if the lower bound in the IF1 graphs is manually set to 0. This is
potentially disastrous for computations which habitually consist of arrays whose intended
starting indices are 0, such as FFT.

The case study as elaborated in Figure 1 shows that the IF1 code generated by SISAL
frontend sets the lower bound of the concatenation result to 1 regardless. Further, even if
the low bound is altered to 0 in the IF1 code, both DI and OSC do not check this lower
bound given in the IF1 code, but rather simply set it, again regardless, to 1.

We are forced to always use array_setl to set the desired lower bound when any loop
returning 'value of catenate’ is used.

FORIiINO, 10

RETURNS VALUE OF CATENATE
FORjIN 0,10
RETURNS VALUE OF j
END FOR

END FOR

(i} The SISAL code



FProposals for SISAL and 0OS5C

T110 %na=Boolean
T211 %na=Character
T312 %na=Double
T413 %na=Integer
TS514 %na=Null
T615 %na=Real
T716 %na=WildBasic

T8 10

TGO 4

TI108 9 0
T113 0 10
TI124 4

TI138 9 10
T143 13 10
T154 9

C$ C Faked IFICHECK

C$ D Nodes are DFOrdered

C$ E Common Subs Removed

C% F Livermore Frontend Versionl.8

C$ G Constant Folding Completed

C$ L Loop Invars Removed

C3% O Offsets Assigned

X 1 "main" %ar=13 %sl=3

E 41 a1 g %of=1 %mk=V
{ Compound 1 0

G 0 %fq= 0.00000000000000e+00  %ep=0

E 11 01 12 Iona=; %of=2 PHmk=V
N1 142

L 11 40" %of=3 %mk=V

L 12 410" %of=4 %mk=V

G ¢ %fg= 0.00000000000000e+00  %ep=0
G 0 Dfg= 0.00000000000000e+00 Toep={)
E 11 01 9 %of=3 Fomk=V

N1 107

L 11 471" Yof6 %Hmk=V

E 01 12 12 Pona=j %of=2 %mk=V Fosl=7
1103012

N2 103

L 21 41" Gof=T7 %mk=V

N3 115

E 11 31 9 %of=5 G%mk=V

L 32 40" %of=8 %mk=V

{ Compound 4 0

G ¢ %sl=5

E 11 03 12 Pona=i %of=11 Fomk=V
N1 142 Fosl=

L 11 4"0"  of=12 Fomk=V
L 12 4 "10" %of=13 Tomk=V
G ¢ Tosl=5

E 02 04 9 %of=10 Fmk=V
G ¢ %sl=

E 11 01 9 Fof=1 %mk=V

N1 149 Yosi=

L 11 14 "CATENATE" Gorak=V
E 01 12 9 %of=9  %mk=V

E 04 13 15 Jo0f=10 Gomk=V
1403012 %si=5

E 21 41 9 %oof=9 Gomk=V

E 31 472 9 %of=10 %mk=V

(ii) The corresponding IF1 code

Page 2



Preposals for SISAL and OSC Page 3

{15 345678910012345678910

2
2345678910012345678910
2345678910012345678910
2345678910012345678910
2345678910012345678910
2345678910}

(iii) The same results produced by DI and OSC
Figure 1: A parallel loop returning value of catenate with intended starting index 0

2. FOR array RETURNS VALUE OF CATENATE of concatenations of
vectors

This example arises from coding a two dimensional FFT in SISAL. At compilation time,
the process passes through SISAL frontend compiler and the optimisation stages without
any indication of problems, but during CC, the CGEN generates several errors regarding
the need to use pointers. The problem is shown in Figure 2.

The compilation of the code passes through the SISAL frontend compiler and all of the
optimisation stages, but during CC, it is terminated due to some "struct/union™ errors
generated by CGEN. The problem embeds in:

FOR loop
RETURNS ARRAY OF
FOR index IN lowerbound, upperbound

vecvec ;= vector § vector % concatenation
RETURNS VALUE OF CATENATE vecvec
END FOR

END FOR

osc chip.sis -v

sisal -noopt -nooff -dir fusr/flocal/sisal chip.sis
LL Parse, using binary files

* Reading file: chip.sis...

version 1.8 (Mar 28, 1989)

accepted
81 lines in program
0 errors ( calls to corrector)
0 tokens inserted; 0 tokens deleted.
0 semantic emrors

ifl1ld -0 chip.mono -¢ main chip.ifl

iflopt chip.mono chip.opt -1 -e

unlink chip.mono

if2Zmem chip.opt chip.mem

ualink chip.opt

if2up chip.mem chip.up

unlink chip.mem

ifZpart fyfrcofrcodf/sisal/releasefOSC_csu/bin/s.costs chip.up chip.part -LO
unlink chip.up

ifZgen chip.part chip.c -b

unlink chip.part

cc -Ifyfreofrcodf/sisalirelease/OSC_csu/bin -DSUN3 -f68881 -O -§ chip.c
%"chip.c", line 229: nonunique name demands struct/union or struct/urion pointer
%"chip.c”, line 230: nonunique name demands struct/union or struct/union pointer
%"chip.c”, line 262: nonunique name demands struct/union or struct/union pointer
%"chip.c”, line 264: nonunique name demands struct/union or structfunion pointer
#* COMPILATION ABORTED **

(i} Error messages given at compile time



Proposals for SISAL and OSC Page 4

define main

type ArrIntl = ARRAY [integer];

type ArrReal = ARRAY ([real];

type ArrReal2 = ARRAY [ArrReal]
GLOBAL SIN(num: real returns real)
GLOBAL COS(num: real returns real)
GLOBAL ATAN(num: real returns real)
GLOBAL SQRT{num: real retumns real)

FUNCTION main(RETURNS AnReal, ArrReal)

LET

n = 4; pi = 3.141593,

twopow = for initial ir=0; pow:=1; two := array_fill(0,n,1);
while i<n repeat iz=o0ld i+1; pow := old pow*2;

two = old twoli: pow};

returns value of two
end for;

Areal Aimag:=

for row in 0, twopow[n] - 1 CROSS col in 0, twopow|n] - 1
returns array of if row<twopow[n}/2 then 5.0 else 0.0 end if
array of if row<twopow|[n}/2 then 5.0 else 0.0 end if
end for;
IN
LET t
stage := 2; off := twopowin - stage];
upperboundjump = twopow[stage - 1] - 1; jumpby := twopow][n - stage + 1};
AR1, All:=
FOR indexjump IN 0, upperboundjump
jomp = indexjump * jumpby;
RwinglR, Rwingll, Rwing2R, Rwing2l :=
FORxINO, off - 1
pl = x + jump; p2 = pl + off;
W= pi * REAL(X) / REAL({off); cosine, sine := COS(W), SIN(W);
LwinglR, Lwingll, Lwing2R, Lwing2l :=
Arealll, pl1], Aimagfl, p1], Areal{l, p2]. Aimagfl, p2};
realm, imagm := LwingiR - Lwing?R, Lwingll - Lwing2i;
RETURNS  ARRAY OF LwinglR + Lwing2R
ARRAY OF Lwingll + Lwing2l
ARRAY OF realm*cosine + imagm¥*sine
ARRAY OF imagm*cosine - realm*sine
END FOR;

% Error spot: The focus is on concatenations
groupR = RwinglR Il Rwing2R; % This creates error in cc
groupl := Rwingll |l Rwing2l;

% The inexplicable solution:
% groupR,groupl ;= for kk in 0, 2*off - 1

Y% R, gl = if kk < off then RwinglR{kk],Rwing1I[kk]

Do else Rwing2R[kk-off],Rwing2I[kk-off] end if;
% returns array of grR

Yo array of grl

% end for;

%

% The drawback here is that one needs to know the actual array size of
% “groupR" and "groupl” ie 2*off - 1

RETURNS VALUE OF CATENATE groupR
VALUE OF CATENATE groupl
END FOR;
IN AR1, ALY
END LET
end let

end function

(ii) The SISAL code
Figure 2: A bug in OSC



Proposals for SISAL and OSC Page 5

3. Normalisation of Parallel Loops

In the initialisation section of the weather simulation implementation in SISAL [1], loops
of similar loop bound are forced to be coupled together in order to be accepted and pass
through the OSC compiler. The full code, which is available on request, belongs to older
versions of the initialisation routines, but adequately exhibits the fault.

The focus of this example is in the calculation of the variance "var” and the average
potential height "h". Figure 3(ii) is an extract of the code producing the error .

In attempting to simplify the program in order to narrow the scope to isolate the source of
error, the problem disappears. This suggests that the "complexity” of the program could
be a factor.

When these two statements are listed separately in the program as shown, IF1OPT fails,
giving the error message shown in Figure 3(i). This seems to suggest that "Graph
Normalisation" is incomplete within IF10PT [4].

A way to get around this problem is to "couple” loops of similar loop bound together as
shown in Figure 3(iii). :

osc main.sis -IF1 -double_real
LL Parse, using binary files
* Reading file: main.sis..,

version 1.8 {Mar 28, 1989)

accepled
226 lines in program
0 errors ( calls to corrector)
{ tokens inserted; 0 tokens deleted.
0 semantic errors
osc -v -0 prefft main.ifl IntrFuncs.if complex.ifl Inital.ifl
IntFFT.if1 gaussg.ifl legendre.ifl SasAlfa.ifl
if1ld -0 main.mono -¢ main main.ifl IngFuncs.ift complex.ifl
Initalif] InitFFT.if1 gaussg.ifl legendre.ifl SasAlfaifl
iflopt main.mono main.opt -1 -¢ .

iflopt: E - FORALL RETURN SUBGRAPHS NOT NORMALIZED
** COMPILATION ABORTED **

% Error code 1
stop.

(i) Error message for the subgraph normalisation error

var := FOR diffindex IN 2, jxmx
RETURNS VALUE OF SUM CabsSqr(zt_mountain{diffindex})
END FOR;

h=  FOR index IN 1, jxmx
RETURNS ARRAY OF Crmul(constant, zt_mountainfindex])
END FOR;

(i) The error producing region in the initialisation section



Proposals for SISAL and OSC Page 6

var,h:= FOR index IN 1, jxmx
RETURNS VALUE OF SUM IF index = 1 THEN 0.0
ELSE CabsSqr(zt_mountain[index])
END IF
ARRAY OF Crmul{constant, zt_mountain[index])
END FOR;

(iii) The immediate solution
Figure 3: Subgraph Normalisation error
4. Exploitation of Parallelism for Conventional Multiprocessors

OSC only exploits parallelism from parallel FOR loops. There are some instances in a
program where two big blocks of mutually independent sequential loops should be (able
to be) processed concurrently. This occurs in the SISAL implementation of a two
dimensional FFT {3]. Unfortunately, owing to the inability of OSC to identify the data
independency of the two loops, the result is a much degraded speedup. The problem
appears to be trivial but is not.

8. Cost Estimation Routfine

The cost estimation routine of SISAL fails to identify the critical path significance of
certain parallel loops, as a results these loops are not sliced accordingly. The problem and
a quick solution using a mickey mouse Quasi Doubly Nested technique are elaborated in

[2].

In the issue of cost estimation of the OSC, there are a few points that need to be raised.
The initial findings from the implementation of the weather simulation model indicate that
the compiler fails to slice low complexity singly nested parallel loops which reside in the
highly paraliel critical path of the program i.e. the timeloop. A quick solution using the
QDN technique to "trick” the cost estimator is:

FOR array RETURNS VALUE OF CATENATE
FOR array RETURNS ARRAY OF
XXXXXXX
END FOR
END FOR.

Our initial arguments in [2] were not complete due firstly to the lack of knowledge on
how the cost estimates were performed at compilation time. Additionally, at that stage we
were not aware of the significant inefficiency of concatenation operations in a parallel
loop and hence we skipped commenting on the incomplete parallelism shown on the
QDN concurrency profile, and the incompatibility between the concurrency profile
obtained (~60%) with 16 processors and the achieved speedup (~3) over the single
processor performance.

The cost estimates are performed relying on the number of loop iterations, I, and the
complexity of the loop body. The H cost parameter instructed at compile time is the total
cost of the loop, below which loop slicing will not be performed. The parameter L. is the
depth of the nested loops that the compiler is instructed to consider slicing. So only these
factors are known to the compiler to estimate the costs of slicing. Once the slicing has
been performed, the slice templates are superficially fixed. It is then up to the application
users to increase the problem size to stuff the templates full to maximise the "actual work
performed in a task"/"work required to create the task” ratio if the user finds that good



Propesals for SISAL and OSC Page 7

speedup can be obtained using multiple processors to share-the workload. We presently
do not know how to determine and parameterise the overheads imposed by the OSC
runtime system in making decisions relying on the other parameter i.e. the number of
processors sharing the work which is specified at the beginning of the run. But our
experience in implementing the weather model and the two dimensional FFT model
shows that the overheads may be significant.

Presently we also do not know if problem size, known at compile time, which indirectly
determines the number of loop iterations, I, has been employed effectively as a parameter
for cost estimates. Nonetheless, it is definitely cost saving if the cost estimation is
performed by also considering the number of processors used, since in practice one may
like to use a fix number of processors. This parameter could be usefully included as a
pragma at compile time. Hopefully the cost saving from subsequent reduction of runtime
overhead will result in significant performance improvement in large application
programs of the types we are studying.

6. Eager Memory Deallocation Routine

The runtime system allocates storage for the initialised data at the beginning of a
sequential loop, but it also eagerly deallocates, not concurrently with the main
computation of the loop body, the storage at the end of each loop before the loop repeats
itself. For the weather simulation model, the deallocation time constitutes approximately
28% of the total loop time. The elaboration of this problem and a brief proposal of a
solution can be found in [2]. It should be possible using code motion and data structure
pointer reassignment to remove the allocation and deallocation of fixed size data
structures from within iterative loops {3]; the appropriate optimisation by hand at the C
level is relatively easy to perform for simple examples. Where the data structure size
cannot be determined statically, data deallocation should be overlapped with the main
computation of the loop body i.e. lazily [2].

Also documented in [3] is a mathematical analysis for the upper bound performance of,
seen from the source level, a supposedly parallel SISAL code:

FOR row IN 0, totalN
RETURNS ARRAY OF FFT[row]
END FOR % where each FFT is potentially sequential

Proven by experimental results, the analysis shows that depending on the size of the loop
body relative to those of the allocation and deallocation routines, the speedup curve for
the code can saturate dramatically at an unexpectedly low value. This further presents the
need for improvement in the memory allocation and deallocation scheme implemented in
OSC on the ENCORE.

7. Debugging SISAL Programs

As well as having to rely on the FORTRAN weather code, which was not well written,
the immediate problem in the direct transliteration process was the lack of debugging
support at the SISAL source fevel. It is to date impossible to debug a SISAL program at
its source level. The best possible debugging tool available is DI, the Dataflow
Interpreter, which interprets IF1 graphs. Unfortunately, even DI as a debugger had bugs
which created problems in producing results from multiple-nested sequential loops (from
loop forms A and B) [5]. Program debugging at the C code level is sometimes useful too
except that the C code generated from SISAL must be assumed as perfectly correct,
which is not always true!

The correctness of a focused variable, whose value alters as it undergoes changes in
different program state, can only be checked by making it a function parameter or result.
While results of functions are readily available using DI, intermediate values are



Proposals for SISAL and OSC Page 8

extremely difficult to obtain without compromising the structure integrity of the SISAL
source; it is necessary to create a function boundary around the variable to be
investigated. The values are then compared with the output for the changes in state of the
variable which were effortlessly obtained from FORTRAN by an additional "print *,
variable name" statement in the FORTRAN code. This indirect debugging in DI is both
difficalt and unreliable and requires additional lengthy, tedious and error prompt efforts.
One not only has to investigate program correctness as originally intended, but also has to
deal with correctness of the additional functions created and always beware of the
integrity of the interpreter for complicated programs (Hiesenberg effect). This is the most
serious drawback which discourages anyone from doing serious programming in SISAL.
Research into source level debugging aids for SISAL is therefore needed. This research
may not be attractive, yet the reality is that few large application codes are correct by
design and even less codes work first time.

8. Language Support for Complex Numbers

Computations involving complex numbers are common in scientific applications;
FORTRAN recognises this. As SISAL presently does not provide an implicit structure
for complex numbers, they are usually expressed as a record of two numbers
representing the real and imaginary parts, and an array of complex numbers is expressed
as an array of records. Even though OSC performs a record fission optimisation at
compile time, the additional subgraphs of functions for arithmetic on complex numbers
serve as a complication which might have contributed to the "Normalisation" error
described above. In most cases, particularly when complex arithmetic constitutes a major
part of a program, the explicit tasks in the treatment of complex numbers as records may
result in an additional execution cost. The alternative representation is to express a
complex number as two separate numbers, and then an array of complex numbers as two
separate arrays of numbers. This too may result in an additional execution cost.

The remedy is to implement a SISAL language support for complex numbers similar to
FORTRAN's, making treatment of complex numbers implicit. This will remove the
necessity of building records, extracting elements from records and calling functions for
complex arithmetic which serve only to obscure the underlying algorithm.

9. OLD Statements: an Easy Mistake

Sequential Joop constructs are associated with the use of OLD statements. As OLD is
used on the right hand side, multiple accesses of an QLD variable are common place. So
errors due to the coexistence of the variables evaluated in the present iteration and the
OLD variables evaluated in the previous iteration can occur easily in multiple nested
sequential loops. A particular example is in the sequential loops in the function
LEGENDRE, where once the OLD statement is missed out, the error is very difficult to
detect.

Conclusions

In this document we have presented some of the issues associated with the SISAL and
OSC from a user's view point. While a number of these problems are newly discovered,
it is possible that others may have been solved in the new release of OSC. Many of the
problems associated with these issues may be resolved readily while others require
substantial effort such as debugging tools.

Acknowledgements

We would like to thank all members of the project and in particular Warwick Heath, for
contributing to some of the issues presented here. The research was supported in part by
the CSIRO Division of Information Technology and the Royal Melbourne Institute of
Technology.



Proposals for SISAL and OSC Page 9

References

[1] Pau S. Chang and Greg K Egan, "An Parallel Implementation of a Barotopic
Spectral Numerical Weather Prediction Model in the Functional L.anguage SISAL",
SIGPLAN Notices, Vol. 25, No. 3, March, 1990, pp. 109-117, Proceedings of
the ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming PPoPP, Seattle, Washington, March 14-16, 1990.

2] Pau S. Chang and Greg K. Egan, "Performance Evaluation of a Parallel
Implementation of Spectral Barotropic Numerical Weather Prediction Model in the
Functional Dataflow Language SISAL", (TR118 091 R), Technical Report 31-
006, Laboratory for Concurrent Computing Systems, School of Electrical
Engineering, Swinburne Institute of Technology, Version 1.0, 2/10/89.

[3] Pau S. Chang and Greg K. Egan, "Analysis of a Two Dimensional FFT
Implementation in SISAL", Technical Report 31-015, Laboratory for Concurrent
Computing Systems, School of Electrical Engineering, Swinburne Institute of
Technology, 1990.

{4] David C. Cann, "Compilation Techniques for High Performance Applicative.
Computation”, Technical Report CS-89-108, Colorado State University, May 10,
1989.

{5] Steve Skedzielewski and John Glauert, “IF1 An Intermediate Form for Applicative
Languages”, M-170, Lawrence Livermore National Laboratory, July 1985.



