it
i

LABORATORY FOR
CONCURRENT COMPUTING SYSTEMS

COMPUTER SYSTEMS ENGINEERING
School of Electrical Engineering

Swinburne Institute of Technology

John Street, Hawthorn 3122, Victoria, Australia.

Proceedings of the
Australian SISAL Workshop
1990
Technical Report 31-016
Compiled by G.K. Egan

Abstract

A Workshop was held in May 1990 to establish an Australian position on the future
development of SISAL. This report contains the material tabled and presented at the
workshop and the issues arising from the open session at the end of the workshop.

\\

\S

o

SWINBURNE INSTITUTE OF TECHNOLOGY

LABORATORY FOR CONCURRENT COMPUTING SYSTEMS
SCHOOL OF ELECTRICAL ENGINEERING

SISAL WORKSHOP

The Australian Position on Sisal Futures

Purpose:

To establish an Australian position for the future development of Sisal to be presented
at the Asilomar International Sisal Workshop June 1990. Researchers interested in the
development of concurrent computing systems and their associated languages are
welcome to attend.

Venue:
Swinburne Institute of Technology
Council Chambers
Sth Floor Library Building
Tuesday 8th May 1990

Laboratory for Concurrent Computing Systems at Swinburne

930 - Directions (Prof. Greg Egan) short statement

9.45 - CSIRACII (Prof. Greg Egan/Dr. David Abramson) short statement
10.00 - IF1/IF2 translators for CSIRAC I (Neil Webb)

10.45 Morning Tea

11.00 - User experiences : weather and fft codes (Pau Chang)

High Performance Computer Systems in CSIRO
11.45 - Directions (Dr. David Abramson) short statement
12.00 - Sisal related research (Dr. Abramson)
12.45 Lunch
University of Adefaide
1.30 - Directions { Dr. Andrew Wendelborn) short statement
1.45 - Sisal on the Encore and Leopard Multiprocessors (Hugh Garsden)
230 - Sisal 2.0 Critique (Dr. Andrew Wendelborn)
315 Afternoon Tea
Open Session

3.30 - ranking of Sisal issues (Dr. Andrew Wendelborn,Chair)
4.30 close

Please advise your intention to attend to the School of Electrical Engineering (03) 819 8516 ASAP
so that catering may be arranged.

Participants:
Dr D. Abramson

Senior Research Scientist

CSIRO

55 Barry St.,

Carlton

phone: (03) 660-2095 fax: (03) 662-1060

rcode @koel.co.rmit.oz.au
Pau Chang

Swinburne Institute of Technology

Laboratory for Concurrent Computing Systems
P O Box 218

Hawthorn 3122

pau(@stan.xx.swin.oz
rcocp@koel.co.rmit.oz.au

Grant Colling

Computer Systems Officer

Computer Science Department
Swinburne Institute of Technolo

P O Box 218 '
Hawthorn 3122

phone: (03) 819-8670 fax: (03) 818 3645

grant@saturn.cs.swin.oz.au
Antonio Cricenti

Lecturer

Swinburne Institute of Technology
P O Box 218

Hawthorn 3122

phone: (03) 819-8322

Russell Dawe

Faculty of Engineering
Laboratory for Concurrent Computing Systems
Swinburne Institute of Technology
P O Box 218
- Hawthorn 3122
phone: (03) 819-8733 fax: (03) 818-3657

russell@saturn.cs.swin.oz.au

Greg Egan

Professor of Computing Systems Engineering
and

Director

Laboratory for Concurrent Computer Systems
Swinburne Institute of Technology

P O Box 218

Hawthorn 3122

phone: (03) 819-8167

gke@stan.xx.swin.oz.au
Lindsay Errington

Department of Computer Science
University of Adelaide

GPO Box 498

Adelaide 5001

lindsay@cs.ua.oz.au
Rhys Francis

La Trobe University
Bundoora 3083
phone: (03) 479-2504

rhys@latcsl.oz.au
Ivan Francis

The Murdoch Institute
Royal Children’s Hospital
Flemington Rd.,

Parkville 3058

phone: (03) 345-5045

Hugh Garsden

Computing Officer
University of Adelaide
North Terrace
Adelaide 5000

Phone: 228-5763

hugh@cs.ua.oz.au
Michael Klein

Swinburne Institute of Technology

School of Electrical and Electronic Engineering
P O Box 218

Hawthorn 31222

phone: (03) 819 8612

Dragi Klimovski

Lecturer

Swinburne Institute of Technology
P O Box 218

Hawthorn 3122

phone: (03) 819-8322

CS. lee

Senior Lecturer

Schoolof Electrical Engineering
Swinburne Institute of Technology

P O Box 218

Hawthorn 3124

phone: (03) 8198316 fax: (03) 819-6443

Adam McKay

Research Student
RMIT / CSIRO
phone: (03) 660-2726

asm(@goanna.cs.rmit.o0z.au
Mark Rawling

Experimental Scientist
CSIRO

55 Barry St., Carlton
phone: 660 2726

rcomr@koel.co.rmit.oz.au
Simon Wail

Postgraduate student

RMIT

Department of Comnmunications and Electronic Engineering
124 LaTrobe St.,

Melbourne 3000

phone:660 2726 fax: 662 1060

rcosw(@koel.co.rmit.oz.au
Neil Webb

Development programmer
Computer Power Group
CP Software

616 St Kilda Rd.,
Melbourne 3004

njw(@bohra.cpg.oz.au

Andrew Wendelborn

Senior Lecturer

Department of Computer Science
University of Adelaide

GPOQO Box 498

Adelaide, 5001

andrew(@cs.ua.0z.au
Paul Whiting

Experimental Scientist

CSIRO - DIT

C/o RMIT

Department of Communication Engineering
124 La Trobe St.,

Melbourne 3000

phone: (03) 660-2726 fax: (03) 662-1060

rcopw@koel.co.rmit.oz.au

SISAL Futures

The following issues, set out in point form, were raised in the Open Session at the end
of the Workshop; many of these points are elaborated in the presentations.

Infrastructure for Intergroup Communication

Mail group

Itis clear that international interest in SISAL is
growing. Better communication is needed to facilitate
a better view of where SISAL researchis going.
Suggesta SISAL mailing list with connecting all
sites.

Integration of improvements/bug fixes
It is becoming more difficult to identify what the
"latest” version of SISAL is. With a proliferation of
local versions, not all bug fixes/enhancements are
making it into new releases. Possible solutions are a
single site responsible for integration of releases
or ftp access to local versions.

Documentation
There is a general view thatour best source of
documentation ends up being the source code. The
view is that [F1 documentation is old and imprecise
and that the specification of IF2 does not reflect
current usage. {F1/2 pragmas, while being regarded as
necessary, are often undocumented and possibly have
different interpretations at different sites. Good
decumentation is a necessary springboard for future
SISAL research.

Sisal 1.2/0SC
Maintenance
Recognition should be given to the existing user
community otherwise they may lost as users of Sisal

2.0.

OSC isseen as the best current tool for doing
realistic applications work, and provisions should be
made to maintain Sisal 1.2/OSC support.

Efficiency
The current mechanism whereby structures are allocated
and deallocated wthin while loops may be replaced by
double allocation outside the loop and a pointer
exchange within the loop for fixed size structures
(the most common case). The current scheme leads
to unacceptable performance on real codes with large
structures [Chang, Garsden].

Overlapping deallocation with execution may give
improvement where the structures are not of fixed size
but cache cycling and tag pool fragmentation needs
further study [Garsden].

OSC cost estimation does not currently detect critical
path regions and unravel them; changing the cost
pragma globally causes over slicing. Aithough there are
philosophical argurnents against it, a compile time
pragma specifying the number of processors may permit
finer tuning [Chang].

Functionality |

The partial implementation of streams in Sisal 1.2 is
hindering some studies where streams would be the
data type of choice including applications involving
continuous processes (signal processing) or
applications where pipelining is a principal source of
CONCUITENCY.
Known bugs
e.g. coalescing of loops of different bounds
leads to normalisation errors. If the same loops are
merged at source level the problem does not occur [Chang].

Sisal 2.0
Timetable for implementation is important

Recognition of Sisal 1.2 users
release subset of Sisal 2.0 early
provide mappings from Sisal 1.2 to Sisal 2.
module compatibility with Sisal 1.2
(in addition to FORTRAN etc.)
some caution on language extensions is suggested
as over imbelishment may intimidate prospective users.

Impact on [F1/IF2
will redefinition be necessary?
Multiples (definition)
useful abstraction at IF1 level, but do they
hinder implementation?

Function/region level concurrency

e.g. 2 large, independent serial loops which could be
executed in parallel do not

Streams (confidence of implementation given 1.2)
Complex numbers
Vector/Matrix arithmetic

I/O
real input/output interface required
fibre is inadequate
file support
hooks to real-time I/O devices
multiple I/O sources resource managers

Compiled from open session notes by G.K. Egan & A.L. Wendelborn

Laboratoryfor

_ Concurrent Computing Systems at Swinburne

Directions - a short statement

Prof. Greg Egan

Sisal Workshop

/ - Laboratory for Concurrent Computing Systems \
Swinburne Institute of Technology

APPLICATIONS
Numerical Weather Prediction (BMRC)
Seismic Modelling (CSIRO)

Image and Signal Processing (internal)
Finite Element Methods (internat)

Pascal :

PERSONNEL FORTRAN
2 Academic generic
3 €802 '

2 M.Eng/Ph.D. (Academic Staff)
2-4 M.Eng,

CSIRO

LE/BM IBM

Laboratory for Concurrent Computing Systems

Notes
CSIRAC H Dataflow Machine
will maintain and distribute the following:
IF1/2 translator
- 12 assembler
- CSIRAC II emulator/simulators
committed to completing CSIRAC II prototype

will maintain Manchester suite for cross comparison

access to other groups welcome

0SC
will port OSC to Laboratory's multi-RISC processor
identify performance limiting factors collaborate with compiler groups
- memory allocation
- runtime overheads
Application Studies

Cross comparisons with FORTRAN including Encore EPF principally:
- Numerical Weather Prediction on next generation
operational code with full physics and data under
Bureau of Meteorolgy Research Centre collaboration

- seismic modelling (coal mines) under collaboration with
CSIRO Geomechanics

- Signal processing internal and with Adelaide

- Finite Element Modelling internal

Laboratory for

S ConcurrentCom putmg SystemsatSwmbume s

IF1/IF2 translators for CSIRAC II

Neil Webb

IF1 /IF2 Translator
for the
CSIRAC Il Dataflow Computer

Swinburne Institute of Technology

May 8, 1990

Neil Webb SiSAL Futures in Australia Page 1

Topics of Interest

SISAL and CSIRAC Il Compilation
IF1 Compiler Facilities
Transmitted vs Stored Arrays
Muiti-Language Support

IF2 Implementation Design

Some IF1 Difficulties

Bugs and Beetles

Operational Comparisons
CSIRAC Il iF1/IF2 Futures...

Neil Webb SISAL Futures in Australia Page 2

SISAL & CSIRAC Il Compilation
' '

SISAL SISAL
Y ‘ _
IF1 Optimisers IF1 Optimisers $
,L ‘ i2 Assembly
—— ——— Language
IF1 Compilation IF1 Compilation Libraries
2 Assembly
CSIRAC]
Simulation

&

Neil Webb SISAL Futures in Australia — Page 3

IF1 Compilation

Execution Facilities:

Non-strict function and loop boundaries
Strict evaluation of if-then-else operations
Serial Loops interate in a single context
Rapid literal propagation and context creation
Low parallel loop initiation costs
Integer, Real, Double Real, Char, Boolean
scalar data types

Array and Record data structures
Transmitted or Stored arrays
Internal parallel result formatting

" Structural support for error conditions

Neil Webb SISAL Futures in Australia Page 4

Transmitted or Stored Arrays

Compilation directive to select transmitted or
stored arrays

Completely separate execution systems

Transmitted structures are strict, direct access
objects with intrinsic length and lower bound

Stored structures are non-stict, indirect access
objects with explict length and lower bound via a
dope vector

Powerful structure initialisation (sbf) and data
copy (sbc) instructions are exploited

Stored structures are not disposed

Neil Webb SISAL Futures in Australia Page 5

Multi-Language Support

- Support for multiple languages to be used in the
Ssame program is provided.

Supported languages already include:
- SISAL
- IdA
« Pascal

Other languages that compile to IF1 and do not
require special assistance from the IF1 compiler
(like IdA) are automatically supported

The CSIRAC H Pascal compiler's internal support
functions (write, "set"” operations, etc) are written:
in SISAL

Neil Webb SISAL Futures in Australia Page 6

IF2 Facilities

Support for IF2 is not yet available

"D"ependance edges and IF2 data
structures are already incorporated

IF2 function "hooks" are in place

Preliminary IF2 Node operations design
and implementation is proceeding

IF2 Pragmas are supported (where known)

New structure stored ailocation / disposal
required

No difficulties are forseen to hinder a clean impiementation

Neil Webb SISAL Futures in Australia Page 7

IF1 Difficulties

"L ess than Ideal' areas of IF1 include:

« Multiples

IF1 does not assume sequential operation
but other approaches seem to be expensive
and strict

Reductions

Like muitiples, these are serial by nature (see
IF1 Futures)

Vector operations
Not available with comprehensive analysis

Neil Webb SISAL Futures in Australia Page 8

Bugs and Beetles

« The support programs and documentation of SISAL
and IF1 are of varying quality.

« Classic examples:

« SISAL does not use more than 2 arguments to an
ACatenate node. Also, SISAL catenates these
arguments as a list rather than a tree

Code improvers often "eat" correct, non-SISAL
originating IF1 programs

Documentation is faulty and out-of-date. Over a
dozen new IF1 and IF2 nodes have been added
since the last IF1 or IF2 document was released

Neil Webb SISAL Futures in Australia Page 9

Operational Comparisions

Manchester DFM CSIRAC I

Critical | Aver. | Total | Critical | Aver. | Total
Path | Parallel| Nodes | Path | Parallel| Nodes

48| 11.9 573 61 9 571
124 6.5 810 66 5 352
59 5.1 303 59 5 279
102 | 220.9 | 22533 52 12 616
184 13.8 | 2537 10 | 1569
181 9.6 | 1737 11 | 1782
531 15.8 840 14 751
113 | 37.5 | 4238 21 | 2068
78| 16.6 | 1297 8 301
95| 88.1 | 8374 10636

Neil Webb SISAL Futures in Australia Page 10

CSIRAC I IF1 / IF2 Futures...

There are several major areas of investigation and
implemtation for the CSIRAC il IF1 Compiler

These areas include:

« Implement Unions and Tagcase (design
complete)

Implement a tail-recursive lterate node
Iimplement the f-Then-Else node

Design a new structure store memory
manager. Give special consideration to the
speed of allocation vs memory fragmentation

Implement the IF2 nodes and Reference
Counting

Design an error interface for array (vector)
operations :

Neil Webb SISAL Futures in Australia Page 11

CSIRAC I1 IF1 / IF2 Futures...

(continued)

« Incorporate the new ForAll reductions that
expioit the Structure Store. This will remove
long “tails™ from parallel loops - especially
FinalValue operations

Add automatic throttling codes to ForAll loops
and Call operations

+ Add AllButLast to IF1 Compiler

Neil Webb SISAL Futures in Australia Page 12

Léboratory for

- Concurrent Computing Systems at Swinburne

User Experiences: Weather and FFT codes

Pau Chang

Sisal Workshop

/ Laboratory for Concurrent Computing Systems \
Swinburne Institute of Technology

My Experience and Research in SISAL
Pau §. Chang

' Laboratory for Concurrent Computing Systems

% - 7

Data Input o
Model Imitialisation

Timeloop:
Time Step Prediction
utations

>
Nexi Latitude

Figure 3: Flow chart for the FORTRAN and sequerntial SISAL implementations

v
RNC
s z3 B v o

Zdiff
UVspactral

LinssrConversion

: ' SpecToFreqSphers

. ; : MdFFTGridSphere

e

' VertigSphers

|

oo

MAFFTFreqSphere

IR

% 4 S R
. AngMom FreqToSpecSphe
SpecAm ;
2 fNext Time Step %ﬁﬂu{ o i
e .

i R A P,

re

S

Figure 7: Flow chart for parallel SISAL implementation

SRR AT

Implementasion of Westher Mode} and Performance

Results for the Parallel Implementation

- Single processor runtime: 106.7 seconds

- multiple processors: run time reduced to 13.7 seconds

- Parallelisation of the timeloop body has been successful
- confirming the feasibility of a parallel implementation of the

adopted weather model

Benchmarking of Timeloop

For model size J=30, timestep = 30 minutes; 24-hour forecast needs 48
iterations of timeloop. Timeloop critical and dominant,
----> One iteration of timeloop is sufficient and adequate for

benchmarking

Ran Time v § Processork [Encors) ‘medel siie J e 347

100
80 -

Time{smol g5 |

i ¢ Procawaara

Aetive processors vs time (EnCors 16 prodessors! 'J ow 35°
24 -
[

s ! Rl iq‘\
éracessors . [N | |‘ i
0| § % !
5 it
5 4 i
1]s

5.0 L1 4.0 6.¢ g,0 .¢ i

Time {seconds) J

Figure 8a: Execution time profile of ihe rew priam"\n

Figure 8b; Concurrency profilMy the new implementation

Implemenation of Wasther Model ind Performance

Performance in terms of Model Sizes

- Curves approximately proportional to J2

- Single pocessor runtime of parallel implementation in SISAL very
close to the sequential implementation in FORTRAN

- SISAL/multiple processors: the growth in execution time
with increasing model size is much stower than that for single
processor runtime for either FORTRAN or SISAL

J lozp Run Time ve Mudel Site (Encoret *Loap_Berchmark”
| 160 .I

i 120 4 T F1

! 1
i
|
|
i
i

100 e 53

Tine (s8c) ‘:G 4 atrapolation
60 -i
50 ..é
20 ~§ i
0 - -

bl i 20 i 40 50 50

[
Namber of Reselutisn,

J

Figure 9: The execation time of the FORTRAN and SISAL
implementations as a function of model size.

80 1929 Text Stide ¢

Implementation of Weather Mode! and Performance

Speedups from the Benchmark Ratios

- S1/F1 curve - speedup of the FORTRAN implementation over the
SISAL implementation for varying model size

- F1/816 curve - speedup of the SISAL implementation in a
multiprocessor (16) environment over a sequential
implementation in FORTRAN (single processor)

- §1/816 curve - speedup of SISAL implementation in multiprocessor
(16) environment over the execution time of the same
task by a single processor

- 81/8n curves for various model sizes: general view

OSC runtime overheads

actual computation

i
Pragent Spesdup «f TimelooD va Number of Pracessors (Encore}

Loop Benchmark Ratilos vs Modal Siua (Encore} 16.9 .} tdaal
e 1 14.0 4
[3 ssmsenes 817F1 12.0 4
s S1/81E g0
i £3 816 speedup -1
Hatlo 6 - 2.0 4 ens
| xtragalatisn P J rrmig 8

- e i
2 2.0 -
ah.rz2polation 2.4 i
¢ : 2 4 € a 13 17 & &
9 i Fid 30 4Q 30 40

+ Procesgors

Numbezr of Hesciution, J

Figure 10: The benchmark ratios as a function of model size. Figure 11: The speedup profile of the timeloop for the present implemeniaiion
IS0 1529 L Text Stide 10

Active processors vs time (Encore 16 processors) *J = &7
20 -
15 -

Processors
10

¢ ' T T . - T v :
.0 ©.1 0.2 9.3 Q.4 0.5 0.6 0.7 0.8

Time ({seconds}

Figure 12a: Concurrency profile of timeloop for J = 6 (small model size)

Actlve Processors vs time (Encore 16 processors) ‘Loopl.9’
20 -~

i5 T
Frocessors
10
5
o] : v : v v -
5.0 €. 7.0

0.0 1.0 2.0 3.0 4.0

i

L

Time {seconds}

Figure 12b: Cancurrency profile of timeloop for J = 30
{large model size)

Impiementation of Westher Model and Performance

Effect of Memory Deallocation Overhead

- Significant serial tail section - critical as more parallelism is obtained

- eager memory deallocation routine of OSC runtime system

- Storage structures used are automatically but sequentially

deallocated (28% of loop time)

Proposal: static analysis determines that array sizes are invariant
through loop iterations and may be re-allocated

-+

"lazy" deallocation in parallel with main computation

only when necessary

Actlve Procassors ve time (Encore 16 processors) “heop ELIY

N
iR

13 4

Processsrs g

1
5]

J—

Time {sseonds)

Figure 13a; The achievable concurrency {f « 30} of the
timeloop with an efficiens memory deallocation
scheme.

IR0 1929

Speedup of Effsciest Loop vs Numbarp of Frosesscrs (Encore)

16.0 7 Idaal
Wl 504 Idsal
17,8 41 ——e—— actual dataset
et My datBEEE .

o cp +2.0 Teg
ipaadup j w3l
. M EE)
[SH]

Procesmors

Figure 138: The would be speedup of the imeloop with an

efficient memaory deallocation scheme.

Text Siide II

SISAL Implementation of a Two Dimensional Fast Fourier
Transformation Routine (technical report being prepared)

(1) Direct Transliteration from FFT in C:

for row in 0O, totalN
FET(rows) or FFT(columns) (each FFT is potentially sequential)
end for

SISAL does not exploit efficiently the parallelism offered by many chunks
of sequential codes executed concurrently.

(2) Direct Fourier transformation approach, due to the failure in
implementing the butterfly transform in SISAL.

(3) Data handbook of Am29540 FFT chip (16 points FFT) as model, I
deviced my own routine to determine which points on the left should be
chosen as the left wings for each right wing point of a butterfly, and also
the routine to determine what W factors and when should be used. For 512
x 512 mesh, the runtime ranges from 414 seconds to 32 seconds (13 times
speedup with 16 processors.

-The present one problem is that the results on the SUN are very
different fron than that on the Encore. Need debugging.
-New bugs of OSC discovered

-Analysis of memory allocation and deallocation

Am29540

TRANSFORM CHARACTERISTICS
e 15-Foint (N = 16)

RADIX-2
DiF

L] NormaEly ordered input data

(Bit-reversed oulput data order}

In-place

Complex valued input data

I

-~

(N =8

(N =4

FORWARD TRANSFORM

A=A+ B

TYPICAL BUTTERFLY

B = (A - BYWX

INVERSE TRANSFGRy

w=e "

A= A+ B

B = (A - Byw~t

DIT/DIE

RADIX 4/2

L

Address of

AS e

7-60

it

| Workers'

i{Encore 46

ToCessors) f3seperate’

T

Proposals for SISAL and OSC Page 1

Proposals for SISAL and OSC

- efficacy in expressing the potential concurrency of scientific computational models is yet to be judged by practical
application studies

- some features need added to improve SISAL's expressive capability

- improvements needed for OSC to make it more reliable and effective

-from implementations of a spectral weather simulation model and a two dimensional FFT model

Starting Index of "FOR array RETURNS VALUE OF CATENATE"

FOR i IN 0, bound
RETURNS VALUE OF CATENATE
END FOR

IF1 graphs - 1
Even if IF1 graphs det to 0, PI and the C code generated by OSC - 1
Need array_setl fo set desired lower bound

FOR array RETURNS VALUE OF CATENATE of concatenations of vectors

FOR loop
RETURNS ARRAY OF
FOR index IN lowerbound, upperbound

vecvec = vector |l vector % concatenation
RETURNS VALUE OF CATENATE vecvec
END FOR

END FOR

Proposals for SISAL and OSC Page 2

iftld -o chip.mono -e main chip.:fl

iflopt chip.mone chip.opt - -¢

unlink chip.mono

if2mern chip.opt chip.mem

unlink chip.opt

tf2up chip.mem chip.up

unlink chip.mem

if2part fy/reofreodf/sisalirelease/OSC _esu/bin/s.costs chip.up chip.part -LO
unlink chip.up

if2gen chip.part chip.c -b

unlink chip.part

e -Lfyfreo/reodt/sisalirelease/OSC_csu/bin -DSUN3 {68881 -C -5 chip.c

%"chip.c”, line 229: nonunique name demands struct/union or struct/union pointer
%"chip.c”, line 230: nonunique name demands struct/union or struct/union pointer
%"chip.c”, line 262: nonunique name demands struct/union or struct/union pointer

%"chip.c", line 264: nonunique name demands struct/union or struct/union pointer
** COMPILATION ABORTED **

Error messages given ar compile time

Normalisation of Parallel Loops
iflopt: E - FORALL RETURN SUBGRAPHS NOT NORMALIZED
** COMPILATION ABORTED **

*** Frror code |
stop.

Error message for the subgraph normalisation error

FProposals for S5ISAL and OSC Page 3

var := FOR diffindex IN 2, jxmx
RETURNS VALUE OF SUM CabsSqr{zt_mountain{diffindex])
END FOR;

h:= FOR index IN I, jxmx
RETURNS ARRAY OF Crmul(constant, 2t_rnountzin/index])
END FOR;

(i) The error producing region in the initialisation section

var, h = FOR index IN 1, jxmx
RETURNS VALUE OF SUM IF index = | THEN 0.0
ELSE CabsSqr(zt_mountain[index]}
END IF
ARRAY OF Crmul(constant, zt_mountainfindex])
END FOR;

(iii) The immediate solution

Figure 3: Subgraph Normalisation error

Proposals for SISAL and 05C Page 4

Expleitation of Parallelism for Conventional Multiprocessors

Two big blocks of mutually independent sequential loops should be processed concurrently

OSC cannot identify the data independency of the two loops

Cost Estimation Routine
Fails to identify the critical path significance of certain parallel loops so loops are not sliced accordingly.
A quick solution using QDN technique "tricks" the cost estimator:
FOR array RETURNS VALUE OF CATENATE
FOR array RETURNS ARRAY OF
XXXXXEX

END FOR
END FOR.

Number of processors sharing the work as compile time pragma - cost saving

Eager Memory Deallocation Routine
Single sequential loop:
- Allocate storage at beginning of loop

- eageriy deallocates the storage at end of iteration, serial with loop body
- ~28% of the total loop time (weather model)

SISAL Implementation of a Two Dimensional Fast Fourier Transformation Routine (technical report
being prepared)

(1) Direct Transiiteration from FFT in C:

for row in 0, totalN

FFT{rows) or FFT(columns) (each FFT is potentially sequential)

end for

SISAL does not exploit efficiently the parallelism offered by many chunks of sequential codes executed concurrently.
(2) Direct Fourier transformation approach, due to the failure in implementing the butterfly transform in SISAL.
(3) Data handbook of Am29340 FFT chip {16 points FFT) as model, I deviced my own routine to determine which
points on the left should be chosen as the left wings for each right wing point of a butterfly, and also the routine to

determine what W factors and when should be used. For 512 x 512 mesh, the runtime ranges from 414 seconds to 32
seconds (13 times speedup with 16 processors. .

-The present one probiem is that the results on the SUN are very different fron thaa that on the Encore. Need
debugging.
-New bugs of OSC discovered

-Analysis of memory allocation and deallocation

The Analysis of the Effect of Memory Allocation and Deailocation on the Parallelism of a Parallel Code

It is expected that for some data stryctures, the allocation and deallocation operations at runtime overlap each other, The best case is when
they run concurrently, The worst case is when they are mutually exclusive and have to run serial to one another due to access to the same

data structure. The former is simpler than thelatter o anaiyse and the analysis is shown below. The execution time of each iteration is
normatised to 1 and the tosal number of tasks is N. A is presented here as occupying 30% (rormalised to 6.3) of cach sk, Each A provides a unigue solution,

A

B

A 3A

A*2/3

¥
N2+ A N3+ 2A
N=512
$U=1.094 12,989

1=256.3 ={71.267

N/ TA (NMA-DARLS

SU=3.318

t=154.3

A - Memory Allocation
B - Slice Body
D - Memory Deallocation

A
4 A
1A B
A
B S
A
|
A
nnidat B
S A
B
A
S N 2 B -
A*SB A ?
A *
5 A*E/3
A
5 9
A
B
A
oL B
A
B e
A
—55] B
A
BB B oy B
A
NN Tl R
N, A
N/§ 1 g
,LN/() o) 8
B

Ni§ +dA + (NS 1)A*5/3 NG + SA + (N/B-1JA8A3

3U=3.318 SU=31318

A A A
8A
A
A
8
A
w0 B
A
] B
o D B
EUET
4
A*17/3
A
A
A
5 4
A
oo Adi) A
L] B
kb
N/ + 64+ (N/T-DIA*TIA N/§ + TA + (N/B-1IAR14/3 NG w BA # (NG-TIAX 1713
SU=3.318 SU=33i8

SU=1.318

Speedup

=SPeEaUp

1

120 -

40

40

20

5 Speedup Curve {(512x512 Point FFT)
4
3 -
2
=
g -
° 7 <% 512 analysis
8 -~ - 512 Actual
7 4 — ldeal Speedup
g ~
5 o
4
3 -
o o
1 1 Y 1 1 T T T y T 1 T T 1 1
1 2 3 4 5 6 7 8 8 10 1112 13 14 15 18
Number of Processors
Run Time Curve (512x512 Point FFT)
% 512 gnalysis
l - 512 Actual
SN R M S S SR e S B S aa—

4 5 6 7 8 8 10 11 12 13 14

Number of Processors

15 16

Exacution Time

Run Time Curve {128x128 Point FFT)

- 128 analysis
- 128 actual

LA A M S M M e A S e e At A W S M

L D A S
23 4 5 6 7 8 g 10111213141516
Number of Processors

Speedup

Speedup Curve (128x128 Point FFT)

- 128 actual
= 128 analysis

f—*_: B e

T] t 1)] 1 ¥ 1 T T T T T T]

2 3 4 5 6 7 8 9101112131415 186
Number of Processors

new (old x) . new (old x)
init old x init old x

new (x)
new (x) il ‘
compute X := F(old x) compute X := F(old x)
dispose (old x) swap pointers (X, old x)
rename old x ;= x

Present Scheme A Better Scheme

Memory Allocation and Deallocation Scheme of OSC

g N

o g B o N

i AV Cita g e, ool ﬂ,./-(l‘:cj ELEL Qg D 0,
E’

.,/,J M/‘7’£\

I . .
l:["vf'y" Jff-\r-’w“;ou\.%

old x

% i "A's" are insignificant

A
B

Bl B ‘ A | oldx
AT

B

C;/ff{:{'z // .‘e;/;_/[_.l_/(-hwéui'?{‘-—‘i] K L_:": Foeot

at ‘{C et M,%OQ."‘CL/;(;—.‘,“Q::\ L. \:\ Lo

/
P P
v el 3 -
: e R N <1 -
=1 Ty Fres
G g o / <
[RV2 S, e . L
2T R 4 . o

Proposals for SISAL and 0SC - Page 5

Possible scheme:

- code motion and data structure pointer reassignment to remove the allocation and deallocation of fixed size data
structures from within iterative loops {FFT report]

{appropriate optimisation by hand at C level is relatively easy for simple examples)

- where the dara structure size cannot be determined statically, data deallocation should be overlapped with main
computation of loop body lazily .

Mathematical analysis for upper bound performance of a supposedly parallel SISAL code:

FOR row IN 0, totalN
RETURNS ARRAY OF FFT[row]
END FOR % where each FFT is potentially sequential

- Speedup curve for code saturates dramatically at unexpectedly low value
- Need for improvement in memory allocation and deallocation scheme implemented in OSC on ENCORE

Debugging SISAL Programs

To date impossible to debug SISAL program at source level
Best is DI but as had bugs
Program debugging at C code level is sometimes useful but C code generated from SISAL is niot always correct

Indirect debugging in DY is difficult and unreliable, requires additional tedious and error prompt efforts -
Hiesenberg effect

Most serious drawback which discourages anyone from deing serious programming in SISAL. Research into source
level debugging aids for SISAL is therefore needed

Proposals for SISAL and OSC Page &

Language Support for Complex Numbers

Expiicit tasks in the treatment of complex numbers as records may result in an additional execution cost

Rem_et‘ly: SISAL support for complex numbers similar to FORTRAN's, making treatment of complex numbers
Ei;gpml;c\ife necessity of building records, extiacting elements from records and calling functions for complex arithmetic
which obscures underlying algorithm

OLD Statements: an Easy Mistake

OLD is used on the right hand side

Multiple accesses of an QLI variable are common place

Coexistence of the variables evaluated in present iteration and OLD variables evaluated in previous iteration an easy
mistake

Once OLD statement missed out, error is very difficult to detect

Appendix: Code generating "Normalisation Error"

% Author: Pau 8. Chang

% Revised: 2/2/1990

% Module: The initialisation stage of the Spectral Weather Model.

%

% Problems (highlighted in bold in the main program):

% (i) Graph Normalisation incomplete inside IF1I0OPT??

% (it) Loops of similar loop bound are forced to be "coupled” together

% in order to pass through the OSC compiler. They are many of such
% cases here. An example is in the calculation of variance "var"

% and Average potential height "h":

filename: Makefile

makefile for the SISAL codes barotropic model Version 1.8

Let

iflfiles = main.ifl IntrFuncs.ifl complex.ifl \
Initalifl InitFFT.if1 gaussg.ifl \
legendre.ifl SasAlfa.ifl

SUFFIXES:

SUFFIXES: 515 Lifl

Compile from .sis files to .if1 files

5is.if1:
osc $*.sis -IF1 -double_real

prefft: $(if1files)

osc -v -0 prefft $(iflfiles)

Filename: IntrFuncs.sis
DEFINE ASINR, ACOSR, SQRTR, DSIN, DCOS

- Intrinsic Functions

global 8IN{rum : real RETURNS real)

global COS{um ; real RETURNS real)

glebal ASIN(num : double_real RETURNS double_real)
global ACOS{um : double_real RETURNS double_real)
global SQRT(num : double_real RETURNS double_real)

% Catering for real operations of Intrinsic functions
function ASINR(num : real RETURNS real)

real{ ASIN{double_real{num)}}

end function

function ACOSR(num : real RETURNS real)
real(ACOS(double_real(num)))
end functon

function SQRTR{num : real RETURNS real)
real{SQRT{double_real{num)))
end functdon

% Catering for double_real operations of Intrinsic functions
function DSIN{mum : double_real RETURNS double_real)
double_real(SIN(real{num)})

end function

function DCOS(mum : doubie_real RETURNS double_real)
double_real(COS{zeal{num)})
end function

Filename: complex.sis

DEFINE Cadd, Csub, Cmul, Cdiv, Crmul, Crsub, Crdiv, Conjg, Cneg,
Csqrt, Cabs, CabsSqr

type CplexReal = Record[Repart,Impart:real];
© type ArrCplexReal = Array{CplexReall;

Yo —mmmmmme- Intrinsic Functions

global SIN(num : real RETURNS real)
global COS8{num : real RETURNS real)
global ATAN(num : real RETURNS real)
global SQRTR(num : real RETURNS real)

% These subroutines do the arithmatics of complex numbers:

% cnum1 + cnum?2

function Cadd{cnum1, cnum? : CplexReal RETURNS CplexReal}

record CplexReal] Repart : cnuml.Repart + cnurn2. Repart;
Impart : cnuml.Impart + cnum?2. Jmpart]

end function

% cnuml - cnum?2

function Csub({cnuml, cnum? : CplexReat RETURNS CplexReal)

record CplexReal[Repart : cnum!.Repart - cnum2.Repart;
Impart : enwml Impart - cnum2.Impart]

end function

% cnum] * cnum?2
function Cmul(cnum1, cnum?2 : CplexReal RETURNS CplexReal)
record CplexReal] Repart : cnuml.Repart * cnum?2.Repart -
coumi.Jmpart * cnum?2. Impart;
Impart : cnumi.Repayt * cnum?2 Impart +
cnumi.Jmpart * cnum?2 Repart]
end function

% cnuml/cnum?2

funection Cdiv(enuml, caum?2 : CplexReal RETURNS CplexReal)

LET drom:= cnum2.Repart * cnumZ2.Repart + cnum2.Impart * coum2.Impart;

IN

record CplexReal] Repart : (cnumi.Repart*cnum?. Repart +
crnuml.Impart*enum2 Impart) / dnom;
Impart : (cnuml.Impart*cnum?.Repart -

cnum1.Repart*cnum?2.Impart) / dnom]
end LET
end function

% Real constant*cnum

function Crmul(cons : real; cnum : CplexReal RETURNS CplexReal}

record CplexRealf Repart : cons * cnum.Repart; Impart : cons * cnum.Jmpart |
end function

% cnum-Real_constant

function Crsub{cnum : CplexReal; cons : real RETURNS CplexRezl)
record CplexReall Repart : coum.Repart-cons; Impart @ cnum.Impari]
end function

% cnum/Real_constant
function Crdiv(cnum : CplexReal; cons : real RETURNS CpiexReal)
record CplexReal{ Repart : cnum.Repart / cons; Impart : enum.Impart / cons |

end function

% conjugate(cnum)=Repart-Impart

function Conjg(caum : CpiexReal RETURNS CplexReal)

record CplexReal{ Repart : cnum Repart; Impart : -cnum. Impart]
end function

% Cneglcnum)

function Cneg(cnum : CplexReal RETURNS CplexReal)

record CplexReal{ Repart : -cnum.Repart; Impart : -cnum.Jmpart]
end function

% Csqri{cnum)
function Csqrt{enum:CplexReal RETURNS CplexReal)
LET

RR = cnum.Repart;

1II := cnum. Impart;

mag = SQRTR(SQRTR(RR *RR +O *ID);
angle := ATAN(II/RR)/ 2.0;

Re, Im = mag * COS(angle), mag * SIN(angle);
IN

record CplexReal[Repart : Re; Impart : Im)
end LET
end function

% Cabs{cnum) refers to the MAGNITUDE of the complex number.
function Cabs(cnum : CplexReal RETURNS real)
SQRTR{cnum.Repart * cnum.Repart + cnum.Impart * cnum.Fmpart)
end funetion

% CabsSqr(cnum) refers to the MAGNITUDE Square of the complex number.
function CabsSqr{cnum : CplexReal RETURNS real)

crum.Repart * cnum Repart + cnum. Impart * enum.fmpart

end function

Filename: Inital.sis
DEFINE Inital

type Arrlntl = Array[integer];
type ArrReall = Arrayfreal);

global SQRTR{num : real RETURNS real)

FUNCTION Inital(ir, ilong, ilat, mx, jx, jxx : integer; zmeanl : real
RETURNS integer, integer, integer, integer,

real, real, real, real, real,
arrintl, arrintl, arrintl,
arrreall)

LET

ww 1= 7 292E.5;

tw = ww * 2.0;

irmax:= ir;

ilath, irmaxl, irmax2 := ilat / 2, irmax + 1, irmax + 2;

asq, grav = £371.22E3 * 6371.22E3, 9.80616;
zmean:= zmean] * grav [asq;

kmjx, kmjxx := FORm IN 1, mx
RETURNS ARRAY of (m - 1) * jx
ARRAY of (m - 1) * jxx
END FOR;

ksq:= FORjIN1,ir*2
RETURNS ARRAY of j * (j+ 1)
END FOR;

epsilon_a = FOR mp IN 1, mx

RETURNS VALUE of CATENATE
FORjIN 1, jxx % epsilon_size is 1-272
Ii=j+mp-2;
m:=mp-1;
L= real({l +m} * (1-m));
bi=real(d *}*1-1}
RETURNS ARRAY of SQRTR(1/b)
END FOR

ENDFOR;

epsilon := epsilon_a[l : 0.0];

N
ir, ilong, ilath, irmax2, ww, zmean, tw, asq, grav,
kmjx, kmjxx, ksq, epsiion

ENDIET
END FUNCTION

Filename: InitFFT sis
DEFINE InitFFT

type Arrintl = Array[integer];
type ArrReall = Array[real}

global SIN(num : real RETURNS real)
global COS(num : real RETURNS real)

Gpmrmmmmmmmsen s facird/facStep/facRecur
function facRecur(npart, idiv, ifTi : integer;
ifact : Arrintl
RETURNS integer, integer, integer, Arrintl)
FOR INITEAL
apari = nparti;
iquot := npart / idiv;
T = ifTiy,
ifactl := ifacti;

WHILE npart - idiv * iquot = 0 REPEAT
npart := old iquot;

iquot = npart / idiv;

HT = old ifT + I;

ifactl := old ifact][ifT : idiv]

RETURNS VALUE of npart
VALUE of iquot
VALUE of if T
YALUE of ifactl

END FOR

END function % facRecur

Fgammm e factr4/facStep
function Loop_id(n : integer
RETURNS integer, integer, ArrInti)
FOR INITIAL % loop_id
idi=1;
T =10
npart ;=13
ifact := ARRAY fill(1, 20, 0) % NOTE: wild guess

WHILE id <=n REPEAT
idivi=]Foldid-1 <=0 THEN2
ELSE old id
ENDIF;

npart, iquot, ifT, ifact 1= facRecur{old npart, idiv, old ifT, old ifact);

id :=IF iquot-idiv <= 0 THEN n+ 1 % just to make it greater than n
ELSEoldid +2
ENDIF;

RETURNS VALUE of npart
VALUE of ifT
VALUE of ifact

END FOR

END function % Loop_id

%
function FACTR4(n : integer RETURNS integer, arrintl)
LET

npart, ifT, ifactl := Loop_id(n};

iff ;=i npart - 1 >0 thenifT +1
else ifT
END if;
ifact? :=if npart - 1 > 0 then ifact1fiff : npart}
else ifact]

ENDIf;
nfactT = iff;
n2 := FORINITIAL
n? = 0;
1=

% n2 includes case i=nfactT
WHILE i <=nfaciT REPEAT
i=oldi+1;
n2 = if ifact2{eld i} = 2 then old n2 + 1
eise old n2

ENDif
RETURNS VALUE of n2
END FOR; 9% NOTE: very ineffecient!

nd =n2/2;
ifact3 := ARRAY_fill(1, nd4, 4)
]
foriinnd + i, nfaciT - nd4 RETURNS
ARRAY of ifact2{n4 + i]
END for
I
ARRAY_fill{nfactT - nd4 + 1, nfactT, 0%

nfact = nfactT - nd: '
IN nfact, ifact3

ENDLET

END function % factrd
ar

o ——

% Subroutine InitFFT does the initialisations necessary so that the
% FFT's can be used. It factorises the number of longitudinal points.
% TRIGF are for forward wansforms while TRIGB are for reverse.

function InitFFT(n : integer
RETURNS boclean, boclean, integer, arrintl, ArrReall, ArrReall)
LET
Abortinitffy ;= IF (MOD(n, 2} ~= 0 {n > 200) THEN true ELSE false
ENDIF,
AbortFFT := IF n > 96 THEN true ELSE false END IF;

pi = 3.14159265;
nfax, ifax ;= FACTR4(n);

wigf, trigh =
IF Abortinitfft
THEN array ArmrReall [],
array ArrReall []

EISE FORIpINLn
xi=(Lp+1)/2;
Cargument := - 2.0 * p1 * real(k - 1)/real(n);
COStheta := COS(Cargument); % Repart
SINtheta = SIN(Cargument); % Impart

RETURNS ARRAY of IF MOD(Lp, 2) = 0 THEN SINtheta

ELSE COStheta
ENDTF
ARRAY of IFMOD(Lp, 2) =0 THEN - SINtheta
ELSE COStheta
ENDITF

END FOR
ENDIF

IN AbortFFT, Abortinitfft, nfax, ifax, wigf, wigh

ENDLET
END function

Filename: gaussg.sis
PEFINE gaussg

type ArrReall = Arrayireal];
type ArrDreall = Array[double_reai)

zlobal ACOS(num : double_real RETURNS double_real)
global SQRT(rum : double_real RETURNS double_real)

global SIN{num : double_real RETURNS double_raal)
global COS(nurn : double _real RETURNS double_real)

FUNCTION ORDLEG(r : integer; coa : double_real
RETURNS double_real)

1ET

irpp, Ippm = ir+l, ir;

delta r= ACOS(coa);

sgr2 = SQRT(2.0d0);

theta = delta;

¢l = sqr2 * FOR nIN 1, irppm
fni=n;
fnZ =fn*2;
fnlsq := double_rcal{fni * M2);
RETURNS VALUE of product SQRT(1.0d0 - 1.0d0 / fn2sq)
END FOR;

sl:= FORINITIAL

n = irppm;
fn := double_real(irppm);

2 := fn * 2.040;

ang = fn * theta;

$1T := 0.0d0;

¢4 = 1.0d0;

2= -1.0d0;

b = 0.0d0;

nl=n+1i;

kk:=1;

WHILE kk <=nl1 REPEAT

kk =oldkk + 2;

k=oldkk-1;

cAT := IF k=n THEN 0.5d0 * old c4

ELSE old c4

ENDIF,;

s1T := 0ld 51T + c4T * COS{old ang);

a:=old a + 2,0d0;

b=old b+ 1.0d0;

fk := double_real(k);

ang := theta * {fn - fk - 2.0d0),

¢4 =a*(fn-b+1.0d0)/{(b* (fn2 - a)) * c4T;

RETURNS VALUE OF 51T
END FOR;

5% =51 * ¢l;

IN sx

ENDLET

END FUNCTION
B e e e e e e et e

(]

G gaussg/cycle

FUNCTION CYCLE(ir, trm, irp : integer;
i1, a, b, xlim : double_real
RETURNS double_real)

LET

g = ORDLEG(r, ft);

am = ORDLEGGrm, ft);

gp = ORDLEGirp, fi);

gti=(ft* ft- 1.0d0)/(a * gp - b * gm);

ftemp 1= ft - g * gt;

gtemp = ft - fremp;

finew = ftemp,

IN IF ABS(gtemp) - xlim > 0.040
THEN CYCLEC(ir, irm, irp, finew, a, b, xlim)
ELSE finew
ENDIF
ENDLET
END FUNCTION

L gaussg

FUNCTION gaussg{nzero : integer
RETURNS ArrReall, ArrReall, ArrReall, ArrResll, ArrReall, ArrDreall)

LET

xlim := 1.04-12;

ir := nzero * 2;

fi := double_real(ir);

fil := fi + 1.0d0;

pi = 3.1415926535897934d0;

plov2 = p1 * 0.5d0;

fn = piov2/double_teal(nzero);

wt = FOR lat IN 1,nzero RETURNS
ARRAY of double_real(lat) - 0.5d0

ENDFOR;
f := FOR lat IN 1 nzero RETURNS
ARRAY of SIN{ wt[lat] * fn + piov2)
END FOR;

dn = {i/SQRT(4.0d0 * fi * i - 1.0d0);
dnl = fil/SQRT(4.040 * fil * fil - 1.0d0);
a=dnl * fi;
b =dn * fil;
irp ;=ir+ 1;
i p=ir - 15
frew = FOR latIN 1, nzero RETURNS
ARRAY of CYCLE(r, irm, irp, f[lat], a, b, xiim)
END FOR;
winew, radnew, coangnew, siarnew ‘=
FOR lat IN 1, nzero
al = 2.0d0 * (1,040 - fnew(lat] * fnew{lat]);
bo = ORDLEG(irm, fnew{lat]});
bl :=bo * bo * fi * fi;
witt = gl * {fi - 0.5d0) / bl;
radt ;= ACOS(fnew[lat]y;
coangt = radt * 180.040 / pi;
siat ;= SIN(radt);
RETURNS ARRAY of wi
ARRAY of radt
ARRAY of coangt
ARRAY of siat
END FOR;

WORKiyh = fnew || winew [} sianew | radnew il coangnew,;

fs, wts, sias, rads, coangs :=
FOR lat IN 1, nzero
RETURNS ARRAY of real{fnew{iat})

ARRAY of real{wmewilat])
ARRAY of real{sianew{lat]}
ARRAY of real(radnew{lat])
ARRAY of real(coangnew{lat])

ENDFOR;

IN fs, wis, sias, rads, coangs, WORKivh
ENDLET
END FUNCTION

Filertame: legendre.sis
DEFINE legendre
type ArrDreall = Array[Double_real]

global SIN(mum. : double_real RETURNS double_real)
global COS(num : double_real RETURNS double_real)
global SQRT(mum : double_real RETURNS double_real)

FUNCTION legendre(ir, irmax2, jxxmx : integer;
coas, sias, deltas : real;
RETURNS ArrDreall)
LET
p:=LET
coa := double_real(coas);
sia := double_real(sias);
delta := double_real{deltas);
ipp = ir + 2;
theta := delta;

sqr2 := SQRT(2.0d0);
pp:= FOR INITIAL
ni= 13
cl 1= sqr2;
pLoopl := ARRAY ArrDreall[1: 1.060 / sqr2]
H

FOR jm IN 2, jxxmx
RETURNS ARRAY of 0.0d0
END FOR;

WHILE n <= irpp REPEAT
n:=oldn+I;
fn := double_real(old n);
fn2 = 2040 * fn;
fn2sq = fn2 * M2;
cl = old c1 * SQRT(1.0d0 - 1.040 / fin2sq);
<3 :=cl /SQRT(n * (fn + 1.040));

sl, 82 =
FOR INITIAL
kk = [;
ang := fn * theta;
nl:=oldn+1;
ss1, s52 := 0.0d40, 0.0d0;
cd, ¢5 = 1.0d0, fn;
a, b := - 1.0d0, 0.0d0;

WHILE kk <=n1 REPEAT
kk := old kk + 2;
k=oidkk-1;
552 := old 552 + old ¢5 * SIN(old ang) * old c4;
cdt:= if k = old i then 0.5d0 * old c4
eise old o4

END if:
ssl := old ss1 + cdt * COS(old ang);
a:=old a + 2.0d0;
b :=old b + 1.0d0;
X := double_real(k);
ang := theta * (fn - fk - 2.0d0);
cdi={a*{fn-b+1.0d0) /B * 2 - a)) * cdt;
¢5 :=old ¢5 - 2.0d0

RETURNS VALUE of ss1
YALUE of 552 % to 8] and s2
END FOR:

pleopl :=IF oldn - irpp < 0
THEN old plooplfoldn +1 :s1 * ¢l; old n + rmax2. : s2 * ¢3]
ELSEIF oldn - irpp=0
THEN old pLoopifold n + irmax2 : 52 * ¢3]
ELSE old pLoopl
ENDIF

RETURNS YALUE of pLoopl % w pp
END FOR;

pi =
IFir=2
- THEN pp

ELSE FOR INITIAL
m:=2;
PPP = PD

WHILE m <= ir REPEAT

ENDIF

INp2
END LET;

=oldm+ 1;

fm := double_reai(old m);

fm1, fm2, fm3 = fm - 1.0d0, fm - 2.0d0, fm - 3.0d0;
mml:=oldm- 1;

ml :=oldm+1;

c6 1= SQRT((2.0d0 * fm + 1.0d0) / (2.0d0 * fm));

PS5 = old ppplirmax2 *oldm + 1 : ¢c6 * sia *

old ppplirmax2 * mml + 1]];

mpir :==oldm +ir + 1;
mt = old m;

ppp == FOR INITIAL

I:=ml;

M =15

WHILE 1 <= mpir REPEAT
I:=oldl+1;
fn = double_real(old 1);
¢7 = (fn * 2.0d0 + 1.0d0) / (fa * 2.040 - 1.0d0);
c8:=(fml +fn) /{(fm + fn) * (fm2 +M));
¢ = SQRT((fr: * 2.040 + 1.0d0Gy/
{fn * 2.0d0 - 3.0d0) * ¢ * (fm3 + f));
d :=SQRT(cT * c8 * (fn - fml));
e = SQRT(7 * (fn- fm)/ (fn + fm));
Im := irmax2 *mt +old 1 - mt + 1;
Imm2 = irmax2 * (mt-2) +oldi-mt + 3;
Imimm? = lmm2 - 1,
Im2mm? = Imlmm2-1;
Imlm:=Im-1;

pdi= IFold]-mpir<?
THEN old p4{lm:c * old p4[Im2mm?2]
-d * old pd[Imlmm2] * coa
+ & * old p4{Imlm] * coa)

ELSEIF old1 - mpir> 0
THEN old p4

ELSE LET

a = SQRT((fn * fn - 0.25d0) /
(fn*fn-fm*fm)}

b= SQRT((2.0d0 * fn + 1.0d40) *
(fn - fm - 1.0d0) * {fn + fm1)

J((2.040 * fn - 3.0d0) * (fn - fm)
* (fn -+ fm)));
Im2m =lmlim - 1;

N

old p4[Im : 2.0d0 * a * coa * old p4{lm1m]

- b * old p4[lm2mi]
ENDLET

ENDIF

RETURNS VALUE of p4 % to pb
END FOR;

RETURNS VALUE of ppp % to p2
END FOR

% RETURNS p2wp

INp
ENDLET

END FUNCTION

Filename: SasAlfz.sis

DEFINE SasAlfa

TYPE arrDreall = ARRAY [double_real};
TYPE arrDreal2 = ARRAY [arrDreall};
TYPE arrDreald = ARRAY [arrDreal?];
TYPE arrreall = ARRAY [real];

TYPE arrreal2 = ARRAY [arrreall];
TYPE arrreal3 = ARRAY [arrreal?]

FUNCTION SasAlfa(ir, irmax2, jxxmx, ilath : integer; alp : ArDReal2

RETURNS ArrReal3)
LET
Ipfin := FMOD(r, 2) =0 THEN ir + ¢
ELSEir+2
ENDIF;
alfa := FOR hemi IN 1, 2 CROSS latlev IN 1.ilath
RETURNS ARRAY of
IFhemi=1 % North

THEN FOR specindex IN 1, jxxmx
RETURNS ARRAY of real(alp[latlev, specindex])

END FOR
EISE FORmpIN i, ir+1 % South
RETURNS VALUE of CATENATE

FOR lp IN 1, Ipfin

ilm = (mp - 1) * irmax2 + Ip;

RETURNS ARRAY of
IFlp=1I1MOD(p, 2) ~=0
THEN real(aip{latlev, ilm]}
ELSE real(-alp(latlev, iim])

ENDIF
END FOR
END FOR
ENDIF
END FOR

IN alfa

ENDLET

END FUNCTION

% Main Program
DEFINE MAIN

type Arrntl = Array[integer];

type ArrReall = Arrayireal];

type ArrReal? = Array[ArrReali);

type ArrReal3 = Array[AnrReal?);

type ArrDreall = Array[Double_real};

type ArrDreal? = Array[AmrDreall};

type CplexReal = Record[Repart,Impart:real];
type ArrCplexReal = Array[CplexReal];

global SIN(num : real RETURNS real)
global ACOSR(num : real RETURNS real)

global Cadd(cnuml, cnum? : CplexReal RETURNS CplexReal)
global Crmul{cons : real; cnum : CplexReal RETURNS CplexReal)
global CabsSgr(cnum : CplexReal RETURNS real)

global Inital(ires, ix, iy, mx, jx, jxx : integer; zmeanl ; real
RETURNS integer, integer, integer, integer,
real, real, real, real, real,
arrintl, arrintl, arrintl,
arrreall}

global InitFFT(n: integer
RETURNS boolean, boolean, integer, arrinti,
ArrReall, ArrReall)

global gaussg(nzero : integer
RETURNS ArrReall, ArrReall, ArrReall, ArrReall, AnReall, ArrDreall)

global legendre(ir, irmax2, jxxmx : integer;
coas, sias, deltas : real
RETURNS ArrDreall)

global SasAlfa(ir, Irmax2, jxxmx, ilath : integer;
alp_double: ArrDReai2
RETURNS ArrReal3)

function MAIN(
ires, ix, iy,
ktotal, idelt, idumpt_i, nrun, imp, istart, izon, ininteger;
zmean_1, hdiff, hdrag, vnucreal;
p.in, c_in, z_in, zt_mountain:ArrCplexReal
RETURNS integer,
integer, integer, integer, integer, integer, integer,
integer, integer, integer, integer, integer, integer, integer,
inieger, integer, integer, integer, integer, integer, integer,
integer, integer, integer, real, real, reail, real, real, real,
real, real, ArrImtl, AmIntl, Armntl, Arrintl, ArrReall, ArrReall,
ArrReai3, AmCplexReal, ArrCplexReal, ArrCplexReal, ArrCplexReal,
ArrReall, ArrCplexReal, ArrCplexReal, ArrCplexReal,

ArrReall, ArrReall)
LET
ixh = ix/2;
ivh = iy/2;

ixx = ires + 2;

% =ires + 1

mx = ires + 1;

jExmx = jxx ¥ mx;
JRmx = jx * mx;
MXMX ;= mx * mx;
mx2 :=mx * 2;
JXxmx?2 = jxmx * 2;
jxxmx2 = jxxmx * 2;

ifirst := 1;
itflag = I;
iglobe := 2;
delt ;= idelt;
idumpt := IF idumpt_i = 0 THEN 1000
ELSE idumpt_i
ENDIE

zero := record CplexReal[Repart : 0.0; Impart : 0.0];

ir, ilong, ilath, irmax2, ww, zmean, tw, asq, grav,

kmjx, kmjxx, ksq_1 _uncared_for, epsi =
Inital(ires, ix, iy, mx, jx, jxx, zmean_1);

ksq = ARRAY[0: 0F Eksq_1_uncared_for | ARRAY[1:0,9);

global Inital(ires, ix, iy, mx, jx, jxx : integer; zmeanl ; real
RETURNS integer, integer, integer, integer,
real, real, real, real, real,
arrintl, arrintl, amintl,
arrreall)

global InitFFT(n: integer
RETURNS boolean, boolean, integer, arrintl,
ArrReall, ArrReall)

global gaussg(nzero : integer
RETURNS ArrReali, ArrReall, ArrReall, AnrReall, ArrReail, ArBreall)

global legendre(ir, irmax2, jxxmx : integer;
coas, sias, deltas : real
RETURNS ArrDreall)

global SasAlfa(ir, irmax2, jxxmx, ilath @ integer;
alp_double: ArrDReal?
RETURNS ArrReal3)

function MAIN(
ires, ix, iy,
ktotal, idelt, idumpt_i, nrun, imp, istart, izon, ilin:integer;
zmean_1, hdiff, hdrag, voucreal;
p.in, c_in, z_in, zt_mountain:ArrCpiexReal
RETURNS integer,
integer, integer, integer, integer, integer, infeger,
integer, integer, integer, integer, integer, imteger, integer,
integer, integer, imteger, integer, integer, integer, integer,
integer, integer, integer, real, real, real, real, real, real,
real, real, ArrIntl, Amlntl, ArrIntl, Arrlntl, ArrReall, ArrReall,
ArmReal3, ArrCplexReal, ArrCplexReal, ArrCplexReal, ArrCplexReal,
ArrReall, ArrCplexReal, ArrCplexReal, ArrCplexReal,
ArrReall, AgReall)

LET

ixh = ix/2:
iyh = iy/2;
XX 1= ires + 2

jX = dres + 1;

mx = ires + 1;

Jxxmx o= jxx * mx;
jxmx = jx * mx;
mXmx = mx * mx;
mx2 = mx * 2;
jxmx2 = jxmx * 2;
Xxmx2 = jxxmx * 2;

ifirst 1= 1
itflag = 1,
iglobe = 2;
delt := idelt;
idumpt = IF idumpt_i = 0 THEN 1000
ELSE idumpt_;
ENDIF;

zero = record CplexReal[Repart : 0.0; Impart : 0.0};

ir, ilong, ilath, irmax2, ww, zmean, tw, asq, grav,

kmjx, kmjxx, ksq_1_uncared_for, epsi :=
Inital(ires, ix, iy, mx, jx, jxx, zmean_1);

ksq := ARRAY[0 : 0] !l ksq_1_uncared_for Il ARRAY[1:0, 0l;

AbortFFT, AbortInitFFT, nfax, ifax, trigf, trigh = InitFFT(ix);
coa, w, sia, delta, wocs, WORKiyh := gaussg(ilath); % size ivh

wix:= IFilin=0 % Indeed
THEN FOR lat_level IN 1, ilath
RETURNS ARRAY of w(lat_level] / real(ix}
ENDFOR
EILSE w
ENDIF; % size iyh; of the North

winv, coainv = FOR lat_level IN 1, ilath
winv := wix[ly /2 + 1 - lat_level];
coainv := -coafly /2 + 1 - lat_jevel]

RETURNS ARRAY of winv
ARRAY of coainv
END FOR;
wiy, coaiy := wix |l winv, coa |l coainv: % size iy; of North & South
deltaiy, sialy, wocsty 1= % size iy; of North & South

FOR lat_level IN 1, 1y
deltai '= ACOSR({coaiy[lat_levell);
siai ;= SIN(deltai);
wocsi i= wiy[lat_level] / (sia1 * siai);
RETURNS ARRAY of deltat
ARRAY of sia
ARRAY of wocsi
END FOR;
wocsilath, wilath :=
IF iglobe = 2 % Indeed, highlight the South
THEN wocsiy, wiy

ELSE FOR lat_level in 1, ilath
wocesiyhalf 1= 2.0 * wocsiy[lat_level]
RETURNS ARRAY of wocsiyhalf.
end FOR
it ARRAY adjust(wocsly, ilath + 1, iy),

FOR iat_level in 1, ilath
wivhalf := 2.0 * wiy[lai_level]

RETURNS ARRAY of wivhalf
end FOR
it ARRAY_adjust(wiy, tlath + I, iy}
ENDIF,;
alp_double :=

FOR lat_level IN 1, ilath
alp_LGN := legendre(ir, irmax2, jxxmx, coaiy[lat_levell,
siaiy[lat_level], deltaiy{lat_level]);
RETURNS ARRAY of alp_ LGN
END FOR; % arraysize [iyh levels, spectral_indices] -

alp = SasAlfa(ir, irmax2, jxxmx, ilath, alp_double);
constant := grav / asq;

% Here is the Trouble Spoi:

% When these two are put out seperately, iflopt disallows:
var := for diffindex in 2, jxmx
returns value of-sum CabsSqr(zt_mountain{diffindex])
end for;

h := for index in 1, jxmx
returns array of Crmul(constant, zt mountain[index])
end for;

% The inexplicable solution:

% var, h := for index in I, jxmx
%o returns value of sum if index = I then 0.0
% else CabsSqr(zt_mountainfindex])
%o end if
% array of Crmul(constant, zt mountain[index])
%o end for;
hnew :=IF {lin=0 % Indeed
THENh
ELSE ARRAY_fill(], jx, zero) il ARRAY_adjust(h, jx + 1, jxmx)
ENDIF;

p, ¢ taken, z := FOR row IN 1, jxmx
Ps ¢, zi= IF row > 256 THEN zero, zero, zero
ELSE p_in[row], ¢_in[row], z_in[row]
ENDIF;
RETURNS ARRAY of p
ARRAY of ¢
ARRAY of z
ENDFOR;

ci= IF istart = 0 THEN ARRAY _FILL(l, jxmx, zero) % Indeed
ELSEIF ARRAY_SIEZE(c_im) = 0 THEN ARRAY _FILL(1, jxmx, zere)
ELSE c_taken
END IF;

znew := Fistart =0 % Indeed
%o Linear Balance Equation

THEN

FormIN 1, mx
zjm := '
FORjIN 1, ix
jm = kmjx[m] +j;
mx = kmjxx[m] + j;
realn := real(m + j - 2);
realn! = realn + 1.0;
zj=IF (j=1 & m = 1) THEN zero
ELSEIF (j = jx & m = mx)
THEN Crmul{ - tw / realn / realr * epsi(jmx], p{jm - 1)
ELSE Crmul{ - tw / realn / realnl,
Cadd{Crmui{realnl / realn * epsi[jmx], p[im - 11),
Crmul(realn [reaini * epsi[jmx + 1}, p[im + 1))
ENDIF
RETURNS ARRAY of zj
END FOR
RETURNS VALUE of CATENATE zjm
ENDFOR
%
ELSEIF array_size(z_in) = 0 THEN ARRAY_FILL(1, ixmx, zero)
ELSEz
ENDIF:
pm =
pl:= FORIN 1, jxmx
RETURNS ARRAY of pljj.Repart
END FOR;
cm = ¢
Zm = Znew,;
th_time_step:=1;

IN

1,

mx, jX, jxx, ilin, mx2, jxmx, jxxmx, nfax, ilath, imp,
istart, idumpt, ir, irmax2, ires, ix, ixh, iy, delt, ilong,
izon, ifirst, th_time_step,

hdiff, hdrag, tw, zmean, vnu, asq, ww, grav,

kmjx, kmjxx, ksq, ifax, epsi, wocsilath, alp,

p. C, znew, hmew, pl, pm, cm, zm,

trigh, trigf

end let

end function

LABORATORY FOR
CONCURRENT COMPUTING SYSTEMS

COMPUTER SYSTEMS ENGINEERING
School of Electrical Engineering

Swinbume Institute of Technology

John Street, Hawthorn 3122, Victoria, Australia.

Proposals for SISAL and OSC

Technical Report 31-014

Pau S. Chang
Greg K. Egan

Version 1.0 Original Document 31/01/90
Version 1.1 Original Document 22/02/50
Version 1.2 Original Document 01/03/90
Version 1.3 Original Docurnent 26/04/90

ABSTRACT

SISAL and its compiler for conventional multiprocessors OSC are relatively new.
Documented in this memo are the proposals of some of the improvements necessary
tor OSC and SISAL which otherwise will keep posing as potential drawbacks of
the compiler and the language. They arise from the our experience in the
implementations of a two dimensional FFT model and a spectral weather simulation
model.

K/

Proposals for SISAL and 0OSC Page 1

Introduction

SISAL is a relatively new functional langnage whose efficacy in expressing the potential
concurrency of scientific computational models is yet to be judged by practical application
studies. Although it was originally targeted as a dataflow language, programs written in
SISAL have also been successfully compiled and run with good speedup on
multiprocessors based on conventional architecture. Nonetheless, some features still need
to be added to the language to improve its expressive capability.

Many optimisation stages have been added in the first released Optimising SISAL
Compiler OSC received by us in early 1989. Nevertheless, given the newness of the
compiler, there are still a number of improvements necessary to make the compiler more
reliable and effective. The known features are the need to adopt the FORTRAN-like
expression of multiple dimensional array construct which is closer to the mapping of the
physical memory rather than the present SISAL expression of multiple arrays of arrays,
and the need to have only one form of loop construct instead of the present sequential and
parallel loop constructs.

Presented in note form in the following sections are the proposals for additional
improvements in the compiler (sections 1 to 6) and the language (sections 7, 8 and 9).
They arise from our experience in the implementations of a two dimensional FFT model
and a spectral weather simulation model.

1. Starting Index of "FOR array RETURNS VALUE OF CATENATE"
If we write

FOR 1IN O, bound
RETURNS VALUE OF CATENATE 1
END FOR

we would expect the results to be an array with a starting index of 0. However, the front
end SISAL compiler generates IF1 graphs which have a starting index of 1. Additionally,
both the Dataflow Interpreter and the C code generated by OSC give the results with a
starting index of 1 even if the lower bound in the IF1 graphs is manually set to 0. This is
potentially disastrous for computations which habitually consist of arrays whose intended
starting indices are 0, such as FFT.

The case study as elaborated in Figure 1 shows that the IF1 code generated by SISAL
frontend sets the lower bound of the concatenation result to 1 regardless. Further, even if
the low bound is altered to 0 in the IF1 code, both DI and OSC do not check this lower
bound given in the IF1 code, but rather simply set it, again regardless, to 1.

We are forced to always use array_setl to set the desired lower bound when any loop
returning 'value of catenate' is used.

FORIiIN 0, 10
RETURNS VALUE OF CATENATE
FOR j IN 0,10
RETURNS VALUE OF j
END FOR
END FOR

(i) The SISAL code

Proposals for SISAL and OSC Page 2

T110 %na=Boolean
T211 %na=Character
T312 %na=Double
T413 %na=Integer
T514 Yna=Null
T615 %na=Real
T716 %na=WildBasic

T8 10

TSSO 4

T108 9 0
T113 0 10
T124 4

T138 9 10
T143 13 10
T154 9

C$ C Faked IJFICHECK

C$ D Nodes are DFOrdered

C$ E Common Subs Removed

C$ F Livermore Frontend Versionl 8

C$ G Constant Folding Completed

C$ L Loop Invars Removed

C$ O Offsets Assigned

X 1 "main" %ar=13 %sl=3

E 41 01 9 Tof=l Fomk=V
{ Compound 1 0O

G 0 Ffi= 0.00000000000000e+00 Goep=()

E 11 01 12 Ina=j %of=2 %Hmk=V
N1 142

L 11 40" Bof=3 %mk=V

L 12 410" %of=4 FHmk=V

G 0 %fg= 0.00000000000000e+00 bep=0
G 0 %oig= 0.0000000000KK)0e+00 Toep={}
E 11 01 9 %of=5 %mk=V

N1 107 ‘

L 11 41" %of=H %mk=V

E 01 12 12 Yona=i %of=2 %mk=V Tosl=7
J103012

N2 103

L 21 41" %of=7 %mk=V

N3 115

E 11 31 9 %of=5 %mk=V

L 32 40" %of=8 %mk=V

{ Compound 4 0§ ‘

G 0 Tost=3

E 11 03 12 %ena=i %of=11 Fomk=V
N1 142 Posl=5

L 11 40" Gof=12 Fomk=Y
L 12 410" %of=13 Gormk=V
G 0 Yosl=5

E 02 04 9 Dof=10 Tmk=V
G 0 %sl=5

E 11 01 G %of=1 %mk=V

N1 M9 Tosl=

L i1 14 "CATENATE" Fomk=V
E 01 12 9 %of=9 Fmk=V

E 04 13 15 %Bof=10 Foink=V
1403012 %osl=5

E 21 41 9 %of=9 Jemk=V

E 31 472 9 Tof=10 Fmk=V

(ii) The corresponding IF1 code

Proposals for SISAL and OSC Page 3

[1: 012345678910012345678910
012345678910012345678910
012345678910012345678910
012345678910012345678910
012345678910012345678%10
012345678910]

(iii) The same results produced by DI and OSC
Figure 1: A parallel loop returning value of catenate with intended starting index 0

2. FOR array RETURNS VALUE OF CATENATE of concatenations of
vectors

This example arises from coding a two dimensional FFT in SISAL. At compilation time,
the process passes through SISAL frontend compiler and the optimisation stages without
any indication of problems, but during CC, the CGEN generates several errors regarding
the need to use pointers. The problem is shown in Figure 2.

The compilation of the code passes through the SISAL frontend compiler and all of the
optimisation stages, but during CC, it is terminated due to some "struct/union” errors
generated by CGEN. The problem embeds in:

FOR loop
RETURNS ARRAY OF
FOR index IN lowerbound, upperbound

vecvec := vector || vector % concatenation
RETURNS VALUE OF CATENATE vecvec
END FOR

END FOR

osc chip.sis -v

sisal -noopt -nooff -dir fusrflocal/sisal chip.sis
LL Parse, using binary files

* Reading file: chipsis...

version 1.8 (Mar 28, 1989)

accepted
81 lines i program
0 errors { calls to corrector)
0 wkens mserted; 0 tokens deleted,
0 semantic errors

ifild -e chip.mono -e main chip.ifl

ifiopt chip.mono chip.opt -1 -e

unlink chip.mono

if2mem chip.opt chip.mem

unlink chip.opt

if2up chip.mem chip.up

unlink chip.mem

if2part fyfreofrcodffsisal/release/OSC_csu/bin/s.costs chipup chip.part -LO
unlink chip.up

if2gen chip.part chip.c -b

unlink chip.part

cc -ly/freofrecodffsisal/release/OSC _csu/bin -DSUN3 -f68881 -0 -5 chipe
%"chip.c”, line 229 nonunique name demands struct/union or struct/union pointer
%"chip.c”, line 230: nonunique name demands struct/union or struct/unicn peinter
%" chip.c”, line 262: nonunique name demands struct/union or struct/union peinter
%"chip.c”, line 264: nonunique name demands struct/union or souct/union pointer
** COMPILATION ABORTED **

(i) Error messages given at compile time

Proposals for SISAL and OSC ‘ Page 4

define main

type Arlntl = ARRAY [integer];

type ArrReal = ARRAY [real];

type ArrReal2 = ARRAY [ArrReal]
GLOBAL SIN(num: real returns real)
GLOBAL COS(num: real returns real)
GLOBAL ATAN(num; real retums real)
GLOBAL SQRT{num: real returns real}

FUNCTION main{RETURNS ArrReal ArrReal)

LET

n = 4; pi := 3.141593;

twopow := for initial ir=0; pow:=1; two = array_fil{0,n,1);
while i<n repeat ir=old i+1; pow := old pow™*2;

two := old twoli: pow];

returns valae of two
end for;

Areal, Aimag:=

for row in 0, twopow(n] - 1 CROSS colin 0, twopow[n] - |
returns array of If row<twopow[n}/2 then 5.0 else (.0 end if
array of if row<twopow([n}/2 then 5.0 eise 0.0 end if
end for;
IN
LET
stage 1= 2; off = twopow]n - stage];
upperboundjump = twopow([stage - 1} - 1; jumpby := twopow[n - stage + 1];
AR1, All:=
FOR indexjump IN 0, upperboundjump
jump := indexjump * jumpby;
RwingiR, Rwingll, Rwing2R, Rwing2l :=
FORxINO,off - 1
pl = x + jump; p2 = pl + off;
W = pi * REAL(x) / REAL{off); cosine, sine := COS(W), SIN{(WY;
LwinglR, Lwingll, Lwing2R, Lwing?2! :=
Arealfl, pl}, Aimag{l, pl], Areal{l, p2], Aimag(l, p2];
realm, imagm = LwinglR - Lwing?R, LwinglI - Lwing2I;
RETURNS ARRAY OF LwinglR + Lwing2R
ARRAY OF Lwingll + Lwing2l
ARRAY OF realm*cosine + imagm*sine
ARRAY OF imagm*cosine - realm*sine
END FOR;

% Error spot: The focus is on concatenations
groupR := RwinglR I Rwing2R; % This creates error in cc
groupl := Rwingll 1l Rwing2l;

% The inexplicable solution:
% groupR.groupl:= for kkin 0, 2%off - 1

% gIR, grl = if kk < off then RwinglR[kk],RwinglI[kk]

% else Rwing2R[kk-off], Rwing2l{kk-off] end if;
%o returns array of grR

% array of grl

% end for,

%o

% The drawback here is that one needs to know the actual array size of
% "groupR” and "groupl” ie 2*off - |

RETURNS VALUE OF CATENATE groupR
VALUE OF CATENATE groupl
END FOR;
IN AR, All
END LET
end let

end function

(ii} The SISAL code
Figure 2: A bug in OSC

Proposals for SISAL and 0OSC A Page 5

3. Normalisation of Parallel Loops

In the initialisation section of the weather simulation implementation in SISAL [1], loops
of similar loop bound are forced to be coupled together in order to be accepted and pass
through the OSC compiler. The full code, which is available on request, belongs to older
versions of the initialisation routines, but adequately exhibits the fault.

The focus of this example is in the calculation of the variance "var” and the average
potential height "h". Figure 3(ii) is an extract of the code producing the error .

In attempting to simplify the program in order to narrow the scope to isolate the source of |
error, the problem disappears. This suggests that the "complexity” of the program could
be a factor.

When these two statements are listed separately in the program as shown, IF10PT fails,
giving the error message shown in Figure 3(i). This seems to suggest that "Graph
Normalisation" is incomplete within IF10PT [4].

A way to get around this problem is to "couple” loops of similar loop bound together as
shown in Figure 3(iii).

osc main.sis -IF1 -double_real
LL Parse, using binary files
* Reading file: main.sis...

version 1.8 {Mar 28, 1989)

accepted
226 lines in program
0 errors (calls to corrector)
0 tokens inserted; 0 tokens deleted.
{ semantic errors -
osc -v -0 preffi main.ifl IntrFuncs.ifl complex.ifl Inital.ifl
InitFFT.if1 gaussg.ifl legendre.ifl SasAlfa.ifl
if1ld -0 main.mono -e¢ main main.ifl IntrFuncs.if1 complex.ifi
Inital.if1 InitFFT.if1 gaussg.ifl legendre.ifl SasAlfa.ifl
iflopt main.mono main.opt -1 -¢

iflopt: E - FORALL RETURN SUBGRAPHS NOT NORMALIZED
** COMPILATION ABORTED **

*3k Frror code 1
stop.

(i) Error message for the subgraph normalisarion error

var := FOR diffindex IN 2, jxmx
RETURNS VALUE OF SUM CabsSqr(zt_mouantain{diffindex])
END FOR;

h:= FORindex IN 1, jxmx
RETURNS ARRAY OF Crmul{constant, zt_mountain{index])
END FOR;

(it} The error producing region in the initialisation section

Propesals for SISAL and 0SC ' Page 6

var, h:= FOR index IN 1, jxmx
RETURNS VALUE OF SUM IF index = 1 THEN 0.0
ELSE CabsSar(zt_mountain{index])
END IF
ARRAY OF Crmul(constant, ztﬁ_mountam[mdex])
END FOR; ‘

(iit) The immediate solution
Figure 3: Subgraph Normalisation error
4. Exploitation of Parallelism for Conventional Multiprocessors

OSC only exploits parallelism from parallel FOR loops. There are some instances in a
program where two big blocks of mutually independent sequential loops shouid be (abie
to be) processed concurrently. This occurs in the SISAL implementation of a two
dimensional FFT [3]. Unfortunately, owing to the inability of OSC to identify the data
independency of the two loops, the result is a much degraded speedup. The problem
appears to be trivial but is not.

5. Cost Estimation Routine

The cost estimation routine of SISAL fails to identify the critical path significance of
certain parallel loops, as a results these loops are not sliced accordingly. The problem and
a quick solution using a mickey mouse Quasi Doubly Nested technique are elaborated in

[2].

In the issue of cost estimation of the OSC, there are a few points that need to be raised.
The initial findings from the implementation of the weather simulation model indicate that
the compiler fails to slice low complexity singly nested parallel loops which reside in the
highly parallel critical path of the program i.e. the timeloop. A quick solution using the
QDN technique to "trick” the cost estimator is:

FOR array RETURNS VALUE OF CATENATE
FOR amray RETURNS ARRAY OF
XXXXXXX
END FOR
— END FOR.

Our initial arguments in [2] were not complete due firstly to the lack of knowledge on
how the cost estimates were performed at compilation time. Additionally, at that stage we
were not aware of the significant inefficiency of concatenation operations in a parallel
loop and hence we skipped commenting on the incomplete parallelism shown on the
QDN concurrency profile, and the incompatibility between the concurrency profile
obtained (~60%) with 16 processors and the achieved speedup (~3) over the single
processor performance.

The cost estimates are performed relying on the number of loop iterations, I, and the
complexity of the loop body. The H cost parameter instructed at compile time is the total
cost of the loop, below which loop slicing will not be performed. The parameter L is the
depth of the nested loops that the compiler is instructed to consider slicing. So only these
factors are known to the compiler to estimate the costs of slicing. Once the slicing has
been performed, the slice templates are superficially fixed. It is then up to the application
users to increase the problem size to stuff the templates full to maximise the “actaal work
performed in a task"/"work required to create the task" ratio if the user finds that good

Proposals for SISAL and 0OSC Page 7

speedup can be obtained using multiple processors to share the workload. We presently
do not know how to determine and parameterise the overheads imposed by the OSC
runtime system in making decisions relying on the other parameter i.e. the number of
processors sharing the work which is specified at the beginning of the run. But our
experience in implementing the weather model and the two dimensional FFT model
shows that the overheads may be significant.

Presently we also do not know if problem size, known at compile time, which indirectly
determines the number of loop iterations, I, has been employed effectively as a parameter
for cost estimates. Nonetheless, it is definitely cost saving if the cost estimation is
performed by also considering the number of processors used, since in practice one may
like to use a fix number of processors. This parameter could be usefully included as a
pragma at compile time. Hopefully the cost saving from subsequent reduction of runtime
overhead will result in significant performance improvement in large application
programs of the types we are studying.

6. Eager Memory Deallocation Routine

The runtime system allocates storage for the initialised data at the beginning of a
sequential loop, but it also eagerly deallocates, not concurrently with the main
computation of the loop body, the storage at the end of each loop before the loop repeats
itself. For the weather simulation model, the deallocation time constitutes approximately
28% of the total loop time. The elaboration of this problem and a brief proposal of a
solution can be found in [2]. It should be possible using code motion and data structure
pointer reassignment to remove the allocation and deallocation of fixed size data
structures from within iterative loops [3]; the appropriate optimisation by hand at the C
level is relatively easy to perform for simple examples. Where the data structure size
cannot be determined statically, data deallocation should be overlapped with the main
computation of the loop body i.e. lazily [2].

Also documented in [3] is a mathematical analysis for the upper bound performance of,
seen from the source level, a supposedly parallel SISAL code:

FOR row IN 0, totalN
RETURNS ARRAY OF FFT[row]
END FOR % where each FFT is potentially sequential

Proven by experimental results, the analysis shows that depending on the size of the loop
body relative to those of the allocation and deallocation routines, the speedup curve for
the code can saturate dramatically at an unexpectedly low value. This further presents the
need for improvement in the memory allocation and deallocation scheme implemented in
OSC on the ENCORE.

7. Debugging SISAL Programs

As well as having to rely on the FORTRAN weather code, which was not well written,
the immediate problem in the direct transliteration process was the lack of debugging
support at the SISAL source level. It is to date impossible to debug a SISAL program at
its source level. The best possible debugging tool available is DI, the Dataflow
Interpreter, which interprets IF1 graphs. Unfortunately, even DI as a debugger had bugs
which created problems in producing results from multiple-nested sequental loops (from
loop forms A and B) [5]. Program debugging at the C code level is sometimes useful too
except that the C code generated from SISAL must be assumcd as perfectly correct,
which is not always gue!

The correctness of a focused variable, whose value alters as it undergoes changes in
different program state, can only be checked by making it a function parameter or result.
While results of functions are readily available using DI, intermediate values are

Praoposals for SISAL and OSC Page &

extremely difficult to obtain without compromising the structure integrity of the SISAL
source; it is necessary to create a function boundary around the variable to be
investigated. The values are then compared with the output for the changes in state of the
variable which were effortlessly obtained from FORTRAN by an additional "print *,
variable name" statement in the FORTRAN code. This indirecr debugging in DI is both
difficult and unreliable and requires additional lengthy, tedious and error prompt efforts.
One not only has to investigate program correctness as originally intended, but also has to
deal with correctness of the additional functions created and always beware of the
integrity of the interpreter for complicated programs (Hiesenberg effect). This is the most
serious drawback which discourages anyone from doing serious programming in SISAL.
Research into source level debugging aids for SISAL is therefore needed. This research
may not be attractive, yet the reality is that few large application codes are correct by
design and even less codes work first time.

8. Language Support for Complex Numbers

Computations involving complex numbers are common in scientific applications;
FORTRAN recognises this. As SISAL presently does not provide an implicit structure
for complex numbers, they are usually expressed as a record of two numbers
representing the real and imaginary parts, and an array of complex numbers is expressed
as an array of records. Even though OSC performs a record fission optimisation at
compile time, the additional subgraphs of functions for arithmetic on complex numbers
serve as a complication which might have contributed to the "Normalisation" error
described above. In most cases, particularly when complex arithmetic constitutes a major
part of a program, the explicit tasks in the reatment of complex numbers as records may
result in an additional execution cost. The alternative representation is to express a
complex number as two separate numbers, and then an array of complex numbers as two -
separate arrays of numbers. This too may result in an additional execution cost.

The remedy is to implement a SISAL language support for complex numbers similar to
FORTRAN's, making treatment of complex numbers implicit. This will remove the
necessity of building records, extracting elements from records and calling functions for
complex arithmetic which serve only to obscure the underlying algorithm.

9. OLD Statements: an Easy Mistake

Sequential loop constructs are associated with the use of OLD statements. As OLD is
used on the right hand side, multiple accesses of an OLD variable are common place. So
errors due to the coexistence of the variables evaluated in the present iteration and the
OLD variables evaluated in the previous iteration can occur easily in multiple nested
sequential loops. A particular example is in the sequential loops in the function
LEGENDRE, where once the OLD statement is missed out, the error is very difficuit to
detect.

Conclusions

In this document we have presented some of the issues associated with the SISAL and
OSC from a user’s view point. While a number of these problems are newly discovered,
it is possible that others may have been solved in the new release of OSC. Many of the
problems associated with these issues may be resolved readily while others require
substantial effort such as debugging tools.

Acknowledgements

We would like to thank all members of the project and in particular Warwick Heath, for
contributing to some of the issues presented here. The research was supported in part by
the CSIRO Division of Information Technology and the Royal Melbourne Institute of
Technology.

Proposals for SISAL and OSC Page 9

References

{11 Pau S. Chang and Greg K Egan, "An Parallel Implementaton of a Barotopic
Spectral Numerical Weather Prediction Model in the Functional Language SISAL",
SIGPLAN Notices, Vol. 25, No. 3, March, 1990, pp. 109-117, Proceedings of
the ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming PPoPP, Seattle, Washington, March 14-16, 1990.

[2] Pau S. Chang and Greg K. Egan, "Performance Evaluation of a Parallei
Implementation of Spectral Barotropic Numerical Weather Prediction Model in the
Functional Dataflow Language SISAL", (TR118 091 R), Technical Report 31-
006, Laboratory for Concurrent Computing Systems, School of Electrical
Engineering, Swinburne Institute of Technology, Version 1.0, 2/10/89.

3] Pau S. Chang and Greg K. Egan, "Analysis of a Two Dimensional FFT
Implementation in SISAL", Technical Report 31-015, Laboratory for Concurrent
Computing Systems, School of Electrical Engineering, Swinburne Institute of
Technology, 1990.

[4] David C. Cann, "Compilation Techniques for High Performance Applicative
Computation”, Technical Report CS-89-108, Colorado State University, May 10,
1989.

[5] Steve Skedzielewski and John Glauert, “IF1 An Intermediate Form for Applicative
Languages”, M-170, Lawrence Livermore National Laboratory, July 1985.

CSIRO

i nghPerformanceCOmputlng b

Directions - a short statement

Dr David Abramson

Some Comments on SISAL

David Abramson
Commonwealth Scientific and Industrial Research Organisation
Division of Information Technology

_ /

SISAL Workshop 1990 Slide 1

/

_

High Performance Computation
and
Communications

High
Performance
Computation

Open
Distributed
Processing

Network
Environments

Super
Computer
Support

Group

/

SISAL Workshop 1990

Slide 2

/ High Performance Computation \

RMIT
Centre
for Concurrent
Computing

High Performance
Computation Project

Paraltel
Computing

- algorithms

- architectures

Special
Purpose
Computer
Architectures

- * Y,

SISAL Workshop 1990 Slide 3

/

Language Requirements

Any language that we might use, should possess some or all of the following attributes:

Expressive Power

High Level features
Efficiency

Stnplicity

An incremental paradigm
Portability

SISAL Workshop 1990

Stide 4

_

Languages

Currently we would consider the following languages as part of a tool kit:

SISAL

C/Linda

C/Pascal & Argonne
Fortran & Sched

SISAL Workshop 1999

Slide 5

/

SISAL
C/Linda
C/Argonne
Fort Sched

Expressive Power High Level features Efficiency Simplicity Incr paradigm

3

3
2
1

Language/Requirements?

4
3
3
2

2

2 th Is

3

4
4
4

1

5
3
5

\

SISAL Workshop 1990

Portability
4
5
5
5
Siide 6

Problems with SISAL

Efficiency

Memoery Allocation/Deallocation problems
Expressive power

Strict Arrays

Parallel Array Operations
Inc Paradigm

Lack of familiarity

SISAL Workshop 1990 Slide 7

Applications and their requirements

Demands
Simmulation Multi Lingual(Coded in C), Efficiency
Molecular Structure Multi Lingual{ Coded in Fortran), Large Memory
Image Processing Very Large structures
CSIRACH Needs determinate 'function’ language
DSp Streams? Efficiency
BUT

ADVANTAGES OF SISAL MUST QUTWEIGHT
THE DISADVANTAGES (Incremental Paradigm)

SISAL Workshop 1990 Slide 8

-

Streams don't solve all of the problems,

Consider the primes example:

Strict Arrays

_

_/

SISAL Workshop 1990

Stide 9

10 consinue

Merge Operator

do 101 = 1, updatearraysize

mainarray (updatearray(i)) = 0

FORTRAN

for initial i = (;mainarray := inputarmay;
while i <= updatearraysize repeat
i=oldi+ I;
mainarray = old mainamrayupdatearray([i1.0};
returns value of mainarray
end for

SISAL ’

SISAL Workshop 1990

Slide 10

/ Recursive Subdivision \

wiresleft

VA AR
/ /

AN,
board
Iw{3} wil]
- hw(4] (2}
AN ANV
[/

/ / /

_ v

SISAL Workshop 1990 Shide 11

Recursive Splitting

function route (board: Gric:
wiresleft :Wirelist
bounds :comers;
resurns Grid, Wirelist)

if keepsplitting(...) then
let

newbounds = computecorners{bounds);
newwires:= splitwires{wireslefi);
newboard, wiresnotdone =
for corner in 1,4
newboard, wires:= route{board, newwires{ corner },newbounds{ corner J);

retns array of newboard, value of catenate wires
end for;

currentwiresleft 1= newwires[5] I wiresnotdone; %5th element are wires held at this level
currentboard = mergeboard(newboard);
in
processboard(currentboard, correntwiresleft, bounds)
end Jet
else
processboard(board, wiresleft, bounds)
end if

end funciion;

SISAL Workshop 1990 Siide 12

do 101 = 1,samplesize
compute{hisiaddr)

histogram¢histaddr) =
histogram (histaddr)+1

10 continue

FORTRAN

Histogramming

for initial i = O;histogram := array_fill{0,maxhist,0);

while i <= samplesize repeat
histaddr := compute(...};
newval 1= old histogram [histaddr] + 1,
histogram = old histogram [histaddr:newval];
i=oldi+ 1;
returns valoe of histogram
end for

SISAL

SISAL Workshop 1990

Slide 13

Arbitration

% conflict_vector is initialised to a large value
let

resource_list 1=
for win 1,numworkers
resource (= choose(w);
retarns array of resource

end for; %hbuild list of chosen resources, one for each worker
in

Jor initial
w =
conflict_vector := array_fill{0.numworkers big_number);
while w < nigmworkers repear

% process resources, giving prioriry 1o low numbered workers

wo=oldw+ 1;
conflict_vector .= if old conflict_vector{resource_list{w]] > w then
old conflict_vector[resource_listfw]-w] else
old conflict_vector
end if
returny value of conflice_vector
end for
end let

% Now proceed to check whether successful

SISAL Workshop 199G Slide 14

- N

Merge Operator

Arrays to be merged

\ 1Y/

Merged Array

_ '° /

SISAL Workshop 1990 Stide 15

Semantics
1) If all of the comresponding elements of the arrays to be merged have the same value, then the element of the reduced array
is the same as the corresponding elements in the original arrays.

2} If one element differs from all other corresponding elements in the arrays to be merged then the differing value is placed in
the reduced array

3) If more than one element differs from corresponding elements in the merged arrays, then the comesponding cell in the
reduced array is set to error value.

SISAL Workshop 1990 Stide 16

New Code

fori in updatearraysize

reducedarray = mainarray[updatearray{i}:0];
returns value of merge reducedarray

end for

SISAL Workshop 1990

Stide 17

New Splitting code

function route { board: Grid:
wiresleft :Wirelist;
bounds :corners;
returns Grid, Wirelist)

if (keepsplitting) then
iet

newbounds = computecorners(bounds);
newwires:= splitwires{wiresleft);
currentboard, wiresnotdone =
for comerin 1,4
newboard,wires:= route(board, newwires{ corner },newbounds] corner 1);

returns value of merge newboard, value of catenate wires
end for;

currentwiresleft ;= newwires(5] Il wiresnotdone;
H1]
processboard(currentboard, currentwiresleft, bounds)
end let
else
processboard(board,wiresieft, bounds)
end if

end furcton;

SISAL Workshop 199§ Slide 18

New Histogram

fori in sampiesize

histaddr := computed(...);
newhistogram := histogram [histaddr:1};

returns valae of sum merge newhisiogram

end for

SISAL Workshop 1990 - Stide 19

New Arbitration

% process resources, giving priority 10 low numbered workers
for w in Loumworkers
aewconflict_vector := conflict_vector{resource_listfw]rw}

returns vajue of least merge newconflict_vector
end for

% Now proceed to check whether successful

SISAL Workshop 1996 Slide 24

University of Adelaide -

Directions - a short statement

Dr Andrew Wendelborn

Functional Programming in SISAL

Dr. A. L. Wendelborn

Objective: program development in a parallel environment
parallei machine
parallel software tools: applicative parallelism

parallel thinking

Specific projects
multiprocessor implementations of SISAL
input/output in functional languages
compiler construction in SISAL
SISAL-level debugger for OSC

object-oriented implementation of OSC

Multiprocessor Experiments

Translation of SISAL to Leopard-2 multiprocessor
initial experiments on Encore Multimax

SISAL - IF1 - C translation with OSC
threads impiementation
interactive i/o
stream operations
storage allocation
port to Leopard 1/2

program tuning

SISAL in SISAL Compiler

targetted to CSIRAC |l
significant non-numeric application
5 modules, 8300 lines

investigate effectiveness of SISAL programming
for expressing parallelism
from software engineering viewpoint
parallel compilation
new algorithms for paralle! lexical analysis developed
other aspects under investigation '

prototype compiler developed

performance comparison on CSIRAC il, Manchester and OSC

future

OSC as basis for
port to Leopard
tuning experiments eic

i/o in functional languages
compare SISAL (1&2), Haskell etc

impact of SISAL 2.0 ??7?
critique

University of Ad'eIaidg’e,_ -

Sisal on the Encore and Leopard
Multiprocessors.

Hugh Garsden

SISAL(DOSC) on ENCORE and Leopard-1

Hugh Garsden
University of Adelaide

OSE Stiream Buffering

Wanted to get two interactive programs running -

- @ character stream processor
- g primitive "shell” program, which takes a
line of input and returns a prompt

Found there were two problems -

- terminal input is buffered by the terminel driver;
this means that input does nol reach the program
immediately, sc output is also delayed

0SC internsal stream buffering is not correct,
selection of certain stream configurations can
make the program behave incorrectly

Stream /0 Buffering

want input typed at the terminal to be made
available immediately

The OSC option -sb! is supposed to do this, but it
doesn't do enough

Need to get rid of buffering by the terminal driver
use ioctl UNIX system call

Must be called from within 0SC program. It is used
to set the terminal driver to CBREAK mode.

Program cen now access characters as sooh as they
are typed

Add ~-cbreak option to 0SC so CBREAK can be enabled
at run-time

0SC output is buffered only internally - for
convenience added an option to control this
independently of input

Internal Stream Buffering

Consider the 'buff’ program

We wanted teo have characters passed through the
program one at a time

If running with > 1 Worker, this means must set
consumer wekeup threshold to 1. Use 0SC
option -stl,

If running with 1 Worker, must alsoc force pro-
ducer to block after 1 element is produced. Set

stream buffer size to I}}}[Use 0SC option -ssi.
: 50
First case worked ok. Second case produced dead-

lock.

Internal stream buffering (cont.)

Examination of the siream code showed that it
conteined & bug

As implemented, the producer of a streem blocked
just before the buffer is filled, instead of just
after

This explained the deadlock, producer had the next
stream element but did not place it in the
buffer. It blocked, and consumer was not woken.

In general this happens when options -ssN -stN are
used on 0SC

Cnce the problem was tracked down, it was simple
to modify some stream mecros to fix it

& This program contains a few quirks to get it to run.
% [t splits a stream of characters into lines, in a way that 0SC
& can handle, Each line is built incrementally from the input stresm
& when a \n is reached, a complete line is returned.
define main

E

type schar = streamicharacter];
type achar = arrayl[character]

function process (line : achar returns character)
% 1f line = "yes” then "*' else "2’ end if

end function

function main (input : schar returns schar)
for initial
pracessed.line = '
line := "";
$ = input;
got_a_line := true ® hit RETURN produces initial prompt
while “stream_empty(s) repeat
ch = stream._first(old s);
s = stream_rest(old s);

;& initial prompt

% If ch = "\n’, then reset line to
& empty, otherwise add ch to the end of the current line.

line := if ch = '\n" then ** else array_addh(old line,ch) end if;

% Peek ahead, should check if s is empty, but doesn’t seem to mind.
& Peek ahead is required to get prompt to come out at the right
® time

got_a_line = stream._first(s) = '\n";
processed_line := if got_a_line then process(line) else " ' end if

% "“never used
returns

stream of processed_line when got_a_line
end for
end function

Prompt

define main
type schar = streamicharacter]

function main (s : schar returns schar)
forelins
ord := integer(el);
new.el:=if ord > 96 & ord < 123 % is el in range a-z
then character(ord-32) % if yes then make
& upper case
else character(ord)
end if
returns stream of new_el
end for
end function

Buff

Running the programs

medusa> buff ~cbreak ~st1 -ssi -shot
ENCORE SISAL 1.2
aAbBcCdDeEfFgG Dmedusas

The input was “abcdefg D",

medusa> prompt ~st1 -sst -shot
ENCORE SISAL 1.2

»a line
another line
ryes

*8a 1ine again
»last iine
>"Dmedusar

The input waes
"\na line\nanother line\nyes\naline sgain\niestiine\n-D".
The initial \n is required to get the first prompt.

Unimplemented Siream Ops

Many stream operations are not implemented by 0SC
EXxamples = .

~ value of stream

- stream catenenate

- stream append

~ stream prefixsize

Decided to implemeni some of these, initially stream
append and stream catenate

Problem - lack of documentation on 0SC back end
phases

Strategy - implement append and catenate in terms of
some other nodes as a familiarisation exercise,
then do them “properly”

Preliminary implementation

Consider stream catenate example only
Replace
si1 Il s2 || s3

by
for ef in s1 dot e2 in s2 dot e3 in s3
returns streem of el

end for

This loop takes three streams and produces an
output consisting of the first. It throws the other
two away.

Do the trensformation at the IF1 level, during the
load phase of 0SC

A stream task will produced for the loop. At the C
gen phase, tweak the C code to effect a catenate.

SCatenate > Forall

S 1 s

normaily would produce
this code

SGathinit(tmp4,, ((struct Args2*)args)->0ut1);
tmpS = ((struct Args2*)args)->in3;
tmp7 = ((struct Args2*)args)->in2;
tmp9 = ((struct Args2%)args)->ini;
for (;) {
SScat(char, tmp6, tmps):
SScat(char, tmp8, tmp7);
SScat(char, tmp10, tmp9);
SGathUpd(char, tmp4, tmp10 };
}
SetEos{ tmp4 };
DeallocStream(tmp5, 7);
DeallocStream{(tmp7, 7);
DeallocStream(tmp9, 7); SGathInit{ tmp4, ((struct Args2%)args)->0ut1);
tmpS = ((struct Args2*)args)->in3;
tmp7 = ((struct Args2*)args)->In2;
tmp9 = ((struct Args2*)args)->ini;
for (;;)¢
SScat{ char, tmp10, tmp9);
SGathUpd(char, tmp4, tmpi190):
}
for (;)¢
SScat(char, tmp8, tmp7);
SGathUpd(char, tmp4, tmp8);
)
for{ ;) {
SScat(char, tmp6, tmpS);
SGathUpd(char, tmpd, tmps);
}
SetEos{ tmp4);
DeallocStream(tmpS, 7);
DeallocStream(tmp7, 7 J;
CeallocStream{ tmp9, 7):

but is
modified to this

Proper implementation

On examination of the code, it turns out that stream
catenate is in fact implemented in the Beackend
phases, bul there is no C gen for it

The problem is how to implement it in run-time;
implementation of OSC operations is not straight-
forward, what to do depends on pragmes and other
information contained on edges, you need to know how
to interpret this informetion

A study of the availeble documentetion explains most of
what is heppening. It appears as though it is simply &
matter of linking stream buffers.

In some cases an input stream cannot be operated on in
place ~ it must be copied. It turns out that the code
already exists to do this.

Will add run-time code to link buffers hased on
ACatenate

define main
type schar = streamicharacter]
function main (s1, s2, s3 : schar returns schar, schar)

sills2,s21lls3
end function

SCatenate

Experimenis with Hﬂ geallocaition

Consider a loop in & SISAL program

During execution of each iteration temporary
variebles may be created and destroyed

This requires allocating memory for them and
deallocating it at the end of each loop

Want to investigate the possibility of lazy de-
allocation; don't desllocate at the end of each
Toop but defer it until a Worker becomes idle or
boundary tag pool is exhausted

Deallocations can then proceed concurrently with
the main work of the program, or meay even never
happen

define main

function gen (returns arrayfarraylinteger]l)
® Create 1000 arrays all of size 100
foriin 1, 1000 cross j in 1, 100 returns array of j
end for
end function

function main (returns integer)
% lterste through the arrays, doing some work which
% requires a temporary erray
for initiel
=1
a8 = gen{);
sizes = 0;
while i <= array_size(ea) repest
imp = array_addh{aalold i],0); & temp value
sizes := array_size(imp) + 1;
f=oldi+
returns
value aof sum sizes
end for
end function

Test program

Preliminary results

Tested the extreme case of lazy deallocation - no
deallocation

Found that removing deallocation actually slowed
program down, this is because removing deallocation
means there are no blocks in the cache - subsequent
ellocates must go to boundary tag pool

Even in & program that did not use the cache, no
desllocalion adversely effected the "tidiness” of the
boundary tag pool

Results so far are not conclusive, just indicate
directions for deteiled study

Beyond lezy deallocation, analysis of a program to
allow re-use of temporery variable's memory may
give best results

Some test results

Time with alloc/deslloc of tmp 0.616
Time with no dealloc of tmp 0.766

User Sustem Total
Time with alloc/dealioc 0.626 0.006 0.632
Time with no dealloc 0.595 0.187 0.792
Time with alloc/dealloc 0.616

Time with re-use of memory 0.375

SISAL om fthe Lleopard=]

Leopard-1 is @ prototype of a multiprocessor
workstation

It currently runs the MINIX operating system, but
only on onhe board

MINIX is a rewrite of UNIX version 7, and is used
mainiy as & teaching tool

There is a project underway to put & muiltiprocessor
version of MINIX on the Leopard-i

It would then be possible to run 0SC on it

The advantage with the Leopard-1 is that it is a
singie user machine,

NS32032 NS32082 NS32202
CPU" MMU ICU

Z8030 Serial
1M RAM Controller

f

™~

SO

b4
Processor
Boards Boards connected to
backplane
i

A

Shared memory
board - 2 M RAM

Leopard-1

Porting 0SC to MINIH

MINIX implements the basic UNIX system calls and
libraries

Those that sre not implemented will have to be
removed from O0SC. Example - profii, to do
profiling. Most of these will not be important.

| One that 0SC must have is share, this will have to be
implemented in MINIX. Requires manipulating page
{ables.

Context switching code for NS32020 CPU already
exist as part of the ENCORE version, so no problem
there

MINIX is not a fast 0S. Main experiments will be to
test relative speedups and performance tuning, in
single user environment

Rlternatives to Leopard-1/MINIH

It may be possible to run OSC on the bare machine

Replace all system cells in OSC with stubs that
execute some primitive operation. Exampie - can
read and write from/to shared memoruy.

Will need to downioad the OSC program to each board
seperately and sel them running together

The 0SC program will have to handie clock interrupts
and keep track of time

Leopard-2 is currently under development. This is &
4 processor workstation running Chorus.

Chorus is a multiprocessor version of UNIX System
Y. Has similarities to MACH. Provides threads.

Could run 0SC on Leopard-2/Chorus

An QOverview of SISAL 2.0

Andrew L Wendelborn
Department of Computer Science

University of Adelaide

NS 1

arrays

multi-dimensional arrays may be defined explicitly (not as array of array)

type Twol
type Twol

array [..,..] of integer cf
array [array [integer]]

very different expression of item and subarray
selection update generation

A[3,..] selects row 3 of a 2D array
af2..4, 2..3 : v] update 3*2 section of an array
array [1 in 1I..size(A) : A{i]] generate copy

array cast to change bounds

<2,5»> array

NUS 2

[3 in 0..3 ¢ %3]

reductions

SISAL 1.2 provided inbuilt reductions over arrays' and streams
value of sum/product/least/greatest/catenate

replaced with ability to define reductions
syntax similar to function definition
specifies
parameters
initial values
transformation at each reduction step

particularly useful to carry several items of information along the reduction
e.g. position of greatest element

reduction maxl (V:double; K:integer returns double, integer)
initial

Vace 1= -1D0; Kacc := (;
in
if (V > Vacc) then
Vv, K
else
Vace, Kacc
end if

end reduction

NUS3

loops

sequential and parallel forms no longer distinguished syntactically
different forms: for while until do
revised notation for updating loop variables

1 now written as
1

HUS 4

histograms

histogramming comes syntactically for free by combining array
construction, reduction, and the AT phrase to specify array element:
FPOR x IN =&
RETURN

ARRAY[1..m] OF REDUCE sum(l) AT g(x)
END FOR
array size, reduction operator, and AT phrase must alf be present
g(x) mustbeini..m
sum can be replaced by any predefined or user-defined reduction

1 can be replaced by some weight factor

NUSS

streams

stream types are as before
changes in stream generation and inquiry, and substream selection

generation
from a loop
by a stream generator expression
replication repl(e,n)
progression 10..1..-3 (triplet)

selection and inquiry
single component, or substream defined by a triplet

let

S := gtream [4,5,6,7,8,9,107; noi= 7
in

S{2..)], S8[1], S{4..n=-1..2], Sin=2]
yields

(5,6,7,8,9,10] (rest) 4(first) [7,9] 8

NUS &

... Streams
scalar operations are extended pointwise to work with streams

max{ stream [1lZ, 4, 35],
stream [8, 9, 3],
15) = stream [15, 15, 35]

operator suffix expresses partial consumption of stream

word, new instream :=
for char in instream
while char <> ' ' do
return
reduce catenate (char),
suffix instream

NUS7

modules

module facility similar to that of Modula-2 or Oberon
separate compilation; organization; re-use

compilation units
definition
public interface - types and functions
also specify imports from other modules
module
completes accompanying definition
completely defines all public items
DEFINITION MatrixRoutines;
TYPE TwoDim = ARRAY {.,.,..] OF TYPE;
FUNCTION MatMult (A, B: TwoDim RETURNS TwoDim)
FUNCTION Transpose({ A: TweDim RETURNS TwoDim) ;
END DEFINITICN;

MODULE MatrixRoutines;
FUNCTICN Matmult(A, B: TwoDim RETURNS TwoDim) :

FUNCTION Transpose(A:TwoDim RETURNS TwoDim);

END MODULE;

NUS 8

mixed language programming

SISAL 2.0 defines module interfaces to foreign language routines
language specified in e.g. definition lib in Modula-2;
procedures with persistent state are handled thus:

value of type state

embodies all persistent state required by routines in a definition

associated function instance obtains a new state value

routines have extra state value to reflect state change
SISAL interface requires

inclusion of state parameter in declaration

specification of parameters as in out inout

the arity of a foreign procedure treated as a SISAL function is the number
of out+inout parameters in its declaration

requires special foreign language compiler and loader to allocate and
reference state storage

NUS &

higher order functions
polymorphism

curried functions now permitted

no examples available, but can guess from syntax spec.

type ft = function (a:t returns t)

where t is any type (including another function type)

let
f{ a:¢ returns t) := a
in f£(5)
end let
similarly, few examples of polymorphism
TYPE TwoDim = ARRAY [..,..] OF TYPE;

TYPE TDR = ARRAY[..,..] OF REAL;
FUNCTION MetMult (A, B: TDR RETURNS TDR)

HNUS 10

in definition/module

in program

miscellaneous

case construct
case word of
"data","flow" : c-10;
otherwise 0
end case

type conversions automatic for
double -> real =-> integer

operator *x*
union selection with dot notation

a . tag

NUS 11

D.2. SIEVE OF ERATOSTHENES

D.2 Sieve of Eratosthenes

% This program returns the primes between 2 and Limit using the Sieve of
%y Eratosthenes.

definition MathF77 in FORTRAN;
function dsqrt(a:double returns double);
end definition

Program PrimesExample;
from MathF77: dsqrt;

type StrmInt = stream of integer;

function Filter(S:StrmInt; M:integer returns StrmInt)
for I in S do
returns stream of I unless mod(I, M) = 0
end for

end function

function Sieve(Limit:integer returns StrmInt)
for
S := gtream{ 2..Limit..2 J:
Maxt := integer(dsqrt(double(Limit)));
until empty(S) do
T := s{i];

new S := if T <= Maxt then Filter(S[2..], T)
else S[2..] end if;
returns stream of T
end for
end function

end program

D.5. MATRIX MULTIPLY

D.5 Matrix Multiply

% This program illustrates the definition and use of a matrix package
% comprising matrix multiply and matrix transpose operations.

- definition MatrixRoutines;

type TwoDimI = array [..,..] of integer;
type TwoDimD = array [..,..] of double;
type TwoDimR = array [..,..] of real;
type TwoDim = array [..,..] of type;

function MatMult(A,B:TwoDim; M,N,L:integer returns TwoDim)};
function Transpose(A:TwoDim; M,N:integer returns TwoDim);
end definition;

module MatrixRoutines

function Matmult(4,B:TwoDim; M,N,L:integer returns TwoDim);
for i in [1..M] cross j in [1..L] do
S := for k in [1..¥] do
returns reduce sum(A[i,x] * Blk,jl)
end for
returns array [..,..] of S
end for
end function

function Transpose(A:TwoDim; M,N:integer returns TwoDim);
for 1 in [1..M] cross j in [1..N] do
returns array [1..N,1..M] of Afi,j] at [j,il
end for
end function
end module;
program MatrixMultiplyExample;
from MatrixRoutines: MatMult, TwoDimD;
function MatMult(A,B:TwoDimD; M,N,L:integer returns TwoDimD)
MatrixRoutines.MatMult(4,B, M,¥,L)

end function

end program

May 617:20 1990

% This is a transcription of the program provided in the "Sample Programs"
%0 section of the "SISAL Reeference Manual, Version 2.0"
%

program GaussiExample;
% This program uses Gauss-Jordan elimination to solve A*x=B for x.
type Onel = array [..] of integer:;

type Twod array [..,..] of double;

reduction maxl (V:double; K:integer returns double, integer)
initial

Vacc := -1D0; Jacc := 0; Kacc := 0;
in
if (Vacc » V) then
vV, K
else
Vacc, Kacc
end if

end reduction

reduction max2(V:double; J,K:integer returns double, integer, integer
initial
Vace := -1D0; Jacc := 0; Kacc := Q;
in
if (Vacec > V) then
v, J, K
else
Vace, Jacc, Kacce
end if
end reduction

function GetPivot(N:integer; A:TwoD; IPIV:Onei
returns double, integer, integer)
for I in {1..N] do
\Y

f
J, NA = 1f (IPIVI[I] ~= 1) then
for J in [1..n] do
V oi= 1if (IPIV(J] = 0) then
abs(A[I,J])
else
error[doublel % SINGULAR!!
end if
returns maxl(V, J)
end for
else
-1.0D90, 0
end if
returns max2(vV, I, J)
end for

end function

function DoWork(n,r,crinteger; Ain:lwol; Bin:Oned returns TwoD, OneC

let
A1,
Bl :=4if (r ~= ¢) then |
Ain{ r,1l..n:Ainfc,1..n]; c,l..n:Ainfr,2..n]],
Bin[r:Binlc]; c:Bin[r]]
else
Ain, Bin
end if;
Pivinv := 1,0D0 / if (A 1llc,c] = 0D0) then
error [double] % SINGULARI!!
else
A llc,c?
end if;
B = B_1[¢c:B_1[c] * Pivinv];
A 2 = A l(c,c: 1.0D0];
a = A 2[c,1..n: for 1 in [1..n] do
returns array of A 2[c,l] * Pivinv
end for]:;
Bec := Blc]:
Ac := Alc,..]):
in
for 11 in [1..n] do
Ar,
Bv := if (11 ~= ¢) then
let

Dum := A[ll,c];

Row := for 1 in [1..n] do _
returns array of A[ll,1] - Ac{l] * Dum
end for;

in '
Row{c:Row[c] + Dum], B{1l]=- Bec * Dum
end let
else
Ac, Bc
end if; :
returns array [..,..] of Ar at [11],
array [..] of Bv
end for
end let

end function

function GaussJ(n:integer; A:TwoD; B:0neD returns OneD)

let
IPIV = array([l..n: £111(0)]
in
for I in {1l..n] do
big, r, ¢ := GetPivot(n, A, IPIV);
new IPIV := IPIV[c:IPIV[c] + 1 i;
new A, new B := DoWork/(n, r, ¢, A, B)
returns B
end for
end let

end function

end program

definition SGE in FORTRAN;

type onedr = array]..] of real;
type onedi = array]..] of integer;
type twodr = array]..,..] of real;

function SGEFA(inout A: twodr;
in LDA: integer;
in N: integer;
out PVT: onedr;
out INFO: integer); -

function SGESL(in A: twodr;
in LDA: integer;
in N: integer;
in PVT: onedi;
inout B: onedr;
in JOB: integer);
end definition;

Figure 5: Definition for Using LINPACK Routines

from SGE: onedi, onedr, twodr, SGEFA, SGESL;
type threedr = array|.., .., ..] of real;
function solveall(A: threedr; B: twodr returns twodr);

for k in liml(A,1) .. limh(A,1) do

MYA := Alk, .., ..]; N := size(MYA);
LU, PVT, INFO := SGEFA(MYA, N, N, , };
MYB := Bk, ..J;

x ;= SGESL(LU, N, N, PVT, MYB, 0)
returns array(..,..] of x
end for;

end function;

Figure 6: Using LINPACK from SISAL

definition F in FORTRAN;
type state;
function instance(returns state);
function SUBA(inout X: state; out Z: real; in Y: real);
function SUBB(inout X: state; out H: real);
function FUNCC(in Z: real returns real)
end definition I

Figure 3: Definition F for Three FORTRAN Routines

from F: state, instance, SUBA, SUBB, FUNCCG;

let
s := F.instance();
t,a:= F.SUBA(s,, 2.3);
u, b := F.SUBB(t, a);
c:= F.FUNCC(a);

in -

Figure 4: Using FORTRAN Routines from SISAL

