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Abstract

This thesis presents the research which explored the use of the implicit parallel
programming language SISAL in the formulation of a spectral barotropic numerical
weather prediction model originally formulaied in FORTRAN. A process of direct
transliteration and refinement using loop transformation heuristics was used resulting in
a highly parallel implementation on a MIMD multiprocessor. The performance analysis
used in this process identified limiting factors due to the formulation of the application,
language expressive power and language implementation. Solutions to these limitations
are proposed.
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Chapter 1

INTRODUCTION

With the advances of digital circuit technologies, the speed of computing has improved
by many orders of magnitude in the past decades. Successive generations of supercomputers
including most recently those produced by Cray Research, ETA, Fujitsu, NEC have
employed architectures derived from the sequential computational model attributed to John
von Neumann [AA82]. These machines have used a variety of schemes including
vectorisation in the effort to overcome the fundamental limitations imposed by the speed of
light. As these limits are approached the cost performance ratio resulting from these
schemes has become progressively less attractive. In the pursuit of higher performance,
super scalar RISC architectures are employing schemes pioneered in the CDC 6600
architecture in an effort to extract the last piece of gain from a single instruction stream. It
is now widely recognised that none of these approaches by themselves will satisfy the needs
for higher and higher computational rates and that the only avenue left is to expleit
parallelism. In theory at least the technologies developed for high performance
uniprocessors may be used to implement parallel processors although more conservative
technologies may be used to achieve the same level of performance at significantly less cost.

Many forms of parallel computing models have emerged, all claiming to take
advantage of the concurrency in algorithms. The validation of these claims is the subject of
substantial research in parallel computers and parallel computing including further
hardware design, parallel algorithm design and computational experiments. Although
many issues are yet to be resolved, manufacturers are now committed to multiprocessor
machine designs of one form or another. These machines include Cray, Connection
Machine, NCUBE, Denelcor HEP, TERA, Intel iPSC, Ametek, Ultracomputer, RP3,
SUPERNUM, GF-11, Transputer multiprocessor systems, Sequent Balance and Encore
Multimax [{McB88, EMC] as well as the unconventional dataflow design of Sigma-1,
Manchester Dataflow Computer [GB88], MIT Monsocon and CSIRAC II [EWB90]. Some have
been commercialised for research and real applications while others are design exercises
for research purposes. While there is a strong commitment to parallel machines, issues
relating to programming languages are largely unresolved. Not surprisingly, most
research by manufacturers to date has been directed at machine specific languages. Given
the volatility of machine development there is a strong awareness by users that languages,
as far as possible, should be machine independent; in other words, there is a perceived need
to decouple software investment from what may be transient architectures and
manufacturers [CABS8].
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1.1 Language Issues

The common programming languages for parallel machines available today evolved
from imperative programming languages such as FORTRAN and C. They explicitly
express parallelism, and rely on source level annotation to guide their compilers.

However, these languages can limit the expression of concurrency due to their
reliance on the sequential control constructs originally designed for a sequential model.
Moreover, more complicated and explicit control over the runtime environment is required
in both the expression and execution of an algorithm on a parallel machine, making these
machines harder to program correctly, particularly in imperative languages.
Additionally, parallel annotators for imperative languages, which conceal the
parallelisation process from the user, are still at the stage of infancy since their syntax has
not yet been established and properly standardised. This immaturity suggested at the
beginning of this project that explicit parallelism was not a suitable path for this research.
The product of these problems is the need to look at parallel programming languages
designed primarily to explore parallelism on parallel machines.

Parallel languages, and functional languages such as MIRANDA [Turn86] and
HASKELL [Has90, HP89], rely on their functional constructs to ease the definition of
parallel processes. For most of these languages, their compilers identify parailelism not
from the source programs but rather in the lower dataflow graph or combinator graph levels.
This is particularly true for the functional applicative languages ID [Whi88, NPAS6G, Nik88]
and SISAL [MS85].

ID is limited in its prospects of being widely used and researched because it has been
designed exclusively for the Massachusetts Institute of Technology TTDA and Monsoon
dataflow computers. SISAL, developed in a joint collaboration between Digital Equipment
Corporation, the University of Manchester, Lawrence Livermore National Laboratory and
Colorade State University, is the product of significant efforts between a major computer
manufacturer, researchers and users. SISAL is claimed to be a general-purpose functional
language that can run efficiently on sequential and parallel architectures including Sun,
VAX, Sequent Balance, Cray-XMP, Alliant and the Encore Multimax [CO89, LSF88]. It has
been demonstrated that SISAL programs can achieve sequential and parallel execution
performance competitive with programs written in conventional languages. These claims
have been supported by benchmark results including the Livermore Loops and other kernels
which are widely recognised as representative benchmark codes [Feo871 For the claims to
be convincing there is a need to compare SISAL's favourable results on relatively small
benchmarks with those obtained from a large application benchmark; this comparison has
not been performed before.

1.2 Application Studies

The applications suitable for this purpose are large scientific computational models
consisting of codes which have large amounts of inherent parallelism and are recognised to
be computationally demanding. Numerous researches have indicated that computational
fluid dynamics problems, such as weather simulation models, fit in this class of
applications [AG, TB88}; numerical weather prediction is acknowledged to be of significant
social and economic importance,

The availability of a weather code written in FORTRAN and access to the originating

group in the Department of Meteorology at the University of Melbourne made the code a
logical choice for this study.
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1.3 Research Formulation

The definition of the model underlying the weather code was incomplete, only
providing in breoad outline the mathematical formulation for mathematical phases. The
detailed inner workings of these phases, in particular the discrete formulation, and their
inter-relationship were not available. To obtain this information it was necessary to
achieve a detailed understanding of the computational model from a detailed analysis of the
FORTRAN realisation of the model. As expected the actual structure of the numerical model
had been obscured by the sequential formulation in FORTRAN. It was believed that the code
may be representative of existing large scientific application FORTRAN codes; it is mature
but was developed and refined by many people resulting in varying programming styles
throughout the program. As there was, at the time of original development, no apparent gain
in preserving any parallelism in the original model it was viewed as likely that the
available parallelism in the formulation may be low; a parallelising FORTRAN compiler
was not available to verify this conjecture directly:

Given that the primary documentation of the model was the FORTRAN code, it was
decided to turn adversity inte gain by translating the FORTRAN directly to SISAL. This
process could at once allow the examination of the likely results to be obtained from direct
transliteration while permitting the details of the mathematical model to be uncovered. The
initial results of this approach may not be better, but it would be useful to know how much
worse it could be in real applications. Having uncovered the model details, the prospect of a
re-formulation in SISAL using its features to best effect would be possible.

Existing large application programs have had an irreplaceable amount of time
invested in their development, maintenance and further development in imperative
languages, particularly in FORTRAN. To promote the rewriting of these applications in
SISAL will be difficult, especially as many computational algorithms will have to be
redesigned from their original mathematics and physics in a manner which leaves the
parallelism of the application intact while conforming to the expressive requirements of
SISAL [JF87]. If the models are large or complicated, the truth that recoding the algorithms
will be even more difficult will dampen the willingness of many scientists and researchers
to adopt SISAL. As a conseqguence, there is a need to ease and encourage the adoption of
SISAL by exploring other paths. One such path is to attempt to identify heuristics for
effectively parallelising SISAL codes transliterated from FORTRAN, without the need to
completely re-formulate the codes (computational algerithms) from the original
mathematics and physics of the model.

1.4 Research Aims

This research aims to explore the use of a representative implicit parallel
programming language, SISAL, in a large scientific application, being the spectral
barotropic numerical weather prediction model, and in doing so, to explore the development
of heuristics for refining SISAL codes produced by direct transliteration, and to identify
limiting factors to performance due to the formulation of the application, language
expressive power and language implementation.

1.5 Thesis Outline

This chapter aimed to tllustrate the background factors leading to the definition of the
research area. In Chapter 2, the parallel programming language SISAL and its compiler
QOSC for general purpose multiprocessors, the multiprocessor Encore Multimax and the

weather simulation model adopted for the research will be described.

This is followed by illustrations of various implementations of the mode! in SISAL in
Chapter 3. The first approach is a direct transliteration of the code from FORTRAN to

Page 1.3
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SISAL. The problems encountered in the approach, how the mapping was performed and the
results of the implementation will be described. The discussions will lead to the next section
which elaborates a parallel implementation of the model in SISAL from the resulting code of
the direct transliteration, the heunistics for loop transformation and the issues relating to
parallelisation of codes, parallel algorithms and the overheads of the OSC runtime system.

The results of the second approach will lead to detailed performarce analysis of the
final implementation in Chapter 4. The discussions will include performance of the code
and the impact that the new parallel formulation of the spectral barotropic weather model
could have on larger model sizes. In doing so various performance analysis techniques
will be examined.

Finally in Chapter 5, the results of the research will be discussed in the context of the
research aims,

Page 1.4



Chapter 2

DESCRIPTION OF LANGUAGE, COMPILER,
MACHINE AND APPLICATION STUDY

This section describes SISAL and its compiler OSC [Cann89} for shared memory
multiprocessors, as well as the multiprocessor Encore Multimax [ECC] and the numerical
weather model adopted for the research.

2.1 Parallel Programming Language SISAL [MS85]

If intended for expressing parallelism, imperative programming languages, like
FORTRAN and C, have a serious deficiency. They inherently reflect the storage structure
of the von Neumann concept of computer organisation in that each language has some
method of effecting a change in memory state that can create side effects in the entire
program. Allowing the specification of global state changes, these languages lead to
programs that are very difficult to analyse for concurrency., Without a complete analysis of
the entire program, it is generally impossible to trace the flow of data. Only with such
analysis is it possible to find and eliminate inessential constraints on the sequencing of
parallel program parts. As a result, there is a need for a language which makes such
analysis easy and effective. As discussed in Chapter 1, SISAL has been chosen for this
investigation. The descriptive material below is drawn in part from [MS85, GB88].

The definition of SISAL was a cooperative effort of Lawrence Livermore National
Laboratory, Digital Equipment Corporation, the University of Manchester and Colorado
State University. A derivative of VAL [AD79], SISAL is a strongly typed, single assignment
language intended for research in parallel scientific computation. It differs from VAL in
possessing simpler error {ypes, general recursion, a stream data type and improved
iteration forms. SISAL syntax is Pascal-like (block structured), a familiar paradigm
which claims to facilitate SISAL program readability [CO89] and ease the learning of the
language.

SISAL stands for Streams and Iterations in a Single Assignment Language.
Programs expressed in SISAL obey the semantic single assignment rule, where a name can
be defined once only in a given scope, This feature exposes data dependency and helps
control synchronization mechanism for SISAL programs. The language has no controi
constructs, such as goto statements and traditional loops. It is functional or side effect free,
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the main advantage of which is the locality of variable names. In other words, there is no
programming variables which depend upon the state of a computation. The concept of
variable name is much closer to the idea of 2 mathematical variable [Sharp]. This and the
structured feature of SISAL claim to make modifications to a SISAL program at a later time
easy and safe by restricting the modifications to a limited number of modules.

SISAL is designed as a parallel language to express algorithms for execution on
computers capable of highly concurrent operation. The application area it supports is
specifically numerical computations that strain the limits of high performance machines.
It is designed to enable parallelism to be implicitly expressed so that programmers are
enlightened from the burden of job scheduling of multiple processors and synchrenization.

Theoretically, on a dataflow machine for which SISAL was originally intended, the
maximum parallelism of a SISAL program is only limited by data dependencies. In a
multiprocessor environment, however, parallelism is currently exploited only from
parallel loop constructs, and pipelines from stream constructs [DO88]; Figure 2.1 illustrates
the definition of these two forms of concurrency. During the finalisation of this research
project definition and in most parts of this research, the operations of streams were not yet
completely implemented in OSC. As a result, the pipeline form of concurrency is not
explored here.

4 )

'

process x

.

process y Process x process y process

;

process z

:

Pipeline (Streams) Parallelism (Loops)

. J

Figure 2.1: Two forms of concurrency

synchronisation

To date, SISAL programs can be executed on a variety of vector and paraliel
architectures such as Cray, HEP, multiprocessor VAX, Alliant, Sequent Balance and
Encore Multimax as well as on uniprocessor machines such as SUN and VAX. It is claimed
that with the availability of a SISAL compiler which compiles from SISAL source to IF1
graphs, [F1 to C, and from C to the object code of a variety of shared (and distributed) memory
multiprocessors, SISAL will slowly evolve into a common high-level programming
language appropriate for writing programmes to run on future general purpose parallel
computers, This compiler will be described in the next section.
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2.2 Optimising SISAIL Compiler (OSC) [Cann89]

Both at the hardware and software levels, there are various grains of parallelism that
can be exploited, such as very coarse-grain parallelism which is distributed processing
across network nodes to form a single computing environment, coarse-grain parallelism
which is multiprocessing of parallel processes in a multiprogramming environment,
medium-grain parallelism which is parallel processing or multitasking of procedures
within a single process, and fine-grain parallelism which is the parallelism inherent in a
single instruction or a data stream. Grain size may be referred to as the period between
synchrenization events for multiple processors [ECCL synchronization is vital in parallel
processing to initialise a task, parcel out work and then merge the results [Bri88]. The OSC
optimising SISAL compiler developed for shared memory multiprocessors generates
multiple parallel processes from threads of tasks, and processors are allocated dynamically
to whatever processes currently have the highest priority. The first released Optimising
SISAL Compiler OSC received for the research in early 1989 was used. The compiler only
explores parallelism in SISAL’s parallel loop constructs which therefore bounds the
research toe medium-grain parallelism. The deseriptive material below is drawn in part
from [Cann89, CO89].

SISAL SISAL SISAL

PARSER | PARSER 7| PARSER |

IF10PT

NORMALISATION
INLINE EXPANSION
INVARIANT REMOVAL
RECORD FISSION
CSE-LOOP FUSION
GLOBAL CSE
CONSTANT FOLDING
DEAD CODE REMOVAL

[1r2pPART F

include files —#

executable code

Figure 2.2: SISAL language processing in OSC
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Diagrammatically illustrated in Figure 2.2, the front end compiler, SISAL, compiles
SISAL source into IF1 [SG85], an intermediate form defining dataflow graphs that adhere to
applicative semantics. This is followed by the formation of 2 monolithic IF1 program and
the inlining of all functions except recursive ones and those exempted by user directives.
The monolith is then read by IFIOPT, a machine independent optimiser which performs
many conventional optimisations to produce a semantically equivalent but faster program.
The optimisations include graph normalisation, inline expansion, common subexpression
elimination CSE, record fission, CSE-loop fusion, global CSE, constant folding and dead
code removal.

The above optimisations are followed by preallocations of array storage by IF2MEM, a
build-in-place analyser {Ran87], where compile time analysis or compiler generated
expressions executed at runtime can calculate the final size of an array. This optimisation
attacks the incremental construction problem inherent in applicative language like SISAL,
The result of this analysis is the production of a semantically equivalent program in IF2
[WS86], a superset of IF1 that is not applicative, supporting operations that directly reference
and manipulate memory.

The next phase of compilation is update-in-place analysis, performed by IF2UP
[Cann89]. Here some graphs are restructured to improve chances for in-place operation at
runtime. The analyser will identify at compile time those aggregate modification
operations that can execute in-place while preserving program correctness. It eliminates
copying in the presence of nested aggregates, iteration and function boundaries. Recursion
is not handled however. This analysis eliminates most reference counting.

s N

Slice #1 Slice #2 Slice #3 Slice #4 = — o - el Slice #(1/100)
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Figure 2.3: Loap slicing by OSC
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After the update-in-place analysis, a machine dependent paralleliser called
IF2PART is invoked to define the desired granularity of parallelism based on estimates of
computational cost H and various other parameters such as I, number of iterations, and L,
depth of nested loops to be sliced, that tune the analysis. These parameters can be modified at
compile time to control parallelisation. Only parallel loop forms are subject to
parallelisation. Parallel loops with estimated costs greater than H and nested no deeper
than L (the default being all levels) are sliced. IF2PART weighs the bodies of loops by 1, the
default being 100 iterations; Figure 2.3 shows how loop slicing is, by default, performed for:

FOR i IN 1, upperbound
body
END FOR

The optimised IF2 graphs are then translated inte C and compiled using the target
machine C compiler to produce executable code. Library software, linked during this phase
of compilation provides support for parallel execution, storage management and
interactions with the users. It is important to note that the ultimate code performance is
limited by the quality of the C compiler on the target machines.

The runtime library used with OSC relies on variants of microtasking {CLOS87]. The
dynamic storage system that it supports uses a parallelised boundary tag algorithm with
five different entry points o reduce possible contention. It has a distributed storage cache in
front of the boundary tag system to exploit locality of request sizes. The C code that QSC
produces runs on multiprocessors as well as uniprocessors where parallel task execution
decomposes naturally to sequential coroutine execution {CO88}. The computer that has heen
chosen in this research as representative of current parallel machines is the Encore
Multimax multiprocessor.

2.3 Encore Multimax Multiprocessor {ECC]

v~ Parallel computers adopt either shared memory or distributed memory architecture,
or a hybrid of the two. They may be broadly classified as SIMD (Single Instruction stream
Multiple Data stream) or MIMD (Multiple Instruction stream Multiple Data stream)
machines. Every processor in a SIMD computers executes the same instruction at every
cycle exploiting vector-pipeline parallelism whereas in a MIMD machine, each processor
executes instructions independently of the others in exploiting true parallelism. Many
current designs, for instance Cray-XMP, incorporates both these aspects where each node of
the MIMD system is itself a vector processor, with the hope of achieving the shortest eritical
path [McB88]. The descriptive material below is drawn in part from [ECC, Bri88L

The Encore Multimax multiprocessor system is a shared memory tightly coupled
architecture where all processors and programs share access to all of main memory, /O
interfaces and mass storage. The Multimax system provides a multiprocessing
environment in which the operating system is not replicated for each processor. This
provides more memory space for programs and data. Shared access to system memory also
produces higher effective operating speed since processors need not pass messages in order
to communicate. Memory is allocated dynamically to processes, not to processors, so as to
increase the efficiency in the usage of available memory and improve interprocess
communication. The system employs an extended UNIBUS-type interconnect, whereby ali
arithmetic and input/output processor modules can access memory modules, Processors are
not dedicated to specific users or processes, but are allocated dynamically to whatever
processes currently have the highest priority.
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The system configuration used in the research incorporates 64 Mbytes of fast shared
memeory and 20 32-bit processors, each capable of executing 2 MIPS resulting in an
aggregate performance rating of 40 MIPS. The processor cards of the Multimax are based on
the National Semiconductor 32000 series of 32-bit, virtual memory microprocessors and
associated floating point coprocessors. They are called APC, Advanced Dual Processor
Cards, each of which incorporates two NS32332 microprocessors. The floating point support
is provided by standard NS32081 chips. Cache memories attached to each processor handle
approximately 95% of its requests, limiting the traffic on the common bus, the Nanobus,
which has a data transfer bandwidth of 100 Mbytes per second.

The Nanobus is a high bandwidth bus. It provides up to 12.5 million bus {ransaction
per second for high speed synchronous operation. All data transfers are synchronised with a
12.5 MHz bus clock. The memory bandwidth matches Nanobus capacity through memory
interleaving, which allows contiguous longwords to be stored in up to 8 separate memory
banks which can be accessed at system clock rates rather than at the slower memory clock
rates. This technique allows data to move between processors, I/O devices, and memory at
speeds of up to 100 Mbytes per second. Multiprocessor interrupt handling and efficient
interprocessor communication via memory are two features provided by the Nanobus for
fast synchronization between processors and I/O devices with negligible effect upon other
system activities, a requirement in a high performance multiprocessing environment.

As Multimax is a shared-memory multiprocessor, its processors can take full
advantage of memory caching which increases access speed for every processor in the
system., Additionally, Multimax can exploit different degrees of parallelism: very coarse
grain, coarse grain and medium grain, and also fine grain if specialised systolic or array
processors are added to the system.

The operating system UMAX V is built to handle many service requests concurrently
by supporting mulfi-threading, multiple and parallel streams of control incorporating a
number of performance enhancement techniques such as interlocking individual system
table entries rather than the entire table.

In a processor-memory interlocked operation, a processor assures rapid
synchronization among processors through atomic tesidset protocols among bus requesters
and responders, Interlocked Read-Modify-Write bus cycle can overlap one another and
other bus transactions without compromising atomicity, and other system activity is not
delayed while interlocked operations are taking place.

2.4 Application Study: Speciral Barotropic Numerical Weather Prediction Model

In order to analyse the behaviour of physical phenomena in a variety of situations
such as fluids, air flow, atmospheric patterns and the like, computational simulation
models have been developed to enable seientists and researchers to evaluate their behaviour
more closely. These models involve complicated mathematical expressions whose degree
of complication was once constrained by the low computing capability of conventional
computers. Today, the availability of very high performance computing machines has
encouraged researchers to modify and extend these simulation models to become
mathematically very complicated and computationally intensive, up to the level which was
once either too costly or impossible to perform on the older computer systems [TB88]. The
capability of these machines together with the very finely tuned models engender accurate
and realistic forecasting of future events in areas like weather modelling, and in many
cases superior designs in areas like car and aerodynamic industries. While there are
many good applications that are available, the focus here is on the simulation of the global
weather which has inherently very high level of parallelism.
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The partial aim of the research is to investigate the feasibility of a parallel
implementation of this class of models in the functional language SISAL, therefore instead
of the very large multiple-level numerical weather model, a barotropic (one-level) model
{Bou72] has been adopted as a representative spectral model [Sim77].

24.1 Mathematical Description of the Model

In contrast to the usual grid points models which represent parameters as grid points
in space, the spectral model studied here represents these parameters in terms of spatial
basis functions called the spherical harmonics [Sim78]. The model size is expressed in
terms of the spectral resolution number, J, and the associated number of Gaussian latitudes,
tlat, and number of longitudinal points, ilong, on each latitude where:

* N .
ilat > é——‘—;“i“{ i and ilong 2 3*J+1

A full description of the model setting out its advantages, mathematical algorithms
and presenting the results which were obtained on an IBM 360/65, is given by Bourke in
[BouT72]. Inspection of the equations describing the barotropic model suggests very high
potential concurrency. In its primitive form, the model is expressed in terms of the vorticity
and divergence of the horizontal wind field as shown in Equations 1 to 8.

Integration of the primitive equations is facilitated by a spectral grid transform
technique which arises in the evaluation of the nonlinear products U2y, V2y, Ud and V&' in
Equations 4, 5 and 6.

Definitions of symbols used:

V = wind vector {east U and north V) D = horizontal divergence

W = Sstream function k= vertical unit vector

V = horizontal gradient operator £2 = angular velocity of earth

¥ = velocity potential ' a = radius of earth

J = wave number truncation (resolution) ¢ = vertical component of relative vorticity
@ = geopotential height of the surface o* = global mean geopotential

& = time dependent perturbation field

¢ and A are spherical coordinates

(= R.VRV =y @
D = o* + @ (2)
D = VY = Vo ‘ (3)
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5—(—@ = 1 [ J(UVQW) + cosqb”"‘“—‘y“] 2Q(sing V2x + ““) (4)
5t a cos2 51
s(v2 1 8 (VPy) S(UPy) U
51‘2’) = ac032¢[ MW - cos qb“““—"“y,—]-pz.()(smq&w;g-a‘)
2+ve
: \72[26082¢ ro ] (5)
50 1 8US Ve . '
&1 = m[ 51'+CO.$¢ 50 ]-‘PD (6)
_ ccos¢ Sy 16%
U T a &t adé @
1 _ll cosp 0%
Vo= g tTa e (8)

Briefly, the first step of this technique is to obtain the truncated expansions for
approximating the stream function, geopotential height and two derived wind fields U and V
illustrated in Equations 9 to 15,

« Imlsd

vy = &Y Y w ¥ (9)
mz=ad r=iml
+ Iml+t

& = &3 % @ v (10)
me-J r=1m/| r r
+f  Imi+J+]

U = a 3 ¥ v (11)
m=-J r=iml r r
+ ImiwJ+]

v = a3y 3y VY (12)

m=-J r=iml
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where YT = p:_n (sing) elmi

and P;n (sing) = alp;n =  Normalised Legendre Polynomial
/2 m . mo, .
_7;/2Pr (sing} P_ (sing) cospd¢p = 1 (13)
m m m 1 ., m
and U;n = (r-Dp, Y.y - (r+2)p..t V..p + imz. (14
m m m m
V:l = ‘(r‘l)p;nxruj + (r+2)pp 1 X + imu (15)

m (r2 - m2)
where pp = m

This is followed by a Fast Fourier Transformation (FFT) of these fields to the
Gaussian latitude-longitude grid on the globe. The nonlinear products of Equations 4 {0 6
are those on the left hand sides of Equations 16 to 20. They can now be obtained by direct
multiplications in the grid domain.

'*J .
UPy = a 3 A, emi (16)
m=-J
+/ :
V2% = a I B_ elma (17)
m=-J
? -hT 3
U = g3 3 C,, glmi (18)
meeef
L -if_f -
Vo' = o 3 D, eimh a9
m=-f
U2+ ve +f .
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An inverse FFT of these terms can now be performed, as described in Equations 16 to
20. The final step is to transform these fields back to the spectral domain. The final spectral
forms of the model as a whole are shown in Equations 21 to 24.

Bwin /2 1 m SP:_n(sinqb)
T+ Dg = - w12 c032¢[;mAm P “(sing) - B, cos¢ “"““““”“53—] cos¢d¢
+ QW[!‘(hI)g.msz + (r+Dir+2) pxl,};ﬁj - V;n] 21
Sxm
r a2 1 . m. . SP(sing)
-r{r+ 1)*;5*:;% = cosqu[ LmBm Pr (sing) + Am cosg ——"—““‘695 ]cos¢d¢
-/ 2
- 20frer- D p;n !,Vfl + (r+I)(r+2) pzl w21+ U:n ] .
+ rr+ 1)('E;n 4+ @T) (22)
o, P - &P (sing)
51 = -,Lz/2 cos2¢[1mCm P (sing} - Dm cos¢ —”‘""'3"“5*‘““”] cosp de
+ P+ 1)1:21 23
2 g |
m m o _m _
Er = ‘[m"? c0s%0 Pr (sin @) cos¢ d¢ 24
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2.4.2 Original Sequential Implementation: FORTRAN Realisation

The above mathematical formulation was originally implemented in FORTRAN.
The program flow of the FORTRAN formulation as shown in the functional block diagram
in Figure 2.4 has been derived in a direct transliteration of the code into SISAL, which will
be discussed in the next chapter. The diagram and the following function descriptions
amply illustrate, in real terms, how the simulation is performed in a sequential
implementation:

Initialisation Section

Nonlinear i

Figure 2.4: Flow chart for the FORTRAN and sequential SISAL implementations
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initialise essential model variables and generate indexing arrays
of orthogonal spherical harmonics

generate tables for the FFTs

generate the cosine of the colatitudes and the weights for the
Gaussian quadrature

compute the spherical harmonics for each latitude from the
associated Legendre polynomial of the first kind

read the topography (mountains} of the globe in spectral form as the
mean global geopotential field imposing linear balance condition
(dD/dt)

compute the starting geopotential field

compute the starting tendencies of the spectral stream function,
divergence and geopotential fields; the spectral forms of the fields
are complex expansion coefficients.

This completes the initialisation section which may in fact be partially precomputed for any

forecast run.

In the other part, which is the timeloop section, the form of the computation for each time

step is:
For each time step Iterate
Zdiff compute the speciral time dependent geopotential perturbation field
UVspectral = compute the two spectral wind fields
Nonlinear  evaluation of the nonlinear products:
For each hemisphere Iterate
For each latitude Iterate
SymAsym if computing for southern hemisphere, simply copy by
reversing the northern hemisphere’'s symmetrical
spherical harmonics
SpecToFreq  compute truncated expansions of each field
MAFFTGrid FFT transform each truncated field into the intermediate
domain
Vertig obtain nonlinear products by direct multiplications
MdFFTFreq inverse-FFT transform the products back to the
intermediate domain
KeepNH store values of fields if in northern hemisphere
SymAsym if in southern hemisphere, reverse polarity of the present
hemispherical spherical harmonics
FreqToSpec  sum intermediate non linear terms from each latitude; the
results are the non linear terms of the fields in spectral
form
Next latitude
Next hemisphere
AddLinear add the linear and nonlinear terms
TStep perform a model timestep for the spectral model; the results are the
final simulated values of the fields in spectral form after this timestep
Energy check and ensure conservation of energy
AngMom check and ensure conservation of angular momentum
Specam check and ensure conservation of vorticity, divergence and height

Next time step

where the number of time step is dependent on the number of hours of forecast. This then
completes the dynamics of the spectral barotropic numerical weather model.
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Chapter 3

IMPLEMENTATIONS

This chapter consists of two main sections. The first section describes a direct
transliteration of the code from FORTRAN to SISAL and the results of the implementation.
This is followed by the second section which describes a parallel implementation of the
model in SISAL; the parallel implementation was derived from the analysis of the
computational algorithms of functions resulting from the direct transliteration approach as
well as from some knowledge of the original mathematics and physics of the model. The
heuristics developed for transforming a sequential loop to a parallel loop in SISAL will also
be discussed.

3.1 Direct Transliteration Approach

This approach gave the first feel of the sequential realisation of the computational
model. Correctness checking was performed for all mappings of subroutines to SISAL
functions based on the corresponding FORTRAN results.

3.1.1 Encountered Problems

While many FORTRAN control siructures mapped readily inte SISAL, some
difficulties were immediately encountered from FORTRAN's common and equivalence
statements, and the implicit mappings from real to complex number representations
because SISAL does not provide global structures, implicit mappings or an intrinsic
complex number type. The side effects propagated from the use of common and equivalence
statements made it even more difficult for the context of the model to be understood.

Another direct problem emerged when there were uncertainties of loop behaviour for
some DO loops: For instance, a program execution may jump out of a DO loop irregularly.
One was therefore forced to analyse the flow of data to find and eliminate inessential
constraints on the sequencing of transliterated SISAL's function parts.

Described below are other encountered problems.



Implementations

3.1.1.1 Late Availability of OSC

QSC arrived late in the research while DI (Dataflow Interpreter) [Yat88] and SC
(SISAL Compiler) [Cann89] were always available. Compiling the transliterated SISAL
functions using SC, and debugpging the functions and viewing the concurrency achieved
using DI created a false sense of performance of those functions. The reason was that DI
traced dataflow parallelism while SC and OSC extracted parallelism only from product
form FOR loops on MIMD multiprocessors. Both architectures exploited comparatively
different grains of parallelism from the same program, in this case the transliterated
functions, but these were misunderstood. This period was time wasting due to the late
availability of the right compiler (OSC) and the software tools later built around OSC.

3.1.1.2 Debugging SISAL Programs

Working on a large application code, the critical problem in the direct transliferation
process was the absence of an effective program debugging tool. It is to.date impossible to
debug a SISAL program at its source level. The best possible debugging tool available is DI,
the IF1 interpreter, which interprets the corresponding I1F1 graphs of a SISAL program and
offers debugging from there. Unfortunately, even DI as a debugger had bugs which created
problems in producing results from multiple-nested sequential loops.

In DI, the correctness of a focused variable whose value alters as it undergoes changes
in different program states can only be checked by making it an input at function entries or
an output at function exits. Thus it is necessary to create a function boundary arcund the
variable to be investigated. Then in DI, a command "trace function data function_name "
is entered at the start of the run so that the interpreter can spit off the values of the variable at
every change in state both at the function entries and exits. The values are then compared
with the FORTRAN output for the changes in state of the variable which may be effortlessly
obtained from FORTRAN by a "print *, variable_name" statement in the sequential
FORTRAN program. This indirect debugging in DI is both difficult and unreliable and
requires additional lengthy, tedious and error-prone efforts. The reason is that one not only
has to investigate program correctness as originally intended, but also has to deal with the
correctness of the additional functions created as well as always beware of the integrity of
the interpreter for complicated programs (Heisenberg uncertainty principle [Parker,
Meyersl). '

3.1.1.3 Accessing Out of Bound Array Elements

Other than the bad use of common and equivalence statements and iil-structuring of
the FORTRAN code, another problem involving the code was that some parts of the program
accessed array elements beyond declared array bounds. FORTRAN could tolerate this
mistake while DI continued executing with error typed data. However, S8C and OSC aborted
the run immediately giving error messages like "floating point exception error" or
"segmentation fault”.

In function LINBAL, for instance, epsi/] and pf] are declared as having array sizes of
Jxxmx and jxmx respectively. However, the FORTRAN code accessed epsifjxxmx+I] and
pljxmx+1] returning very large non zero numbers. The practice did not affect the overall
results of the FORTRAN program, or else it would have long been corrected. In another
example, ksg/0] in function LINEAR was also accessed although index 0 was not declared.
The same Tesult as the previocus one occurred but one was then engaged in difficult
debugging of the SISAL function.
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3.1.1.4 Keeping Track with New Variable Names

Cautions on side effects in the FORTRAN code were needed. Converting from
FORTRAN to SISAL involved mappings from multiple assignments to a variable which
must satisfy the semantic single assignment rule of SISAL. This was attained by
introducing a new name for each new assignment or update of a variable.

3.1.1.5 OLD Statements of SISAL: an Easy Mistake

SISAL's sequential loop constructs are associated with the use of OLD statements. As
OLD is used on the right hand side, multiple accesses of an OLD variable are common
place. So errors due to the coexistence of the variables evaluated in the present iteration and
the OLD variables evaluated in the previous iteration can occur easily in multiple nested
sequential loops. A particular example is in the sequential loops in the function
LEGENDRE, (Appendix B) where once the OLD statement was missed out, the error was
very difficult to be detected unless the results were checked to the finest detail using DI

8.1.2 Separate Parallel and Sequential Loops of SISAL

In the transliteration process, FORTRAN DO loops, which treat array elements
successively through loop iterations and perform array updates by one array element per
iteration, are equivalent to product form FOR loops of SISAL, hence these loops are
inaduvertently parallelised in SISAL's parallel loop constructs. On the other hand, some
FORTRAN DO loops do not update array elements successively but rather irregularly
through loop iterations; others perform updates for multiple array elements per iteration, or -
some whose patterns of data dependencies are not obvious. All these loops are regarded as
non product form loops and therefore are mapped into SISAL's sequential loop constructs.

3.1.3 Typical Mapping from FORTRAN to SISAL

A typical mapping from FORTRAN to SISAL for SpecToFreq, one of the few functions
which constitutes the innermost loops in the subroutine Nonlinear, is given in Figure 3.1.
This subroutine performs a transformation to compute the truncated expansions of the pg,
zg, ug and vg fields. The mappings resulted in two inner parallel For loops which
performed summations, inside an outer sequential loop which updated the arrays of the four
fields. With many other similar sequential codes , some more costly than SpecToFreq,
residing inside another two sequential For loops (For each hemisphere Iterate and For each
latitude Iterate) described in Section 2.4.2, the expected result would be a large number of
complicated sequential array updates in deeply nested sequential loops which, with the
version of OSC available, would lead in turn to a large amount of array copying.

The need to express operations on complex numbers explicitly in addition to the

adoption of a direct transliteration of the original code resulted in a SISAL formulation
which was 50% longer than the original FORTRAN code.
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Do 20m =1, mx
mi=m+m
mr=mi-1
pglmr) = 0.0
pg(mi) = 0.0
zg{mr) = 0.0
zg(mi) = 0.0

DO 3Gj=jx1,-1

IF (j £q. ] .and. m .eq. 1) GO TO 3¢

i = kel +

Jmi = jm + jm

Jmr =jmi - 1

Jmx =kenjxx(m) + j

pe(mr) = pg(mr) + alp{jmx} * pri(jmr)

pg(mi} = pg(mi) + alp(jmx) * pri(jmi)

zg{mr} = zg{mr) + alp(jmx) * wri(jmr})

zg(mi) = zg(mi) + alp(jmx) * zri(jmi)
30 CONTINUE

20 CONTINUE

DO 120m=1,mx
mi=m+n
mr=mi- |

uglmr) =00
ug{mi) = 0.0
vg(mr} = 0.0
vg(mi) = 0.0

DO 130j=jux, 1, -1

Jmx= knpodm) +

Jmi = jmx + jrx

jor = jmi - 1

uglmr )= ug(mr) + alp(jmx) * urijmr)

ug{mi) = ug(mi) + alp(jmx) * uri(jmi}

vg(mr) = vg{mr) + alp(jmx) * vri(jmr)

vg(mi} = vg(mi} + alp(jmx} * vri(jmi)
130 CONTINUE

f20 CONTINUE

{0} FORTRAN implementation

Implementations

P& 28, g, VE =

FOR INITIAL
m:==1;
pg = ARRAY fili(l, mx * 2, 0.0);
zg := ARRAY fill(i, mx * 2, 0.0);
ug r= ARRAY fill(l, mx * 2, 0.0);
vg s= ARRAY fill{I, mx * 2, 0.0},
WHILE m <= mx REPEAT
m=oldm+1;
mi=oldm*2;
mro=mi-l;
pgmr, pgmi, zgmr, Igmi ;=
FOR jIN I, jx
Jm 2= kmjx{old m} + j;
Jmi = jm*2;
Jmr=jmi-I;
Jjmx = kmjxxfold m] + j,; .
per. pgi, zgr, rgi :=
IFoldm=14&j=1
THEN 0.0, 0.0, 0.0, 0.0
ELSE  alpfijmx] * prifjmr],
alpfjmx] * prifjmi],
alpljmx] * zrifjmr],
alpfjmx] * zriljmi}
END IF
RETURNS VALUE of SUM pgr
VALUE of SUM pgi
VALUE of SUM zgr
VALUE of SUM zgi
END FOR;
pg := old pg[mi: pgmi; mr: pgmr];
zp = old zg[mi: zgmi; mr: zgmr};

ugmr, ugmi, vgmr, vgmi ;=
FOR jIN 1, jxx
Jmx o= kmjxxfold m] + j;
Jjmi == jmx * 2;
jmr = jmi-1;
RETURNS VALUE of SUM
alp{jmx] * wrifjmr]
VALUE of SUM
alp{jmx] * urifjmi]
VALUE of SUM
alp{jmx] * vri[jmr}
VALUE of SUM
alpfimx] * vrifjmi]
END FOR;
ug := old uglmi : ugmi; mr rugmr};
vg := old vg{mi > vgmi; mr ! vgmrl],;
RETURNS VALUE of pg
VALUE of zg
VALUE of ug
VALUE of vg
END FOR;

(b) Sequential SISAL implementation

Figure 3.1: Direct transliteration of the FORTRAN implementation of SpecToFreq to SISAL
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3.1.4 Results of Implementation

The sequential computational algorithm of the model implemented in SISAL is still
the same as that of FORTRAN shown in Figure 2.4. because the transliteration was kept as
close as possible. The results of this were obtained using the standard f77 FORTRAN
compiler released with the Encore Multimax (operating system UMAX V), and OSC. The
FORTRAN compilations were performed with optimisation.

The sample model size ¢hosen (from hereon) was a realistic spectral resolution with
J=30 (corresponding approximately to a 460 km grid) which is also the largest model size in
the available dataset. The run times of the model with one iteration of the timeloop at this
resolution for multiple processors in Figure 3.2 shows that the SISAL run time on a single
processor {773.0 seconds) was 11 times slower than the FORTRAN run time (70.0 seconds).
The results with multiple processors sharing the workload indicated that this approach was
inefficient for this code because the program iteratively progressed through the
transformation section hemisphere by hemisphere, and in each hemisphere latitude by
latitude, before obtaining the final non-linear terms of the new spectral fields. Confirmed
by the concurrency profile in Figure 3.8, this sequential algorithm resulted in loss of
parallelism due to excessive copying and sequential updating of arrays (36% of computation
time from profile). The memory requirement for this implementation was thus many times
larger than that for the FORTRAN implementation where update in place is intrinsic.

Runtime vs # Processors (Encore} YJ = 307
0.7 M\\_/\‘_/*——‘_._‘_‘\
- Time{sec} 0.6 -
0.5 o
e STSAL
x 1073 i e B FORTAAN
0.3 S
0.2
L e
c.0 v
2 4 3 8 10 1z 14 16
¥ Processors

Figure 3.2: -Multiple processor-run times-for FORTRAN and sequential SISAL

Active Processors vs time (Encore 16 processors} J = 30
20 o
15 -

Processors
10 3

Time (seconds} x 1073

Figure 3.3: Parallelism profile of the directly transliterated SISAL version
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3.2 Parallel Implementation

Allowing the specification of global state changes, FORTRAN leads to programs that
are very difficult to analyse for parts that may be executed concurrently. Without a complete
analysis of the entire program, it is generally impossible to trace the flow of the data. Once
transliterated into SISAL, such analysis is made possible and easy by the modular and
functional form of the SISAL program to find and eliminate inessential constraints on the
sequencing of concurrent program parts. The direct transliteration results therefore led to
the commencement of a parallel implementation process.

The process involved transformation of the individual child functions to product form
loops, re-ordering the major events in the main functions to enable transformation of these
events to product form loops and enforcing loop slicing for parallel loops which OSC
identifies as costly to slice {CGMr30l. Observing closely, all these were principally guided
by a loop transformation heuristic.

3.2.1 Heuristic of Transforming a Sequential Loop to a Parallel Loop in SISAL {Chang90]

SISAL's only means of exploiting true parallelism on general purpose MIMD
machines is presently via its parallel loop constructs; parallelisation of codes must
therefore be targeted to these constructs. This may be performed systematically by rewriting
the sequential codes to satisfy the following conditions:

(1) only one array update is performed per iteration, and

(2) array updates are performed for successive array elements (whose indices are
represented by "index" in the following example) through loop iterations.

The correctness of this rewritten sequential loop can be ensured by generating and
checking the index of the updated array element in each iteration. So a typical desirable
sequential code will look like:

FOR INITIAL

index := starting _index;

array ;= initialised;

WHILE index < highest index REPEAT
index := OLD index + I,

array := QLD array[OLD index: updated];

RETURNS VALUE OF array
END FOR

Any trace of data dependency is thus indicated by the OLD statements. If the data
dependency is direct, in other words, if the data dependency is only between successive
iterations to support the two required conditions above, such as array = OLD array[OLD index:
updated], then the sequential loop can be directly transformed into a parallel construct, for
example one as shown below:

FOR index from starting index 1o highest index
ete.....

RETURNS ARRAY OF xxxx

END FOR

Instead of performing update to a created array, as it was in the sequential loop form, the
code now is constructing a new array in the parallel loop form.
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The parallel expressive capability of SISAL's loop reduction operators such as SUM,
PRODUCT and CATENATE are particularly useful in many cases to remove data
dependency constrained by sequential loops. Starting from the innermost loop in a deeply
nested sequential loop construct, this technique may be repeatedly applied outwardly to
parallelise the whole constract.

In the case of the timeloop section in the weather code, the technique has enabled first
loop transformations for individual child functions, and then globalisations for many of
these functions.

3.2.2 Transformation of Individual Child Functions to Product Form Loops

This process focused on exploitation of algorithmic parcllelism for the individual
child functions. In their directly transliterated forms, these functions consisted of
sequential loops or outer loops which were sequential because in the direct transliteration
scheme, FORTRAN loops which performed updates irregularly or non-successively
through loop iterations were mapped into SISAL’s sequential loop constructs. The aim here
was to restructure the sequential codes so as to enable the use of SISAL’s parallel loop
constructs. Then the bodies of the loops were checked to function similarly as those of
sequential form. Final checking for correctness of results using DI was partxcularly
important here to reconfirm the correctness of the new algorithms.

Functions whose algorithmic parallelisms had to be re-explored were those nested in
the timeloop section of the model (Figure 2.4) namely SymAsym, SpecToFreq, MAFFTGrid,
MdJdFFTFreq, FreqToSpec, Linear, Tstep, Energy, Angmom and Specam. They can be.
grouped into three types which are typified by SymAsym, SpecToFreq and FregToSpec. This
thus leads to the descriptions of parallelisation of these three functions, all of which are
nested in subroutine Nonlinear.

Ipfin .= IF MOD(ir,2) = 0 THEN ir + 2 alfa == FORmpIN 1, ir + 1
ELSE ir + I END IF; Yo make even RETURNS VALUE of CATENATE
alfa := FOR INITIAL FORIpIN i,ir +2
alpl := alp; im:=(mp-1)%(ir +2) +Ip;
mp = 1; RETURNS ARRAY of
WHILE mp <= ir + I REPEAT IF Ip=1]MOD(lp, 2) ~= 0
mp:=0LDmp + I; THEN REAL{alpfilm]}
m:=0LDmp-1; ELSE REAL(- alp{ilm]} END IF
ipm =m*(ir +2); END FOR
alpl =
FOR INITIAL END FOR
alp?2 ;= OLD alpl
p =
WHILE Ip <= Ipfin REPEAT
Ip:=0LDIp+2;

im = ipm + QLD Ip;
alp? := OLD alp2{im: - OLD alp2fiim]];
RETURNS VALUE OF alp2
END FOR
RETURNS VALUE OF alpl
END FOR

(i) Sequential Implementation {i1) Parallel Implementation

Figure 3.4: Parallelisation of function SymAsym
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3.2.2.1 Parallelisation of Functions Qutside Subroutine Nonlinear

SymAsym, for reasons which will become obvious later, may be removed from
Nonlinear and shifted to the initialisation section. It is a typical and the simplest example
of those functions not in Nonlinear. Parallelisation of the function was quite
straightforward in that the rules of thumb could be directly applied as shown in Figure 3.4.
The resultant code strikingly shows the formulation of alfa as:

ir+l ir+2
alfa = Concatenate { Array (alpl( 1) }
mp=1 Ip=1

3.2.2.2 Parallelisation of Common Functions Nested in Nonlinear

Function SpecToFreq was depicted in Figure 3.1 to show how a typical direct code
transliteration was performed from FORTRAN to SISAL. Incidentally it is representative
of those common functions nested in Nonlinear. Applying the parallelisation heuristic
discussed earlier, the outer loop of the directly transliterated version of SpecToFreq, namely
the sequential version in Figure 3.5(1), may be parallelised. The resultant code as shown in
Figure 3.5(ii) demonstrates a much better readability in contrast with the sequential
version, in addition to its emerging formulation for pg, 2g, ug and vg, that is:

mx*2 jx
pg=Array | X (alp(]*prif ]}

mrmi=l  jel

mc*? jx
zg = Array [E (alp[]*zri[])}

mrmi=]  j=1

mx*2

Jxx
ug=Array { X (alpl]*urif )}  and

mrmis=]  j=1

mx*2 Jxx

vg=Array { X (alpl]*vrif D]

mrmi=l  j=1
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pg, 28, ug, vg =

FOR INITIAL
m:=1I;
pg = ARRAY fill{l, mx * 2, 0.0);
zg = ARRAY fill{l, mx * 2, 0.0);
ug := ARRAY fill{l, mx * 2, 0.0);
vg = ARRAY fill{l, mx * 2, 0.0);
WHILE m <= mx REPEAT
m:=oldm+1;
mi=oldm*2;
mro=mi-l;
pgmr, pgmi, zgmr, zgmi =
FORJIN 1, jx
Jm = kmjxfold m] + §;
jmi:=jm*2;
Jmr e=jmi- {;
jmx 2= kmjxx{old m] + j;
pgr, pgi, 2gr, zgi ;=
IFoldm=1&j=1
THEN 0.0, 0.0, 0.0, 0.0
ELSE alpfjma] * prifjmr],
alp{jmx] * prifjmi},
alpfjmx] * zrifjmr],
alp{jmx] * zri[jmi]
END IF
RETURNS VALUE of SUM pgr
VALUE of SUM pgi
VALUE of SUM zgr
VALUE of SUM zgi
END FOR;
pg = old pg{mi: pgmi; mr: pgmr];
zg := old zgfmi: zgmi; mr: zgmr];

ugmr, ugni, vgmr, vgmi :=
FOR jIN 1, jxx
Jmx ;= kmjxx{old m] + j;
jmi= jmx * 2;
Jmro= jmi-1;
RETURNS VALUE of SUM
alp{jmx] * urifjmr]
VALUE of SUM
alp{jmx] * urifjmi]
VALUE of SUM
alp{jmx] * vrifjmr]
VALUE of SUM
alp{jmx] * vrifjmi]
END FOR;
ug = old ug[mi : ugmi; mr : ugmr;
vg = old vgfmi : vgmi; mr : vgmr];
RETURNS VALUE of pg
VALUE of zg
VALUE of ug
VALUE of vg
END FOR;

(i) Sequential version

pg. g, ug, vg:=
FOR mrmi IN 1, mx %2
mo=(mrmi+1)12;
pg, zg =
FORIN 1, jx
jm 2= kemjx{m] + j;
Jjmx = kmjxx{m] + j;
jmrjmi :=jm * 2 - MOD{mrmi, 2);
pej2gf =IF ~{m=1&j=1)

THEN alp[jmx] * pri[jmrimi],
alp{jmx] * zrifjmrjmi]

ELSE 00, 0.0 END IF;
RETURNS VALUE of SUM pgj
VALUE of SUM zgj
END FOR;
ug, vg 1=
FORIN I, jxx
Jmx = kmpoxfm] + §;
Jmrjmi = jmx * 2 - MOD{mrmi, 2}
RETURNS VALUE of SUM
alpfijmx] * urifjmrjmi]
VALUE of SUM
alpljmx] * vriljmrjmi]
END FOR;
RETURNS ARRAY of pg
ARRAY of zg
ARRAY of ug
ARRAY of vg
END FOR;

(it} Parallel version

Figure 3.58; Parallelisation of function SpecToFreq



Implementations

3.2.2.3 Parallelisation of Function FreqToSpeq Nested in Nonlinear

The most difficult of all transformations was for FregToSpec (Figure 3.8), which
demanded an understanding of its functional role in the computational model, in addition
to very careful analysis of its code pattern which was of a totally different form relative to
other functions nested in Nonlinear. It was realised that parallelisation of this function at
this stage was far from complete because, while the function still embedded inside a
sequential loop (iterations of hemispheres), the needed variables on the right hand side were
still data dépendent. Hence parallelisation of this function is more appropriate to be
discussed in the next section where a globalisation factor is introduced to widen the scope of
investigations for parallelisation and therefrom to resolve the problem of code complexity.

3.2.3 Globalisation of Major Functions: Further Parallelisation

The parallelised child functions presently still embedded inside multiple sequential
loops (the latitudes in both hemispheres) and therefore the model was as yet completely
dominated by the costs of storage allocation and deallocation and array copying imposed by
these loops. This led to the next stage of identifying and performing geographical
parallelism in the computational model from a realisation that the individual longitudinal
points of the same generation on each latitude of each hemisphere could be computed
independently of each other. The tasks involved unravelling loop iterations through the
latitudes, unravelling loop iterations for the North and South hemispheres, and thereby
reordering of events in major functions particularly those inside the subroutine Nonlinear;
these evolved transformations of the events to product form loops with globalisation
statements in the form of:

FOR both hemisphere CROSS all latitudes
RETURNS ARRAY of individual child functions

Hence, SpecToFregSphere, MAFFTGridSphere, VertigSphere and MdFFTFreqSphere
were created as functions of the same class wherein all points on the globe are dealt with
concurrently. FreqToSpecSphere was evolved, however, as a separate class of function
where summations were performed from field arrays on each latitude level; the concept of
globalisation introduced here helped resolve the problem of code complexity and hence effect
parallelisation. Productively, the realisation of the created function SymAsymSphere
resulted in shortening of the critical path of Nonlinear, thus the timeloop as a whole.

alfa =
FOR hemi IN I, 2 CROSS latlev IN [ ilath
RETURNS ARRAY of

IF hemi= 1 THEN FOR specindex IN 1, jxxmx % North
RETURNS ARRAY of real{alp{latlev, specindex]}
END FOR .

ELSE FORmpIN I, ir+ 1 Yo South

RETURNS VALUE of CATENATE
FOR Ip IN 1, irmax2
ilm = (mp - 1} * irmax? + Ip;
RETURNS ARRAY of
IFIp = 1] MOIDp, 2) ~= 0 THEN real{alp[latlev, ilm]}
ELSE real{-alpflatlev, iim]) END IF
END FOR
END FOR
END IF
END FOR

Figure 3.6: SymAsymSphere: globalised version of SymAsym
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3.2.3.1 Relocation of SymAsym to Model Initialisation Section

The evaluations for the symmetrical and anti-symmetrical spherical harmonics for
all Fourier points on both hemispheres of the globe may be performed concurrently in the
evolved function SymAsymSphere shown in Figure 3.6, thus producing alfu, a matrix which
stores the spherical harmonices of all Fourier points on the whole sphere. Since the results are
constants hereon and need not be recomputed in Nonlinear of the timeloop, the function may
be relocated to the initialisation section of the model, rather than being re-evaluated
iteratively in the timeloop section. Additionally, the global content of the function means
that function KeepNH (Section 2.4.2) is hereby redundant. Excluding these functions, the
critical path length of the timeloop was further shortened.

3.2.3.2 Globalisation of Common Functions Nested in Nonlinear

Globalisation for this class-of functions were particularly straightforward. The
existing child functions may simply be absorbed by the globalisation statements as typified
by the function SpecToFregSphere shown in Figure 3.7. The resultant field arrays were
global dimensional which then enabled similar parallelisation of succeeding functions of
the same class as well as global-parallelisation of function FreqToSpec.

pg, 2. ug, vg :=
FOR hemi IN 1,2 CROSS latlev IN 1, ilath
Pg. 78, ug, vg'=
FOR mrmi IN I, mx * 2
m={mrmi+1)12;
pg.zg:= FORGFIN I, jx
Jjm = kmjx{m] + j;
Jmx = kmjxx{m] + j;
Jmrjmi := jm * 2 - mod{mrmi, 2);
peizgi = IF~{m=1&j=1)
THEN alpfhemi, latlev, jmx] * pri[jmrjmi],
alp[hemi, latlev, jmx] * zrifjmrjmi]
ELSE 0.0, 0.0 END IF,
RETURNS VALUE of SUM pgj
VALUE of SUM :gj
END FOR;
ug,vg:= FORJIN 1, jxx
Jmx := kmjxx{m] + J;
Jjmrjmi 1= jmx ® 2 - mod(mrmi, 2}
RETURNS VALUE of SUM alp{hemi, latlev, jmx] * urifjmrjmi]
VALUE of SUM alpfhemi, latlev, jmx] * vrifjmrimi]
END FOR
RETURNS ARRAY of pg
ARRAY of zg
ARRAY of ug
ARRAY aof vg
END FOR
RETURNS ARRAY of pg
ARRAY of zg
ARRAY of ug
ARRAY of vg
END FOR

Figure 3.7: SpecToFreqSphere: globalised version of SpecToFreq
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Implementations

3.2.3.3 Globalisation of Function FreqToSpec Nested in Nonlinear

The parallelisation of this fanction was simplified and effected by considering
globalisation. This section describes how the transformations were evolved from a
sequential version of the code to a globalised parallel version.

In the first part of the sequential version (marked “Part I") shown in Figure 3.8, the
assignments for eg, pug, pvg, zug and zvg imply that each of these array variables has two
data independent sets of values for the conditions in the Northern hemisphere and in the
Southern hemisphere respectively. Also, the pugni and old pug pair are actually puf fields
for the Northern and Southern hemispheres respectively, the same case as the other four
pairs of arrays of _f fields, The Northern case (symmetrical) may be evaluated by "North _f
fields + South _f fields" whereas the Southern (anti-symmetrical) by "North _f fields - South
Jf fields", and these fwo evaluations may be evaluated independently, hence concurrently.

Each of the array variables cfri, eri, ptri and ziri that follow in the second part
(marked "Part 2") undergo an array update for each array element in multiple nested
sequential loops. Inside the first iteration, i.e. the Northern iteration, the first sequential
summations for ciri, eri, ptri and ztri were obtained from condition ja=1I, and these
summations were added to the second sequential summations of ctri, eri, ptri and 2tri from
the condition jb=2. The results are summed with the summing results obtained in the second
iteration, the Southern iteration, which operates the same way as the first iteration. The
final results of etri, eri, ptri and ztri were but a series of five conditional summations: when
Ja=1I and jb=2 and when ja=2 and jb=1, and in each of the two cases there is a symmetrical -
condition and an anti-symmetrical condition, plus a condition at the boundary. A careful
analysis shows that the overall summations may be performed from the Northern and
Southern hemispherical variables concurrently, and also from the condition ja=1 and jb=2
and the condition ja=2 and jb=1 concurrently. This gives an approval signal for a parallel
and less complicated computational algorithm,

Once the characteristics of both the routine FregToSpec and its functional parts were
clear, loop transformation of this function could proceed, guided by the rules of thumb
described in Section 3.2.2 as well as the notion of parallelisation at an order of complexity
higher, namely with globalisation. The multiple names introduced to keep track of multiple
assignments in the transliteration scheme needed to be resolved in the code restructuring.

The resulting codes for Part I became very simple when the field sources were
preconstructed as three dimensional fields [hemisphere, latitude level, point of Fourier
spectrum] (Figure 3.9). Here the symmetrical and anti-symmetrical sources can be
evaluated concurrently, thereby they existed as dlstmct intermediate entities eP, puP, pvP,
zuP, zvP and eM, puM, pvM, zuM, zvM.

Parallelisation of Part 2 was greatly simplified and effected by the results of Part 1.
Instead of having the various conditions necessitating multiple deeply nested sequential
loops, the results were evaluated in a reverse order by having multiple deeply nested
parallel loops examining these conditions. The product of the transformation was a much
shorter code which had been effectively paralielised. The beauty of the resultant code in
Figure 3.9 is the closeness of the Part 2 of F reqToSpec to its mathematical formulation
which can be clearly seen as:
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ctri

eri

piri

ztri

]

it

mx Cjx*2

Concatenate { Array
m=1 ji=1

mx jx*2

Concatenate { Array
m=I ij=1

mx jx*2

Concatenate { Array
m=1 ji=1

mx Jx*2

Concatenate { Array
m=1 ji=1

ilath

{ X C(ctrijmllatlev]} } }

latiev=1

dath

{ X C(erijmflatlev]) } }

latlev=]

ilath

{2 (ptri_jmflatlev]) ]} }

latlev=1

tlath

{ X (ztri_jmflatlev]) } }

latlev=1

Implementations

where each of ctri_jm, eri_jm, ptri_jm and ztri_jm is a function of j, m, latlev and the
symmetrical and anti-symmetrical sources.
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elri, eri, ptri, ztri:=

FOR INITIAL %% loop 2000

symme_antisymmelric ;= I;

ctri, eri, ptri, ziri := cir, er, pir, 2ir;

eg, pug, pvg, Tug, vg = egi, pugl, pvgi, zagi, zvgi;

WHILE symme_antisymmetric <= 2 REPEAT o include 2
symme_antisymmetric = old symme_antisymmetric + 1;

Ja, jb := IF old symme_antisymmetric = I THEN 1,2 ELSE 2, I END IF;

% Part 1
€8, pug, pvg, zug, zvg '=
IF old symme_antisymmetric = 2 % South
THEN FOR mriIN I, mx2
RETURNS ARRAY of 2.0 * pugnifmri] - old pug{mri]
ARRAY of 2.0 * pvgnifmri] - old pvg[mri]
ARRAY of 2.0 * zugnifmri] - old zug{mri}
ARRAY of 2.0 * zvgnifmri] - old zvg{mri]
ARRAY of 2.0 * egni[mri] - old eg[mri]
END FOR

ELSE FOR wrilIN I, mx2 % North
RETURNS ARRAY of old pug [mri] + pugnifmri]
ARRAY of old pvg [mri] + pvgnifmri]
ARRAY of old zug [mri] + zugnifmri}]
ARRAY of old zvg [mri] + zvgnifmri]
ARRAY of old eg [mri] + egnifmri]
END FOR
END IF

% Part2

eriisy == IF old symme_antisymmeiric = 2
THEN old eri ELSE old erif] : old eri[1] + egfl] * wocsfihem] * alp[1]}
END IF;

ctri, eri, ptri, ztri ;=
FOR INITIAL % loop 110
m:=1;
ctril, eril, ptril, ztril = old ciri, eriisy, old ptri, old ztri;
WHILE m <= mx REPEAT
m=oldm+1;
mi=oldm*2;
mr:=mi-I;
realm ;= oldm - 1;

ctrils, erilt, ptrilt, zirili o= % loop 100
FOR INITIAL
j = ja;
etri2, eri2, ptri2, ztri2 = old ciril, old eril, old ptril, old ztril;
WHILE j <= jx REPEAT
Jr=oldj+2;
ctri2, eril, ptri2, uri2 =
IF old j=1 & old m=1 THEN old ctri2, old eri2, old ptri2, old 2tri?
ELSE LET
jm = kmjxfold m] + old j;
Jmi o= jm* 2,
jmro=jmi-I;
Jmx = kmjxxfold m] + old j;
gwplm = alp{jmx] * wocs{ihem];
b = real(realm) * gwplm
IN
old ctrid{jmr : old ciri2{jmr] - b * pvg{mi]; jmi : old ctri2{jmi] + b ¥ pvglmnrj],
old eri2{jmr : old eri2{jmr] + gwplm * egfmr]; jmi : old eri2{jmi] + gwplm * eg{mi]],
old piri2{jmr : old ptri2{jmr] + b * pugfmi]; jmi : old ptri2{jmi] - b * pugimr]],
old ztri2{jmr : old ztri2{jmr] + b * zug{mi]; jmi : old ztriZ[jmif - b * zug{mr]]
END LET
END IF;
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RETURNS VALUE of ctri?
VALUE of eri2
VALUE of ptri2
VALUE of ztri2
END FOR; % end loop 100

eri] ;= erilt;

ctril, ptril, ztril = % loop 201
FOR INITIAL
f = jb,‘ )
ctrid, ptrid, ztrid c= ctrilt, ptrilt, ztrilt;

WHILE j <= jx REPEAT

Jr=oldj+2;

ctrid, pirid, zirid ;=

IFoldj=]&oldm=1

THEN old ciri4, old ptrid, old ztrid

ELSE LET
jm ;= kmjxfeld m] + old j;
Jmi=jm*2;
Jmr :=jJmi-1;
Jmx = kmjxxfold m] + old j;
realn := real(old j + old m - 2};
alpm := if old j ~= I then alp{jmx - 1] else 0.0 end if;
alpp o= alp[jmx + 1];
a = {(realn + 1.0) * epsifjmx] * alpm - redln * epsifjmx + 1] * alpp) * wocsfihem];
IN
old ctrid[jmr: old ctridfjmr] + a * pug{mr]; jmi: old ctrid{jmi] + a * pugfmi]],
old ptrid[jmr: old prridfjmr] + a * pvg{mr]; jmi: old ptrid{jmi} + a * pvgfmil},
old ztridfjmr: old ztrid{jmr] + a * zvg{mr]; jmi: old ztrid[jmi] + a * zvgfmi]]
END LET

END IF;

RETURNS VALUE of ctri4
VALUE of pitrid
VALUE of ztrid
END FOR; % end loop_201

RETURNS VALUE of ctril
VALUE of eril
VALUE of ptril
VALUE of uril
END FOR; % end loop 110

RETURNS VALUE of ctri
VALUE of eri
VALUE of ptri
VALUE of ari
END FOR % end loop 2000

Figure 3.8: Sequential version of FreqgToSpec
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% Part I
eP, puP, pvP, zuP, zvP, % symmetrical sources: North _f + South _f
eM, puM, pvM, zuM, zvM:= % anti-symmeltrical sources: North f - South f

FOR latlev IN [, ilath CROSS mri IN 1, mx2
RETURNS  ARRAY of ¢f{l, latlev, mri] + efi2, latlev, nvi] %o symmnelric
ARRAY of puf[1, latiev, mri] + puff2, latlev, mri]
ARRAY af pyf1, latiev, mri] + pvfl2, latlev, mri]
ARRAY of zuff1, latlev, mri] + zuf2, latlev, mri}
ARRAY of zvifi, latlev, mri] + zvfl2, latlev, mrif
% variable{hemisphere, latitude level, point of fourier spectrum]
ARRAY of ef{1, latlev, mri] - ef2, latlev, mri] % anti-symmetric
ARRAY of puffl, latlev, mri] - pufi2, latlev, mrif
ARRAY of pvf{i, latlev, mri] - pvf]2, latlev, mri]
ARRAY of zufll, latlev, mri] - zuf]2, latlev, mri}
ARRAY of zvf{1, latlev, mri} - zvfi2, lailev, mri]
END FOR;

% Part2
ctri, eri, ptri, ztri ;= 9o All-parallel loops
FORmIN 1, mx % Concatenation of arrays
mi=m*2;
mr:=mi-J;
realm:=m- 1;
ctri_m, eri_m, ptri_ m, ztri m := % Build arrays
FOR jjIN I, jx* 2
j"= (J:f + 1)12;
jm o= kmjx{m] + j;
Jmrjmi = jm * 2 - mod(jj, 2);
Jjmx = kmjxxfm] + j;
realn := real( j+ m-2);
ctri_jj, eri jj, ptri jj, ztri_jjr= 9o Parallel summations
FOR latlev IN 1, ilath
them := iy + 1 - latlev;

gwplm := alp[latlev, jmx] * wocs[ihem]; P e for symmetric parts
b := real{realm} * gwplm;
alpm := IF j~=1 THEN alp/latlev, jmx - 1] ELSE 0.0 END IF; oe--rvenmn for anti-symmetric parts

dpp := alpllatlev, jmx + 1};
a = ((realn + 1.0} ¥ epsifjmx] * alpm - realn * epsifjmx + 1] * alpp) * wocs{ihem]; Fo ----nwrereee
ctri_jm, eri_jm, ptri jm, ztri jm =
IF j=1&m=1)
THEN IF MOD(jm, 2} =0
THEN IF MOD(jmrjmi,2) = @
THEN a* puP(latlev, mi] + b* pvM[latlev, mr], gwplm * eM{latlev, mi},
a * pvPflatlev, mi] - b * puM{latlev, mr},
a* pwPflatlev, mi] - b * 2uM{latlev, mr]
ELSE  a* puP[latlev, mr] - b * pvM{[latlev, mi], gwpim * eM{latlev, mr},
a * pvPflatlev, mr] + b * puM(latlev, mij,
a* zvPflatlev, mr] + b * zuM{latlev, mi]
END IF
ELSEIF MOD({jmrjmi, 2) = 0
THEN a* puM{latlev, mi] + b * pvP[latlev, mr],
gwplm * ePllatlev, mi],
a* pvM{latlev, mi] - b * puP{latlev, mr],
a* zvM{latlev, mi] - b * quPflatlev, mr]
ELSE  a*puM/|latlev, mr] - b * pvP{latlev, mij,
gwplm * ePfiatlev, mr],
a * pyM{latlev, mr} + b * puP[latlev, mi],
a * zoM[latlev, mr] + b * quP[lalev, mif
END IF
ELSE 00, IF jj=1 THEN eP{latlev, 1] * wocs{ihem] * alpflatlev, 1] ELSE 0.0 END IF,
0.0, 0.0
END IF
RETURNS VALUE of SUM ctri_jm
VALUE of SUM eri jm
VALUE of SUM piri_jm
VALUE of SUM zri_jm
END FOR
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RETURNS ARRAY of ctri jj

ARRAY of eri jj

ARRAY of ptri_jj

ARRAY of ztri jj

END FOR
RETURNS VALUE of CATENATE ctri_m
VALUE of CATENATE eri_m
VALUE of CATENATE ptri m
VALUE of CATENATE ztri m
END FOR

Implementations

Figure 3.9: FreqgToSpecSphere: globalised version of FreqToSpec

Initialisation Section

SymAsymSphere

The content of Nonlinear
has been absorbed into
these _Sphere functions

e e

SpecToFreqSphere

MdAFFTGridSp

rtigSphere { :

MdAFFTFreqSphere

Figure 3.10: The new parallel computational algorithm of the spectral weather model
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3.24 Resultant Computational Algorithm from Parallel Realisation [{CG90]

With deeply nested parallel loops replacing deeply nested sequential loops, the product
~was a significant contrast in the outlook and length of subroutine Nonlinear thus the
timeloop section and the computational model as a whole, as illustrated in the functional
block diagram in Figure 3.10, where Nonlinear now consisted simply of:

SpecToFreqSphere();
MAFFTGridSphere();
VertigSphere();
MdFFTFreqSphere(};
FreqToSphere();

3.2.5 Monitoring Bottlenecks with Concurrency Profiles [CGMraQ]

Having implemented the parallel algorithm, the next stage was to investigate those
parts of the implementation which, due to yet to be identified factors, may degrade the
performance. Monitoring of these boitlenecks was then enabled by the availability of a
software tool which traced the instantaneous activity of all the processors used, in other
words the concurrency profile. The use of the tool not only showed distinctively the
successfully parallelised program parts and functions, but also exposed the bottlenecks both
in the initialisation and timeloop sections.

3.25.1 Sequential Code Sections in Timeloop

Shown in Figure 3.11, the concurrency profile for the implementation of the timeloop
section of the model for a model size of J = 30 with 16 processors sharing the workload
indicated that the inter-function sequential or Amdahl [Amd67] notches caused by data
dependency have a second order effect on potential speedup. However, there remained three
significant serial sections which consumed approximately 13% of the total execution time
and grew with problem size.

The sequential sections were due to three specific functions, all of which were
involved in building single dimensional arrays from singly nested parallel FOR loops
containing small loop bodies. A number of subsequent experiments had shown that the
OS8SC's slicing and parallelisation of this type of loops was globally determined by the
compile time routine which estimated the parallel execution costs; and these loops were not
sliced because the OSC cost estimator did not recognise the critical path significance of these
functions.

Active Processors(Encore 16 progessors) ‘Leoopl.g8”’
20 -

15 -

Processors
10

9 v - : : T - . -
0.0 1.0 2.0 3.0 4.¢ 5.0 6.0 7.0 8.0

Time {seconds)

Figure 3.11: Concurrency profile of the timeloop section
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3.25.1.1 Singly Nested Paraliel Loop With Small Loop Body

SISAL presently does not implicitly support the data structure for complex numbers.
Hence a complex number was represented by a RECORD of Repart and Impart in this
implementation with the SISAL type-declaration of;

TYPE CplexReal = RECORD[Repart, Impart: REAL]

Figure 3.12 shows one of these functions which explicitly converts four arrays of real
numbers, each having an array size of jx * mx * 2, to four corresponding arrays of complex
numbers of array size jx ¥ mx each. Regardless of the number of processors used, the total
length of the serial code on the concurrency profile undesirably increased with the size of the
loop bound.

Nevertheless, this code could be locally compiled with maximum slicing of the
parallel FOR loop using the -H1 pragma of OSC. The Local Maximum. Slicing or LMS
curves in Figures 3.14 and 3.15 illustrate the desired improvement to this code as a result.
However, the present OSC does not support the linkage to a separately compiled routine, and
therefore the amount of slicing of parallel FOR loops could only be specified as a globally
effective OSC pragma at compile time. Unfortunately a pragma value of -H I led to slicing of
the routines of interest but cver-parallelisation of the rest of the program [2]. This in turn
resulted in an execution time of 30 seconds compared with the original 8 seeonds for the
model size J = 30.

citC, eC, ptC, 2tC ;=

FOR complex_index IN 1, jxmx

index := complex_index * 2

RETURNS ARRAY of RECORD CplexReal{Repart : cifindex - 1]; Impart : ctfindex]]
ARRAY of RECORD CplexRealfRepart : efindex - 1]; Impart : efindex]]
ARRAY of RECORD CplexReal[Repart : pifindex - I]; Impart : ptfindex]]
ARRAY of RECORD CplexReal{Repart : ztfindex - 1]; Impart : ztfindex]]

END FOR

Figure 3.12. A singly nested parallel FOR loop with a small loop body

ctC, eC, piC, 21C =
FORmIN I, mx
ctC, eC, ptC, ztC :=
FORIN 1, jx
complex_index := jx* (m- 1)+,
index ;= complex_index * 2
RETURNS  ARRAY of RECORD CplexRealfRepart : ctfindex - 1]; Impart : ctfindex]]
ARRAY of RECORD CplexReal{Repart : efindex - 1], Impart : efindex]]
ARRAY of RECORD CplexReal{Repart : ptfindex - 1]; Impart : ptfindex]]
ARRAY of RECORD CplexReal{Repart : stfindex - 1] Impart : ztf indexf]
END FOR
RETURNS VALUE of CATENATE ctC
VALUE of CATENATE eC
VALUE of CATENATE ptC
VALUE of CATENATE ztC
END FOR

Figure 3.13: A Quasi Doubly Nested loop
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A possible solution to this problem is to augment the cost estimation of OSC by
providing the number of processors available on the target machine as an additional
pragma. The likely effect of this solution can be demonstrated by explicitly slicing these
loops using a Quasi Doubly Nested (@DN) technique, which returns in this case the desired
single dimensional arrays. The technique may be used effectively to force appropriate
decisions from the current OSC cost estimator.

3.2.5.1.2 Quasi Doubly Nested Techmique

Using the QDN technique, as shown in Figure 3.13, the inner parallel FOR loop of loop
bound jx computes the correct array indices. This loop resides inside an outer parallel FOR
loop, of loop bound mx, which concatenates every temporary array it produces. The loop body
of this outer loop hence becomes larger and an order of complexity higher. This technique
produces a slightly larger code size but the overhead is feit only when one processor is
employed. Furthermore, the execution time and concurrency profiles produced using this
technique are the same as those produced when the original code is locally compiled with
maximum slicing, as already discussed in the previous section. Figures 3.14 and 3.15
illustrate the more efficient exploitation of concurrency and an execution time of 3.5 times
faster for this code relative to the original non-parallelised code.

Run Time wvs # Processors {(Encore)

‘L-*WN
0.6 43

i
0.5 "-.\
Time (sec) ":‘ --weww-—-e- QDN and 1MS
0.4 %, e Single Nested Global
0.3 4 \\
\b----
0.2 Dt SO b e T
0.1 v
2 4 6 g 10 12 14 16
§ Processors

Figure 3.14: Comparison of execution time as a function of number of processors (J = 30)

Retive Processors vs time (Encore} Comblined
16— eeeeeeenean

1 4 Single Nested Global
12 % """"""" QDN and LMS

Processogé i
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Figure 8.15: Comparison of concurrency profiles as a function of number of processors
(JJ =30
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Figure 3.16: Concurrency profile of the full model at this stage

3.2.5.2 Serial Code Section in Initialisation Section

The serial computations for the Legendre polynomial of the first kind which produced
the spherical harmonics of the globe [Sim78] dominated the initialisation sections of both the
FORTRAN and SISAL models. These sequential computations when parallelised
significantly sped up the initialisation section.

3.2.5.2.1 Serial Implementation

The model groups the latitudes of the globe into number of North-South latitude
pairs. With this formulation, the function LEGENDRE computes jxx * mxnumber of
spherical harmonics for each latitude pair. However, the initial implementation was
sequentially realised where both the computations for each of the harmonics on the same
latitude pair and for each frame of latitude pairs were executed sequentially. In other words,
there were a total of-“-z— jxx * mx harmonics produced and hence the same number of
corresponding serial array updates performed. The SISAL equivalent of the FORTRAN
version, from direct transliteration, is shown in Figure 3.17.

alp := FOR INITIAL
WORKlgn := ARRAY _fill(l, jxxmx, 0.0d0);
lat level =1; B
alp LGN := LEGENDRE(ir, irmax2, jxxmx, coaiy{1], siaiyl1], deltaiy(1], WOkK[gn);
WHILE lat level < ilat | 2 REFPEAT
lat_level ;= old lat_level + I;
alp LGN = LEGENDRE(ir, irmax2, jxxmx, coaiy[lat_level], siaiy[lar_level], deltaiy{lat level],
old alp LGN),
RETURNS ARRAY of alp LGN
END FOR

Figure 3.17: Sequential computation for spherical harmonics
alp := FOR lat level IN I, ilat /2
alp LGN := LEGENDRE(ir, irmax2, jxxmx, coaiy[lar_levei], sialy{lai level], deltaiyflar_level]}
RETURNS ARRAY of alp LGN

END FOR

Figure 3.18: Parallel computation for spherical harmonics
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3.2.5.2.2 Parallel Implementation

Having analysed the data dependency in the contents of LEGENDERE, it was realised
that from direct transliteration, this routine was enforced to be sequential by arrays
WORKlign and OLD alp LGN although all sequential threads of LEGENDRE could have
been evaluated independently of each other. Figure 3.18 thus shows how this routine was
conveniently parallelised. In this version, all frames of latitude pairs, or in other words all
sequential threads of LEGENDRE, were computed concurrently, Figure 3.19 and 3.20 show
the dramatic improvement in the run time and concurrency of the initialisation section of
the model for J = 30 in contrast to the sequential implementation.

The improved performance over the initial implementation suggested that all
processors were kept busy throughout., So although function LEGENDRE itself could be coded
as a wavefront algorithm leading to additional improvement, this was not attempted due to
the satisfactory gains already obtained.

Processors vs time (Encore 16 processors) ‘Inltlalisationl 8¢
20 -
15

Processors
19

0

0,0 4.0 8.0 12.0 16.0 20.0 24.0 28.0 32.0

Time {seconds)

Figure 3.19: Concurrency profile of initialisation section from sequential implementation

Processors vs time (Encore 16 processors} ‘Initialisationl_9’
20 -
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Processors
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4] .
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Figure 3.20: Improved concurrency profile from corresponding parailel implementation
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Figure 3.21: Execution time profile of the final implementation
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Figure 3.22: Concurrency profile for the final implementation

3.2.6 Results from Final Implementation

The run times of the model as a function of the number of processors used for the model
size J = 30 with one iteration of the timeloop is plotted in Figure 3.21; the curve indicates that
SISAL's parallel implementation (106.7 seconds) executes 7 times faster than its sequential
implementation (Figure 3.2) on a single Multimax processor. The plot shows additionally
that with 16 processors sharing the workload, the run time for this model size has been
reduced to 13.7 seconds. The corresponding achieved parallelism in Figure 3.22 indicates
that the parallelisation of the body of the timeloop, commencing at approximately 5.5
seconds, has been successful.

The overall results confirm the feasibility of an implementation of the weather model.
The results also demonstrate that the parallel computational algorithm derived in this
research (Figure 3.10) performs faster and is better suited for parallelisation than the
original sequential one. This leads to further investigation of these results and
performance analysis of the parallel implementation of the model in SISAL in the next
chapter.
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Chapter 4

PERFORMANCE ANALYSIS

The concurrency result displayed in the previous section indicates that up to this stage,
all intended parallelisation of individual child functions and the timeloop section have
been discretely installed and have taken effect. Following this, it is necessary to investigate
in further detail how this code performs and the impact the new parallel computational
algorithm of the spectral barotropic weather model could have on large model sizes, a real
application situation [CGS0]. The analysis leads to definitions of various speedup ratios
which clarify the parallelism performance of the model as well as highlight the loss of
parallelism caused by a dynamic memory management routine of OSC. Although
independent of the parallel algorithm, the latter is a potential deficiency of OSC which
requires a synthetical analysis into its effect and possible solutions. This chapter comprises
these discussions.

4.1 General Execution Time Curves for Varying Model Sizes

The available dataset only allows the model-size to be increased up to J = 30. In order to
show the capability of the new SISAL implementation in exploiting concurrency of larger
model sizes, J has been extended bevond 30 by building additional dummy datasets which
still result in the same smount of computation.

The execution time for the model profiling with variable model sizes in Figure 4.1
indicates that the runtime of a small model size settles quickly with increasing number of
processors because there is not enough available parallelism to be exploited. However, when
the model size grows larger, the increased available concurrency lowers the rate of
saturation. The "Ideal” line shown assumes three unrealistic conditions that is:

{a) the SISAL code is perfectly parallel,
(b) the runtime system of the compiler is overhead free, and
(¢} the ENCORE Multimax architecture is fully capable of exploiting this parallelism.

It is included to show the contrast of the actual run time for model size J = 30 with the ideal.
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Figure 4.1: Execution time profile of the model

4.2 Analysis of Timeloop Performance

For a model size of J = 30, each time step is 30 minutes; hence 48 iterations of the
timeloop are needed to perform a 24-hour forecast. The performance of the timeloop therefore
is critics] since it dominates the computation time of the model. It follows that one iteration
of the timeloop is sufficient and adequate for the following analysis.

4.2.1 General Speedup Profiles for Varying Model Sizes

The Sp(n) speedup curves for n number of processors with varying model sizes
[EZ1.89], defined by

T(1)
T(n)

Spin) = where T = execution time

are plotted in Figure 4.2. Representing the general principle of parallel processing, the
speedups increase non-linearly, in accordance with Amdahl’s Law [Ade'?] as n is
increased. Amdahl's Law defines the speedup of a code as R

Speedup(n) =

where s (a constant) refers to the sequential fraction of the code. Therefore, if s is negligible,
the speedup is ideal, giving

Speedupi doal = P

However,
1
Speedu,pmax 'y
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if s is significant and if n is large. In Figure 4.2, however, as more processors are added to
share the workload, instead of a horizontal asympitote for maximum speedups predicted by
the Law, the curves reach their points of maximum speedup Spmax, before they decrease,
effected by the increased OH overhead factor, where

Spmax

i

(Sp max*? nmaJJ

OS8C run time overheads
useful computation

and OH =

The evidence is shown in the curve for J = 6, a small model size from which the run
time system struggles to exploit a limited amount of potential concurrency (Figure 4.3).
Larger amount of concurrency is present with increasing model sizes (Figure 4.4), so the
loci of Spmax in Figure 4.2 are expected to move upward and rightward; the research is
unable to prove this further due to limited number of available processors.

Present Speedup of Timeloop vs Number of Processors (Encore)
16.0 Tdeal
MO 50% Ideal
12.0 actual dataset

dummy dataset
Speedup 19.0
8.0 o *38
6.0 ~ - _ . :%g
4.0 ot =
2.0 o e J=6
0.0 7 .
2 4 & 8 1¢ 12 14 ié
¢ Processors

Figure 4.2: Speedup profile of the timeloop for the present implementation
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Figure 4.3: Concurrency profile of timeloop for J = 6 (small model size)
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Active Processors vs time (Encore 16 processers) ‘Loopl.$”
20 -

15 4 i

Processors
19

5

0 x v T T v ¥ v
0.0 .0 2.0 3.0 4.0 5.0 6.0 7.0

Time {seconds)

Figure 4.4: Concurrency profile of timeloop for J = 30 (largest model sizé in-real dataset)

4.2.2 Analysis in terms of Model Sizes

The 1 processor FORTRAN (F1), 1 processor SISAL (S1) and 16 processor SISAL (§16)
execution time curves of the timeloop section for varying model sizes are depicted in Figure
4.5. Similar to that observed by Bourke [Bou72], the FORTRAN curve up to J = 30 is
approximately proportional to J2. The run times for SISAL beyond J = 30 are, however,
obtained from additional dummy data sets. The same datasets for FORTRAN are however
difficuit to arrange, and so the FORTRAN curve is extrapolated tangentially, thus
conservatively, from J = 30.

The §1 and FI curves show that the parallel implementation in SISAL has a single
processor execution time curve which is very close to the original sequential
implementation in FORTRAN, though slightly slower.

Loop Run Time vs Model Size {Encore) ‘Loop Benchmark’

240
120 —— F1

1 —
100 s 5 &
Time (sec)
80
60 -

40

G i0 20 30 40 50 60

Number of Resolution, J

Figure 4.5: Execution time curve of FORTRAN and SISAL implementations as a
function of model size

Representative of SISAL executing on multiple processors, the growth in execution
time with increasing model size for the S16 curve is much slower than that for a single
processor for either FORTRAN or SISAL. This curve when extrapolated is particularly
important since the model resolution for multi-level spectral models {(whose curves in this

case are proportional to f 3) has been attempted up to 213 in an attempt to postpone the onset of
CHAGQS [Lor79]; in this case the third dimension will bring the complexity of major parallel
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loop bodies in the model an order of degree higher, thus expanding further the parallelism in
the computation. Hence the parallel algorithm could have significant impact on spectral
numerical weather modelling.

4.2.3 Speedup Analysis from Benchmark Ratios

The above execution time benchmarks may be expressed as SI/FI,FI1/S16 and §51/516
speedup ratios as a function of model size as plotted in Figure 4.6.

The 81/F1 curve refers to the speedup of the FORTRAN implementation over the SISAL
implementation for varying model size. It indicates that the implementation in SISAL on
conventional computer systems, on equal terms, executes competitively with the FORTRAN
implementation as the model size is increased. The negative gradient suggests that the run
time could possibly. be faster than the- FORTRAN implementation.

Loop Benchmark Ratlos vs Model Size {Encore)
10
8 - ———— S51/F1
——w—- §1/516
—+— F1/816
Ratio 6 -
xtrapolation
4
2 T gl
e @XLrapolation
0 v v v ; T '
G 10 20 30 40 50 [14]
Number of Resclution, J

Figure 4.6: Benchmark ratios as a function of model size

The F1/S16 curve refers to the speedup of the SISAL implementation in a
multiprocessor environment where 16 processors share the workload simultaneously, over a
sequential implementation in FORTRAN where a single processor performs the whole
task. The positive gradient of the ¥1/S16 curve suggests that the speedup of the 16 processor
SISAL execution time over the FORTRAN execution time can be even more substantial
when a larger model size is adopted. The ratio justifies the intention of a parallel
implementation of the weather model.

Finally, the S1/816 curve refers to the speedup of the SISAL implementation in a
multiprocessor environment, where 16 processors concurrently share the workload, over the
execution time of the same task by a single processor. It shows that the larger the model size,
the higher will be the achieved speedup because the level of parallelism is higher (Figures
4.3 and 4.4); Figure 4.4 indicates that the fractional time spent in sequential regions is
reduced as excess available tasks in the SISAL run time task gueue are transferred forward
in time, thus extending the parallel regions.

Interestingly, the S1/816 curve also highlights the impact of a problem in OSC; the
falling gradient of this curve at the extended model sizes J = 39, 42 and 45 presents itself as a
symptom of an inefficient dynamic memory management scheme of the OSC run time
system which will be discussed in later sections. Disregard this problem, since it can be
solved, the S1/516 curve indicates that employing SISAL on multiprocessors can provide
efficient speedup over a single processor on the Multimax multiprocessor.
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4.3 Effect of Memory Deallocation Overhead

Returning to Figures 4.3 and 4.4, close comparisons of the concurrency profiles for
executions of different model sizes indicate that the fraction of the serial tail section
becomes more significant, thus eritical, as more parallelism is obtained, contributing to the
overhead shown in the 81/516 ratio in Figure 4.6. This tail has been found to be produced by
the eager memory deallocation routine of the OSC run time system in which the storage
structures used are automatically but sequentially deallocated at the end of every cycle of the
timeloop section. The resulting overhead censumes a large proportion of the loop time as
demonstrated in Figure 4.4 (approximately 28%;.

The same observations have been reported by Cann and Oldehoeft in their experience
in executing the SIMPLE hydrodynamics code [AE87] on a Sequent Balance 21000 {CO89],
although the fraction of the tail was much smaller in that case. The computational
experiments of a Shallow Water weather model performed by Egan on a Multimax also
reported similar observations [Egan90]. -

This then suggests a general deficiency of the OSC dynamic performance.
Supplementary computational experiments were then devised to investigate and resolve this
problem. The study, which will be described in the next sections, suggests positively that
better performance for this weather model as well as for the experiments of Cann, Oldehoeft
and Egan can be attained by storage reuse, instead of iterative storage allocations and
deallocations.

Active Processers vs time {Encore 16 proecessors) ‘lLoop Eff’
20 -

15 -

Processors
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Figure 4.7: Achievable timeloop concurrency (J = 30) with an efficient dynamic memory
deallocation '

Figures 4.7 and 4.8 show the performance that more efficient dynamic memory
deallocation could achieve. In this example the deallocation code in the C level was removed
entirely resulting in the removal of the serial tail section. The effected total concurrency
(Figure 4.7) corresponds entirely to the originally intended parallelisation of individual
child functions and the timeloop section. The product is a loop iteration with significantly
upgraded speedup characteristics relative to the previous ones; with a fixed number of
processors sharing the workload concurrently, 16 for example, the speedup curves increase,
with better gradients, with model size. At the same time, the percentage machine utilisation,
or efficiency, also improves. These features alsc indicate that more processors may be
added, if necessary, to provide further speedup with good machine utilisation for larger
mode! sizes.
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Figure 4.8: Achievable speedup of timeloop with an efficient dynamic memory
deallocation

43.1 Investigations for Dynamic Memory Management Scheme of OSC

In an attempt to confirm the general performance of the OSC runtime in this aspect in
scientific codes, supplementary application study was undertaken to specifically highlight
and define the actual problems as well as to search for possible remedies [CGMy90). The
algorithm adopted for such investigations was a two dimensional Fast Fourier
Transformation routine [GW] coded in C and targeted for feature detection; the intended
path was fo translate the routine from C to SISAL.

A two dimensional Fast Fourier Transformation routine sequentially implemented
in C was readily available. It was an engineering code actually used in practice. The code
was small but possessed large amount of parallelism both at medium-grain and fine-grain
levels, hence may be representative of large scientific codes. The routine was sequentially
realised at fine-grain level, but the medium-grain geographical parallelism can be directly
implemented in SISAL by the loop transformation heuristic described earlier. Hence the
routine may be coded to concurrently execute multiple sequential threads consisting of
nested sequential loops of function FFT, thus enabling magnification of the anticipated
impact of the dynamic storage management problems. These features made the routine a
suitable choice. The diagrams in Figure 4.9 briefly illustrates the mechanism in the two
dimensional FFT routine.

4.3.1.1 Direct Transliteration from FFT in C

The routine written in C is listed in Section C.1 in Appendix C. In the SISAL version of
the routine listed in Section C.2, the sequential FFT consists of deeply nested sequential
loops performing successive doubling through n stages sequentially, where the mesh size is
2"%2 n, and similar loops performing bit-reversal transformation. Nonetheless, multiple
threads of FFTs, each performing for a row or a column, may be executed concurrently. The
strength of the parallel implementation, as far as the SISAL source level parallelism goes,
is therefore in the expressions of:

Forall rows Do
FFT(row)

and Forall columns Do
FET(column)

which are typical of scientific codes.
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Two dimensional mesh
image

Perform I'FT for
all rows

Using the results of row
FFT, perform FFT for
all columns

Perform feature detection

Template

Figure 4.9: Two dimensional FFT routine for feature detection

However, the emerging deficiency of the dynamic routines of OSC is not controllable
at the SISAL source level, as shown in Figures 4.11 and 4.12 for the case of a 512 x 512 mesh
image. The results shown would have been implausible if not for the preconceived
knowledge of the runtime problems.
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Although there were other factors involved such as aggregate construction costs and
copying of rows on first iterations, the dominant factor which contributed to the much
degraded results for the SISAL code was the problem due to the dynamic storage
management. The profiling tool eprof on UMAX recorded a total fraction of 30% and 10% of
time spent on the dynamic allocation and deallocation routines of OSC respectively. This
information helped in the derivation of ABD synthesis, which synthetically analyses the
negative effect of the present dynamic storage management scheme adopted by OSC.,

4.3.1.2 ABD Synthesis for Effect of Dynamic Memory Management Scheme of OSC

The synthesis does not attempt to give an accurate analysis of the behaviour of a SISAL
parallel loop concurrently executing multiple threads of sequential loops, but te derive with
approximation, an upper bound performance for such typical codes in large scientific
applications.

Best visualised as in Figure 4.13, there are a single allocator and a single deallocator
in the runtime system in the present scheme for sequential loops. In the initialisation
(SISAL's For Initial) of a sequential loop, the allocator allocates free storage for variables to
be initialised {(denoted by allocate{old_x)). Then in the loop body, the allocator again
allocates another free storage for the new version of the variables {allocate(x)) followed by
evaluations for the new variable values as a function of the old variable values. At the end of
the loop body, the storage structures for the old variable are deallocated (deallocatefold_x))
and the newly evaluated variable values are renamed as old (rename old_x := x). Then, the
program returns to the beginning of the loop body for the next iteration.

For the purpose of ABD synthesis, a sequential loop may be divided into three separate
routines namely allocation (A), body (B) and deallocation (D). For some data structures, it
is expected that the A and D operations may be performed partially overlapping each other.
While the best case is if they were allowed to run concurrently, the worst case is if they were
mutually exclusive and had to run serial to each other. The former is a simpler situation to
analyse for the intended purpose, which results in the conception of ABD synthesis.

In the synthesis, the execution time of each iteration is normalised to 1; so for the 512 x
512 two dimensional Fast Fourier Transformation routine, A and D will have to be
normalised to 0.3 and 0.1 respectively. Now lets assume that:

(i} the time for initialising a process is insignificant,

{(ii) all processors execute equal length of processes,

(iii) work scheduling propagates orderly from left to right,
(iv)- allocator and deallocator may operate concurrently, and
(v) each iteration consists of an A, B and D) operations.

These assumptions are sufficient te define an upper bound speedup of the two
dimensional Fast Fourier Transformation routine, Sp upper * where:

1
SPupper = &

so for A = 0.3, the definition gives Spupp o = 3-333.

Page 4.9



Performance Analysis

2 Processors 3 Pmcesslors

L=N2 L=N/3

O= Q=2A

BB=0 BBR=0

CP=253 CP=1713

Sp=1998 Sp=2.989
A z )

7 Processors
L=N/7

O=6A I
BB = (N/7-1)A*11/3
CP = 154.3 *
Sp=3318

BB = (N/4-1)A*2/3
CP = 154.3
Sp= 3318

5 Processors
L=Nf5

O=4A

BB = (N/5-DA*5/3
CP=154.3
Sp=13.318

8 Processors
L=N/8
O=T7A

BB = (N/8 - 1)A*14/3

CP =1543
Sp=3.318

\

6 Processors
1.=N/6

QO =5A

BB = (N/6-1)A*8/3
CP = 1543
Sp=13318

R

and so on

—————

Figure 4.10: ABD synthesis for upper bound performance
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However, these are not yet sufficient to predict when the upper bound occurs, an
mformation which may be beneficial to have for maximising machine utilisation. The
synthetical analysis is therefore useful. First lets define:

L = the length of each process

O = the sum of process offsets
BB = the sum of bubbles

N = the total number of iteration
CP = the length of critical path
S = speedup

Then, from the synthesis described diagrammatically in Figure 4.10, CP and the
corresponding Sp may be approximated respectively as:

CP = L+0O+BB
and P = _CA;T

The synthesis demonstrates how bubbles are generated by the mere presence of A's. As
more processors are added to share the workload, the process length L becomes shorter but the
bubbles BB become larger and penetrate through all parts of the processes to counter the
intended shortening of the critical path CP; the offset O becomes insignificant here.
Depending on the fraction of A, the speedup may be dramatically effected by these bubbles
rather than Amdahl's Law. While the diagram exhibits the behaviour for A = 0.3, it should
be noted that each value of A results in a unique solution of CP, hence Sp.

The unnormalised results of the synthesis and those from actual runs are plotted in
Figures 4.11 and 4.12. The analytical execution time curve from the synthesis is a
relatively strict lower bound which settles at just above 40 seconds from 4 processors
onwards. From the inversed angle, the corresponding speedup curve which saturates at
3.318 from 4 processors onwards sets a relatively strict upper bound in comparison to the
actual maximum speedup of about 2.7. As well as predicting the maximum number of
processors which will provide maximum speedup, the ABD synthesis thus validates the
definition of Sp upper above.

In this investigation, the actual speedup curve confirms the earlier discussed
breakdown of Amdahl's Law in the actual multiprocessor environment effected by the OH
factor, The investigation also proves the deficiency of the present memory management
scheme as well as the impact that it has on the performance of codes written in a typical
algorithmic pattern of large scientific codes. This leads to the next section in which the
problems of the present dynamic memory management scheme will be defined and
resolved.
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Figure 4.11: Execution time curves for 512x512 mesh FFT routine
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Figure 4.12: Corresponding speedup curves for 512x512 mesh FFT routine
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4.3.2 Proposals for Better Dynamic Memory Management Schemes

The present dynamic memory management scheme of OSC as summarised in Figure
4.13 is a general solution for variable sized arrays. However the studies performed have
shown its inadequacy for general scientific applications which overwhelmingly consist of
fixed size array structures. In order to reduce the proven high cost associated with the
scheme, it may be necessary to isolate these conditions in two categories:

Condition 1: Array sizes fixed through loop iterations.
Condition 2: Array sizes varies through loop tterations

Initialisation Initialisation
allocate(old_x) allocate(old_x)
initialise old_x initialise old_x
_ allocate(x)
l Loop Body ‘
allocate(x) Loop Body

compute x := function{old_x)
dealloeate(old_x)
rename old_x = x

compute x = function(old_x)
swap pointers(x, old_x)

Present Scheme Proposed Scheme
{Fixed Array Sizes)
\. J/

Figure 4.13: Dynamic memory management schemes of O8C for a sequential loop

4.32.1 Fixed Array Sizes Through Loop Iterations

An efficient solution for Condition 1 may be implemented more easily relative to
Condition 2 since the array sizes are fixed. Illustrated in Figure 4.13, the repetitive
allocation in the loop body has been relocated so that storage structures which are needed in
the loop body are preallocated in the initialisation section (allpcate(old_x) and allocate(x)).
The deallocation, deallocate(old_x), at the end of the body is then replaced by a swap of
pointers to the two storage locations, swap pointers (x, old_x). Utilising such code motion
and data structure pointer reassignment, this scheme cancels cut the deallocation in the
present iteration and the allocation in the next iteration.

Doing without repetitive storage allocations and deallocations in the loop body, this
scheme is effective for parallel computing of such codes (parallel executions of multiple
threads of sequential iterations), as shown diagrammatically in Figure 4.14; the diagram
shows that each process is now entirely dominated by loop bodies which perform useful
computations. As scientific application codes commonly are, and can be, expressed as
having fixed array sizes, the performance degradation preblems which were previously
demonstrated in the serial tail section and the S1/S16 curves of the weather model, and
evaluated in the ABD analysis, may therefore be effectively solved using this scheme.
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Figure 4.14: Effective parallel computation of sequential iterations for fixed array sizes
using code motion and data structure pointer reassignment

4.3.2.2 Varying Array Sizes Through Loop Iterations

Condition 2 includes those cases in which data structure sizes cannot be determined
statically. It is primarily for this that the present dynamic memory management scheme is
designed. Our initial analysis proposed that lazy deallocation of memory structures in
paraliel with the main computation, only when the storage is exhausted, would lead to
substantial gains [CG89]. However, Garsden {Gar90] has demonstrated that this solution is
unfortunately incomplete, and the actual solution to this problem is more complicated than
first thought. He has shown that by removing the dealloeation of old structures, the tradeoff
resulted from the consequent reduction in the hit rate of the software cache may worsen the
already degraded performance.

The complexity of the problem suggests that dedicated research encompassing various
aspects of the compiler is needed before a more appropriate scheme can be eventuated for
parallel executions of multiple sequential threads with varying array sizes through loop
iterations. A possible indirect solution to this problem will be discussed in Chapter 5.
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Chapter 5

FINAL DISCUSSIONS AND CONCLUSIONS

Experience in transliteration of FORTRAN to SISAL and the identification of
appropriate refinement heuristics has highlighted some problems with the expressive power
of SISAL. The results from the weather model implementations have also indicated
significant deficiencies in the run time performance of OSC. As will be shown in this
chapter, which leads to the conclusions of this thesis, these two issues are interrelated. First
the user issues will be discussed followed by the associated runtime issues. As a
consequence of this research [CGA90], these issues have been acknowledged and addressed
in the recent proposal for the SISAL 2.0 language definition [COBGF] and related compiler
design [CV90].

5.1 Programming in SISAL

1t has been claimed that SISAL functional programs can achieve sequential and
parallel execution performance competitive with programs written in conventional
languages; this research on a large scientific application code supports this claim. With
additional language features and improvements in the runtime system, and subject to the
qualifications which will be discussed below, SISAL can be a powerful functional language
for scientific computations and can execute efficiently on conventional multiprocessors.

5.1.1 Parallelism in SISAL

The parallelism exploited by SISAL is dependent on the underlying machine
architecture upon which a SISAL program is executed. On a dataflow machine for which
SISAL is originally targeted, theoretically the concurrency in a SISAL program is limited
only by data dependencies. In other words, the parallelism (fine-grain) is implicit. On a
shared memory Encore Multimax multiprocessor, however, the Optimising SISAL
Compiler, OSC, which generates C code from SISAL, only slices or parallelises, based on the
cost estimation at compile time, those parts of a function which are in the form of parallel
loop constructs (stream construct concurrency is exploited in the latest version of QOSC
[CV90D. In other words, parallelism in SISAL programs is not machine independent as
generally implied. Viewed from conventional MIMD machines' frame of reference, the
specification of parallelism is explicit rather than implicit, thus the implementation of
parallelism also becomes explicit rather than implicit. These aspects are often confused in
SISAL related articles.
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Nevertheless, work scheduling is always implicit, in that programmers are unloaded
from the burden of scheduling work tasks to the processors available; this is the beauty of the
language implementation. The only explicit task whose degree of difficulty very much
depends on individual routines is to express the available concurrency in SISAL's parallel
loop forms.

On dataflow machines, the execution control is data dependent rather than statement
ordering dependent thus the control is implicit. On conventional machines, conversely, the
control is explicit depending on the ordering of statements, but this does not increase the task
of programming. What does contribute to the difficulty of SISAL programming for MIMD
machines is the constraint impoesed by the single assignment rule of the language, which
often makes the expressions of parallelism in parallel loop constructs inefficient .

5.1.2 Parallelisation at SISAL Level

The original weather simulation code in FORTRAN may be representative of
existing large scientific application FORTRAN codes. It is mature but was developed from
many inputs, resulting in not only inconsistent programming styles throughout the
program, but a program unsuitable for loop slicing or parallelisation. The initial suspicion
that desirable results may not eventuate from parallelising the code at the FORTRAN level
has been confirmed by the availability of a parallel FORTRAN compiler after the research
phase of this work was completed.

The results obtained from using the Encore Parallelising FORTRAN EPF compiler
{(ECCE] is shown in Table 5.1 for a 4 processor XPC based Multimax. The XPC based
- processors are generally regarded as being twice the performance of the APC based
processors used for the major part of this study. The time for a single APC processor is also
given as a reference point, The results indicate that no speedup is achieved and thus
confirm the conjecture that the FORTRAN formulation is sequential.

Number of Execution Time (seconds)
Processors 1 timeloop iteration

i 32.0 (70.0 on APC)

2 34.0

3 33.5

4 33.8

Table 5.1: Execution times of original weather prediction model in FORTRAN using EPF
compiler on an XPC based Multimax

The experience of transliterating from the original FORTRAN was difficult due to the
non structured programming styles adopted by its joint programmers. As a consequence, in
part, of the varying styles adopted, uncovering problem parallelism in the FORTRAN
formulation also proved to be difficult. Re-expressing the computation in a structured form
using SISAL made the problem formulation clear. What was also clear was that the results
from the direct transliteration of this formulation were significantly worse than
anticipated. The process however uncovered the deficiencies in the original formulation
and led quickly to a refinement process which through its leop transformation heuristics
exposed the inherent problem parallelism,
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5.1.2.1 Loop Transformation Heuristics for SISAL

The loop transformation heuristics may be performed, to a greater degree, by rewriting
SISAL's sequential loops to satisfy two conditions, which are:

(1) only one array update is performed per iteration, and
(2) array updates are performed for successive array elements through loop iterations,

which then enables the loops to be directly recoded into SISAL's parallel loop constructs.
Starting from the innermost loop in a deeply nested sequential loop construet, this technique
may be repeatedly applied outwardly to parallelise the whole construct.

The initial stage of the transliteration process is largely mechanical while the
refinement step, although requiring effort, is tractable. It is felt that this process may prove
appropriate for many large existing codes. The alternative of identifying the kernel of a
computation and applying essentially the same process to the kernel only has now been
adopted in the multi-language facility of Sisal 2.0.

5.1.3 Debugging SISAL Programs

The most serious problem in the development of SISAL programs is the lack of
debugging support, at the SISAL source level. The indirect program debugging with DI is both
difficult and unreliable and requires additional lengthy, tedious and error-prone efforts, as
already discussed. The alternative program debugging at the C code level is sometimes
useful too except that the C code generated from SISAL must be assumed as perfectly correct,
which is not always true! As a result, program development of large scientific codes in
SISAL is presently difficult. Research into source level debugging aids for SISAL is
therefore needed. This research may not be attractive, yet the reality is that few large
application codes are correct by design and even less codes work first time.

5.1.4 Probiems of SISAL

SISAL is a relatively new functional language whose efficacy in expressing the
potential concurrency of scientific computational models has been investigated with the
practical application studies in this research. Nonetheless, it has been been found necessary
to add some features to the language to improve its expressive capability, particularly for
scientific computations. Discussed below are the deficiencies in the expressive power of
SISAL features that had direct impact on the research.

5.14.1 Language Support for Complex Numbers

Computations involving complex numbers are extremely common in scientific
applications; FORTRAN recognises this but unfortunately SISAL presently does not. The
alternative adopted here was to explicitly express complex numbers as records of two
numbers representing the real and imaginary parts. An array of complex numbers is thus
an array of records. As a result, the arithmetic involving complex numbers have to be
explicitly performed with the aid of additional subgraphs of functions representing
arithmetic operators. For instance, a mathematical expression of complex arithmetic in
function TStep of the speetral weather model is:

cmfjm] + deltt2*(ctfjm] + kI* {zm{im] + delt*(ztfjm] - zmean*cm{jm]*0.5)} )
1.0 + deltt*delit* k¥ zmean

ey =

where cm, ct, zm, 2zt and zm are complex array variables. In FORTRAN, it can be implicitly
expressed as:
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cov = (cmfjm) + deltu2¥{ct(jm) + K*(zm(jm) + deltr*(zt{jm) - zmean*cm{jm)*0.5))))
{ (1.0 + deltr®deltr* H¥*zmean)

with good program readability and closeness to the original mathematical expression.
However, in SISAL, one is first forced to explicitly define a simple record type to enable the
representation of complex single precision numbers such as:

TYPE complex = RECORD{Repart, Impart: real]

One also has to build records for the complex number representations for cm, ct, zm, zf and
zm by, for example:

em = RECORD complex{Repart: real_number; Impart: real_number]

Then functions representing arithmetic operators have to be created. For example Crmul
will be expressed as:

FUNCTION Crmul( constant: real; cnum: complex RETURNS complex)
RECORD complex{Repart : constant * cnum.Repart; Impart : constant * cnum Impart] .
END FUNCTION

The resulting SISAL expression for the above equation hence becomes:

cev = Crdiv(Cadd(em[im], Crmul{deitt2, Caddlct{jm], Crmul(H,
Cadd{zmfjm], Crmul(deltt, Csub({zt{jm], Crmul(0.5 * zmean, cm{jm])}))})}}),

1.0 + deltt * deltt * M * zmean)

The statement consists of multiple function calls for complex arithmetic which serve only to
obscure the underlying algorithm from the user's perspective.

Although OSC performs a record fission optimisation at compile time, the subgraphs of
additional functions for complex number arithmetic serve as a complication which may
have contributed to the Normalisation error discussed in Section A 4 of Appendix A. In most
cases, particularly when complex arithmetic constitutes a major part of a program, the
explicit tasks in the treatment of complex numbers as records contribute to additional
execution cost as previously shown in the sample code in Figure 3.12.

Another alternative is to express a complex number as two separate numbers, and then
an array of complex numbers as two separate arrays of numbers. This too is an explicit task
which may result in additional execution cost. The link with the original equation is even
more obscure in this case as the computations have to be performed separately for the
resulting real parts and imaginary parts.

As a consequence of this research, the inclusion of a complex number type is being
considered for inclusion in the SISAL 2.0 definition [DV30]L

Page 5.4



Final Discussions and Conclusions

5.1.4.2 Matrices in SISAL

Matrices are expressed in SISAL as arrays of arrays where arrays in SISAL are more
strictly vectors; this was adopted as a general mechanism for variable sized objects. It has
however significant impact on runtime performance in scientific codes which
overwhelmingly use fixed size matrices. The specific performance impact is in OSC's
dynamic storage allocation mechanisms.

5.14.2.1 Dope Vector Scheme: Declaration of Matrices as Arrays of Arrays

In this scheme, array elements are accessed by using pointers and dope vectors. For
example, a two dimensional array of complex single precision numbers is declared as:

TYPE iwodim = ARRAY[ARRAY [complex]]

Read mp(mp(mp(ba+i*4)+j*4)+4)

mp{mp(ba+i*4)+i*4)

mp(ba+i*4)

RERE
IR

|
I
oW | +

Daope Vector [l pointer
\ array element /

L_d
L_1
i

Figure 5.1: Dope Vector Scheme

In Figure 5.1, mp(x) denotes the content of address x and ba denotes base address. For
a simple SISAL statement of array_variablefi,j].Jmag, assuming byte addressing, the diagram
shows that the read is mp(mp(mp(ba + i*4) + j*4) + 4. If the cost is not yet obvious, then let us
assume that this statement lies inside a doubly nested loop, that is:
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FOR DO
FOR DO
e ;= grray_variablefij] Imag etc
etc
END FOR
END FOR

The actual computation performed is thus:

FOR DO

column_address = mp(ba + i*4)
FOR jDO
record_address := mp(column_address + j*4);
imaginary part_address := record_address + 4;
READ mplimaginary part address)
END FOR

END FOR

in this scheme, the dope vector first supplies the pointer to the address space of column,
which with an offset of j*4 provides the pointer to the address of the record. The value of
array_variable[i j].Imag is then read at an offset from this address. Such use of pointers to
pointers to access memory addresses of array elements is very costly although invariant
removal is performed at a very fine level (one below IF1 and IF2) because the inner loop still
performs many operations. In the memory management scheme extensively investigated
in Chapter 4, storage allocations and deallocations are actually performed in this way,
which contributes no doubt to the deficiency of the dynamic storage management of OSC,
and the possibility that a contributing solution could be found from here. One such solution
is Matrix scheme, which treats a matrix as a matrix.

5.1.4.2.2 Matrix Scheme: Declaration of Matrices as Matrices

A more rational approach is to determine that the matrices are of a fixed size, by
analysis or declaration, and use the more conventional FORTRAN like representation.

- ~
mp(ba+i*8*n+j*§-+4)
:Eaa! Imag Real Imag] Real | mag =T
Real Imag} Reai | Imag] Real | Imag _ _

Real | Imag] Real | Imag] ReN | Imag] Real | Imag] Real | Imagp
Real | Imag] Real | Imag] Real'y Ima Real Imag “Real Imag
Real | Imag Real Imag| Real |Ymag [Real Imag| Real | Imag
Real | Imag] Real | Imag] Real { lipag] Real | Imag] Real | Imag
Real | Imagj Real | Imag{ Real j irhag Real Imag] Real | Imag
Real imag} Real | Imag] Real | | Real | Imag] Real | Imag
Real | Imag} Real | Imag] Real I% Real | Imag§ Real | Imag
Real ]| Imag] Real | Imag] Real | Imag§ Real | Imag] Real { Imag
Real | Imag] Real | Imag] Real | Imag] Real | Imag} Real | Imag
Real | Imag} Real | Imagl Real { Imag] Real | Imag} Real { Imag

Figure 5.2: Matrix Scheme
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Diagrammatically illustrated in Figure 5.2, the values are directly mapped inte a
matrix of memory locations. The statement array variable[ij].Imag in this case only needs a
one step access that is mpfba+i*8*n+j*8+4] for a read. In the case of the doubly nested loop,
the computation involved is:

FOR iDO X
row ;= ba + i*8*n + 4

FOR j DO
READ mp{row + j*8)
END FOR

END FOR

In addition to the advantage of single step memory access, most computations can be
performed in the outer loop for row resulting in less busy inner loop thus less number of
overall computations. This scheme is therefore much more efficient and faster than Dope
Vector scheme. It is clear from here that Matrix scheme will significantly enhance the
present inefficient dynamic memory management scheme; the serial tail caused by the
deallocation of data structure in the timeloop of the spectral weather model (Figure 4.4), even
if the array sizes varied through loop iterations, is expected to be significantly shortened
with the implementation of Matrix scheme.

5.2 Problems of OSC

The first released Optimising SISAL Compiler OSC used for the research has
incorporated in it many optimisation stages. Nevertheless, given the newness of the
compiler, there are still a number of improvements necessary to make the compiler more
effective for providing support for parallelisation of SISAL programs and effecting intended
speedup on conventional MIMD computers.

5.2.1 Exploitation of Coarser Grain Parallelism for Conventional Multiprocessors

OSC only exploits parallelism from the parallel loop constructs of SISAL. However,
some parts in & program may consist of big blocks of mutually independent sequential loops
which occupy significant fraction of the program's critical path. For example:

variable a := FOR INITIAL

WHILE ... REPEAT

et
END FOR; % Large sequential loop construct
independent variable := FOR INITIAL

WHILE ... REPEAT

etc

END FOR; % Large sequential loop construct
. €lC ...

should be able to be processed concurrently to reduce the time by half if the the two loops have
equal execution time. OSC does not currently exploit the concurrency available in data
independent unfusible sequential loops, forcing unnecessary loop transformations if the
code is in the critical path. '
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5.2.2 Effective Loop Slicing

The initial findings relating to the cost estimation routine of the compiler runtime
system in Section 3.2.6.1 indicated that the compiler did not identify the critical path
importance of low complexity singly nested parallel loops which resided in highly paralle}
critical path of the weather code. The attempted solution was at the source level to enlarge the
loop body.

5.2.2.1 Programmer's Effort: QDN

The solution was meant to trick the cost estimator using QDN technigue consisting of
a reduction operator, CATENATE, which was:

FOR array RETURNS VALUE OF CATENATE
FOR array RETURNS ARRAY OF
XXXXXXX
END FOR
END FOR

The results in Figure 3.14 and 3.15 while showing improved performance,
nevertheless demonstrate the cost of concatenation operations in the reduction of a parallel
loop. As illustrated in the diagram in Figure 5.3, where each of @, b, ¢, and d is an array
produced by the inner loop of a QDN loop, the concatenations were actually performed not in
parallel but in serial.

SUOTIBUAIBIUOD [RLIAS

\- J/

Figure 5.3: Reduction concatenations for a parallel loop

As a result, while the concurrency profile in Figure 3.15 shows that the QDN loop has
60% concurrency when 16 processors are used to share the workload, the execution time
curve in Figure 3.14 gives a contradicting achieved speedup, or average parallelism, of only
about 3.5; in other words, the QDN technique used in this case was only 22% efficient. This
suggests therefore that QDN technique is not an efficient or long term solution. Rather, the
solution should come from a better cost estimation scheme.
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5.2.2.2 Better Cost Estimation Routine for OSC's Runtime System

Presently, cost estimates theoretically are performed relying on the number of loop
iterations, I, and the complexity of the loop body and further information entered by a
programmer at compiler time: the H cost parameter is the total cost of the loop below which
loop slicing will not be performed; the L parameter is the depth of the nested loops that the
compiler should consider slicing. So only these factors are known to the compiler to estimate
the costs of, and to make the decision to slice.

Once slicing has been performed, the slice templates are fixed, It is then up to an
application user to increase the problem size (if scalable speedup can be attained) to fill up
the templates so as to maximise the efficiency of parallelised processes, which may be
defined as:

actual work performed in a process
work required to create the process

efficiency of parallelised processes =

Thus, an important parameter that has been overlooked is the number of processors
sharing the workload which presently is entered at runtime. It should be included as an
additional pragma at compile time to improve cost estimation; this will enable cost
estimation to be determined statically thus reducing the amount of runtime decision
making. Logically, cost saving from subsequent reduction of runtime overhead may
therefore be achieved. Another factor which may be incorporated to contribute to more
effective loop slicing is to allow modular compilation with lecal cost pragmas.

52.2.3 Modular Compilation with Local Cost Pragmas

In the previous attempt to effect slicing of small body singly nested loops (in the same
experience as above}, the original code was locally compiled with maximum slicing
imposed by using the -HI pragma of OSC. Discussed in Section 3.2.6.1.1, the desired
improvement to the code was then achieved as shown by the LMS curves in Figures 3.14 and
3.15. Unfortunately, the present OSC does not support linkages of separately compiled
routines, and therefore the amount of slicing of SISAL's parallel loop constructs can only be
specified as a globally effective -H pragma at compile time. A global pragma value of -H1
resulted in slicing of the routines of interest but also undesirably led to over-parallelisation
of all other routines resulting in a worse performance.

5.2.3. Dynamic Memory Management Scheme

The problems relating to the dynamic memory management scheme of OSC has
previously been discussed in detail in various sections including ABD Synthesis for a two
dimensional FFT routine and Matrix scheme for better manipulation of array structures,

For the case where array sizes are invariant through loop iteration, it should be
possible using code motion and data structure pointer reassignment to remove the allocation
and deallocation of fixed size array structures from within iterative loops; the appropriate
optimisation by hand at the C level is relatively easy to perform for simple examples. Where
the data structure size cannot be determined statically, it is desirable that data deallocation
be overlapped with the main computation of the loop body i.e. lazily when the storage is
exhausted; while this scheme requires further research and in particular its impact on the
performance of the runtime software cache, it is possible that Matrix scheme for array
manipulation discussed above may improve the performance of the present dynamic
memory management scheme.
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5.3 Numerical Weather Prediction Model

The realisation that functions within subroutine Nonlinear are computationally most
intensive and dominate the critical path of the model computation is of vital importance. It
led to the research being focused on parallelising and globalising these functions to improve
the execution speed from the original formulation {Section 2.4.2) which was:

For each hemisphere Iterate
For each latitude Iterate
SymAsym();
SpecToFreq();
MAFFTGrid();
Vertig();
MAFFTFreq();
KeepNH();
SymAsym(};
FreqToSpec();
Next latitude
Next hemisphere

to a parallel formulation (Section 3.2.3) which is simply:

SpecToFreqSphere();
MAFFTGridSphere();
VertigSphere();
MdAdFFTFreqSphere{);
FreqToSpecSphere();

The overall results (Section 3.2.7) have confirmed the feasibility of a parallel
implementation of the adopted weather model in SISAL. The results have also demonstrated
that the parallel computational algorithm derived in this research (Figure 3.10) is faster
and is better suited for parallelisation than the original sequential version (Figure 2.4).

The results of parallel execution of the new computational algorithm on multiple
processors {the SI6 curve in Figure 4.5) has shown that its growth in execution time with
increasing model size is much slower than that for a single processor. This is particularly
important for very large model sizes, where very accurate modelling is being considered, I
is believed that the impact that the parallel algorithm could have on spectral numerical
weather modelling is significant.
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5.4 Conelusions

A barotropic numerical weather prediction model has been used as an experimental
vehicle to explore the parallelisation of computationally intensive scientific applications.
Experiments have been conducted including the direct transliteration of the model from
FORTRAN to SISAL to expose the model formulation and its deficiencies. The experiments
have resulted in the development of SISAL loop transformation heuristics; the use of these
heuristics has led to a highly parallel formulation of the model.

The performance of the parallel implementation has been analysed leading to the
identification of the limiting factors to performance due to the formulation of the
application, SISAL language, SISAL compiler and OSC runtime system. Solutions to these
deficiencies have been recommended and are being considered for incorperation into the
current OSC and its runtime system, and SISAL 2.0. The research has found that many of
the claims of the SISAL developers are justified subject to the qualifications presented here.

The SISAL formulation of the spectral barotropic numerical weather prediction model
is being used as a benchmark code for refining the current OSC and in the development of
SISAL 2.0. It has been made available to the parallel computing research community for
other computational experiments and development. In particular there has been strong
interest from the researchers at the Massachusetts Institute of Technology who intend to
recode the SISAL version into ID Nouveau for the Monsoon dataflow computer. Their studies
will supplement comparative studies between ID and SISAL currently being conducted on
the CSIRAC II dataflow computer.

The research presented in this thesis leads to continuing application studies in the
parallelisation of a next generation multi-level numerical weather prediction grid model
under a joint collaboration research hetween the Laboratory for Concurrent Computing
Systems and the Melbourne Bureau of Meteorology Research Centre.
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Appendix A

BUGS IN OSC

The OSC compiler used during the course of the research was the first released version
which we received in mid 1989. Presented in this appendix are the bugs encountered in the
experience in implementing a two dimensional FFT routine and a spectral barotropic
numerical weather prediction model in SISAL [CGA90]. These bugs were fixed [CV90]
recently after they have been notified to, and acknowledged by, the OSC's developers at the
Asilomar SISAL Workshop in May 1990,

A.1 Starting Index of "FOR array RETURNS VALUE OF CATENATE"

The expected results would be an array with a starting index of 0 if one wrote:

FOR i IN 0, bound
RETURNS VALUE OF CATENAYTE i
END FOR

However, the front end SISAL compiler generated IF1 graphs which had a starting index of
1. Additionally, both the Dataflow Interpreter and the C code generated by OSC gave the
results with a starting index of 1 even if the lower bound in the IF1 graphs was manually set
to 0. This is disastrous for computations which habitually consisted of arrays whose
intended starting indices were 0, such as FFT routine.

The case study as shown in Figures A.1, A.2 and A.3 shows that the IF1 code generated
by SISAL frontend sets the lower bound of the concatenation result to 1 regardless. Further,
even if the low bound was altered to 0 in the IF1 code, both DI and OSC did not check this
lower bound given in the 1IF1 code, but rather simply set it, again regardlessly, to 1.

One was therefore forced to always use array_setl to set the desired lower bound when
any leop returning 'value of catenate' was used.
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FORINO, 10

RETURNS VALUE OF CATENATE
FOR jIN 0,10
RETURNS VALUE OF j
END FOR

END FOR

Figure A.1: SISAL code: parallel loop returning value of catenate with intended starting
index 0

f1: 012345678010012345678910
012345678910012345678910
012345678910012345678910
012345678910012345678910
012345678010012345678910
012345678910]

Figure A.2: Resulis produced by DI and OSC

T110 %9%na=Boolean
T211 %na=Character
T312 Yona=Double
T413 %ona=Integer
T514 %na=Null
T615 %na=Real
T716 9YSona=WildBasic

T&8l1o

reo 4

Tiosg 9 0
Triis 0 10
Ti24 4

Ti38 9 10
Tri4s3 13 10
T154 [

C$ C Faked IFICHECK

C$ D Nodes are DFOrdered

C$ E Common Subs Removed

C3% F Livermore Frontend Versionl.8
C¥ G Constant Folding Completed
C$% L Loop Invars Removed

C$ O Offsets Assigned

X 11 “main” Yoar=I13 Yesl=3

E 41 1] 9 Gof=1 Fomk=V

{ Compound 1 0

G 0 Yofg= 0.00000000000000e+00 Goep=0
E Il 01 12 YGna=j Tof=2 Gbmi=V
NI 142

L 11 40" Fof=3 Gomk=V

L i2 4 10" Gof=4 FGomk=V

G 0 Gafg= 0.00000000000600e+00 Doep={)
G 0 %Bfg= 0.00000000000000¢+00 Jeep=0
E 11 o 9 Gof=5  Fomk=V

NI 107

L 11 41" Fof=6 Yemk=V

E 01 12 12 Gora=j Goof=2 Yemk=V %Hsl=7
y103012

N2 103

L 21 41" Gof=7 Gemk=V

N3 IS

E 11 31 o Foof=5 Fomk=V

L 32 40" %of=8 Formk=V

{ Compound 4 0

G 0 Posl=5

E 11 03 i2 Gona=i Foof=1] Fomk=V
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N1 142 Gosl=5
L i1 40" Yof=12 Fomk=V
L 12 4 "10"  YBof=I3 Fomk=V
G ¢ Fosl=5
E 02 04 [+ Goof=10 Yemk=V
G 0 Gosl=5
E 11 g1 [+ %of=1 Fomk=V
Ni 149 Gosl=9
L i1 14 "CATENATE" %mk=V
E 01 12 [+ Hhof=9 Fomk=V
E 04 13 15 Yoof=10 Fomk=V
}403012 %sl=5
E 21 41 o Pof=8 Fomk=V
E 31 42 9 Goof=10 Fomk=V

Figure A.3: Corresponding IF1 code

A2"FOR array RETURNS VALUE OF CATENATE of concatenations of vectors”

This example arose from coding a two dimensional FFT in SISAL. At compilation
time, the process passed through SISAL frontend compiler and the optimisation stages
without any indication of problems, but during CC, the CGEN generated several errors
relating to pointers. The problem is shown in Figure A.4.

The compilation of the code passed through the SISAL frontend compiler and all of the
optimisation stages, but during CC, it was terminated due to some struct/union errors
{Figure A.5) generated by CGEN. The problem embedded in:

FOR loop
RETURNS ARRAY OF
FOR index IN lowerbound, upperbound
vecvec = vector [ vector % concatenation
RETURNS VALUE OF CATENATE vecvec
END FOR
END FOR
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DEFINE main

TYFPE Arrint] = ARRAY [integer];
TYPE ArrReal = ARRAY [real];

TYPE ArrReal2 = ARRAY [ArrReal]
GLOBAL SIN(num: real returns real)
GLOBAL COS(num: real returns real}
GLOBAL ATAN{(num: real returns real)
GLOBAL SQRT(num: real returns real)

FUNCTION main{fRETURNS ArrReal ArrReal)
LET n:=4;pi:=3141593;
twopow = FOR INITIAL =0 pow:=]; two = array fill{0.nl),
WHILE i<n REPEAT i:=old i+l; pow = old pow*2;
two = old two[i: pow];
RETURNS VALUE OF two
END FOR;
Areal Aimag:= FOR row IN 0, twopow[n] - I CROSS col IN 0, twopow[n] - 1
RETURNS ARRAY OF IF row<twopow(n]i2 THEN 5.0 ELSE 0.0 END IF
ARRAY OF IF row<twopow[n]/2 THEN 50 ELSE 0.0 END IF
END FOR;
IN LET
stage ;= 2; off = twopow(n - stage],;
upperboundjump = twopowfstage - 1] - 1, jumphy = twopow[n - stage + 1};
ARI, All:=  FOR indexjump IN 0, upperboundjump
Jump = indexjump * jumpby;
RwinglR, Rwingll, Rwing2R, Rwing2! :=
FORxIN O, off - 1
pl ==x+ jump; p2 := pl + off;
W = pi * REAL{x}) | REAL{off); cosine, sine := COS(W ), SIN(W),
LwingIR, Lwingll, Lwing2R, Lwing2l :=
Areal{l, pl], Almagfl, pl], Arealfl, p2], Aimag{i, p2];
realm, imagm = LwinglR - Lwing2R, Lwingll - Lwing2I;
RETURNS  ARRAY OF LwinglR + Lwing2R
ARRAY OF Lwingll + Lwing2l
ARRAY OF realm*cosine + imagm*sine
ARRAY OF imagm*cosine - realm*sine
END FOR,

% Error spot: The focus is on concalenations
groupR := RwinglR || Rwing2R; % This creates error in cc
groupl .= Rwingll [f Rwing2l;

% The inexplicable solution:

% groupR.groupl = for kkin O, 2%off - 1

% grR, grl ;= IF kk < off THEN RwinglR{kk] RwinglI[kk]

% ELSE Rwing2R{kk-off] Rwing2l{kk-aff] END IF;
% RETURNS ARRAY of grR

% ARRAY OF gr!

% END FOR;

%

% The drawback here is that one needs to know the actual array size of
% “groupR" and "groupl” ie 2%off - 1

RETURNS VALUE OF CATENATE groupR
VALUE OF CATENATE groupl
END FOR;
IN AR All
END LET
END LET

END FUNCTION

Figure A.4: Error producing SISAL code
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osc chip.sis -y

sisal -noopt -nooff -dir lusrilocallsisal chip.sis
LL Parse, using binary files

* Reading file: chip.sis...

version 1.8 (Mar 28, 1989)

accepted
81 lines in program
O errors ( calls to corrector)
0 tokens inserted; O tokens deleted.
0 semantic errors

iflld -o chip.mono -¢ main chip.ifi

iflopt chip.mono chip.opt -l -e

unlink chip.mono

if2mem chip.opt chip.mem

unlink chip.opt

ifup chip.mem chip.up

unlink chip.mem

ifepart Iyircolrcodfisisalirelease/OSC_csulbinis.costs chip.up chip.part -L0
unlink chip.up

if2gen chip.part chip.c -b

unlink chip.part

cc -Ifylrcolrcodfisisalirelease!OSC _csuibin -DSUN3 -f68881 -0 -S chip.c

G chip.c”, line 229: nonunique name demands struct/union or structiunion pointer
D"chip.c”, line 230: nonunique name demands structiunion or struct/union poinier
Do"chip.c”, line 262 nonunique name demands structiunion or struct/union pointer

% chip.c”, ling 264 nonunique name demands struct/union or struct/union pointer
** COMPILATION ABORTED **

Figure A.5: Error messages given at compile time

A3 Incomplete Graph Normalisation

In the initialisation section of the weather simulation implementation in SISAL, loops
of similar loop bound were forced to be coupled together in order to be accepted and to pass
through the OSC compiler. The full code listed in Section A.3.1 belongs to an older version of
the initialisation routines but adequately exhibits the fault. The focus of this example is in
the calculation of the variance var and the average potential height A. Figure A6 is an
extract of the error producing code. In attempting to simplify the program in order to isclate
the source of error, the problem disappeared. This suggests that the complexity of the
program could be a factor. When these two statements were stated separately in the program,
IF10PT [Cann89] failed, giving the error message shown in Figure A.8. This seems to
suggest that Graph Normalisation was incomplete within IF10PT.,

var ;= FOR diffindex IN 2, jxmx
RETURNS VALUE OF SUM CabsSqr{zi_mountain{diffindex])
END FOR;

h:= FOR index IN 1, jxmx
RETURNS ARRAY OF Crmul{constant, zt_mountainfindex])
END FOR;

Figure A.6: Error producing region in the initialisation section

One way to get around this problem was to couple loops of similar loop bound together
as shown in Figure A.7. This avoided any error.
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var,h = FOR index IN [, jxmx
RETURNS VALUE OF SUM IF index = 1 THEN 0.0
ELSE CabsSqr(zi_mountainfindexj) END IF
ARRAY OF Crmul(constant, zt_mouniain{index})
END FOR;

Figure A.7: Immediate solution

osc main.sis -IF1 -double_real
LL Parse, using binary files
* Reading file: main.sis...

version 1.8 (Mar 28, 1989)

accepted
226 lines in program

0 errors { calls to corrector)

0 tokens inserted; 0 fokens deleted.

0 semantic errors

osc -v -0 prefft mainifi InirFuncs.ifl complex.ifl Inital.ifl
InitFFT.ifl gaussg.ifl legendre.ifl SasAlfa.ifl

iflld -0 main.mono -¢ main main.ifl IntrFuncs.ifl complex.ifi

Inital ifl InitFFT.if1 gaussg.ifl legendre ifl SasAlfa.ifl
ifl opt main.mono main.opt - -e

iflopt: E - FORALL RETURN SUBGRAPHS NOT NORMALIZED
¥* COMPILATION ABORTED **

***% Error code 1
stop.

Figure A.8: Error message for the subgraph normalisation error
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A 3.1 Joint Routines Which Produces Normalisation Error

% Author: Pau §. Chang

% Laboratory for Concurrent Computing Systems

% Revised: 2/211990

% Module: The initialisation stage of the Spectral Weather Model.

% filename: Makefile

# makefile for the SISAL codes barotropic model Version 1.8

# Let

iflfiles = main.ifl IntrFuncs.ifl complex.ifl \
Inital.ifl InitFFT.ifl gaussg.iff \
legendre.ifl SasAlfa.if!

SUFFIXES:

SUFFIXES: sis ifl

# Compile from .sis files to .if! files
six ifl:
osc $* sis -IF1 -double_real

prefft: $(ififiles)
osc -v -0 prefft ${ifIfiles)

FFilename: IntriFuncs sis,

DEFINE ASINR, ACOSR, SQRTR, DSIN, DCOS

I Intrinsic Functions

global SIN(num : real RETURNS real)

global COS(num : real RETURNS real)

global ASIN(num : double_real RETURNS double real)
global ACOS(num : double_real RETURNS double_real)
global SQRT(num : double_real RETURNS douable_real)

% Catering for real operations of Intrinsic functions
Junction ASINR(num : real RETURNS real)
real(ASIN(double_real{num}))

end function

Junction ACOSR(num : real RETURNS real)
reall ACOS{double_real{num}))
end function

Sunction SORTR(num : real RETURNS real)
real(SQRT(double_real{num)))
end function

% Catering for double_real operations of Intrinsic functions
SJunction DSIN(num : double real RETURNS double real)
double real(SIN(real{num)})

end function

Junction DCOS(num : double_real RETURNS double_real)
double real{COS(real{num))}
end furnction

Appendix A
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GFilename. complexsis.

DEFINE Cadd, Csub, Cmul, Cdiv, Crmul, Crsub, Crdiv, Conjg, Cneg, Csqrt, Cabs, CabsSqr

type CplexReal = Record(Repart impart:real},
type ArrCplexReal = Array[CplexReal];

% ----mm-- Intrinsic Functions

global SIN(num : real RETURNS real)
global COS(num ; real RETURNS real)
global ATAN(num : real RETURNS real}
global SQRTR(num : real RETURNS real)

% These subroutines do the arithmatics of complex numbers:

% cnuml + cnum?

Sunction Cadd(cnuml, cnum2 : CplexReal RETURNS CplexReal)

record CplexRealf Repart : cnuml Repart + cnum2 Repart; Impart : cnuml Impart + cnum2 Impart |
end function

% chuml - cnum2

Sunction Csub{cnuml, cnum2 : CplexReal REYTURNS CplexReal)

record CplexRealf Repart : cnumi .Repart - cnuml.Repart; Impart : cnuml Impart - cnum2 Impart |
end function

% cruml * chum2

Sunction Crmul{cruml, cnum? @ CplexReal RETURNS CplexReal)

record CplexReal{ Repart : cnuml Repart * cnum2 Repart - cnuml Impart * cnum? Impart;
Impart : cnuml Repart * cnum2 Impart + cnuml Impart * cnum?2 Repart ]

end function

Yo crnumlicrnum?2

Junction Cdiv(cnuml, cnum?2 ; CplexReal RETURNS CplexReal)

LET dnom:= cnum2 .Repart * cnum2 Repart + cnum? Impart * cnum?2 Impart;

IN record CplexReall Repart : {cnuml .Repart*cnum? Repart + cnuml Impart¥cnum?2 . Impart) | dnom;
Impart : (cnumli Impart*cnum2 Repart - cnuml Repart*cnum2 Impart) | dnom |

end LET

end function

% Real constant*cnum

Junction Crmul{cons : real; cnum : CplexReal RETURNS CplexReal)
record CplexRealf Repart : cons * chum.Repart; Impart : cons ¥ cnumImpart |
end function

% cnum-Real_constant

Junction Crsub{cnum : CplexReal; cons : real RETURNS CplexReal}
record CplexReal[ Repart : cnum Repart-cons; Impart : cnum.impart |
end function

% cnumiReal constant

Sunction Crdiv(cnum : CplexReal; cons : real RETURNS CplexReal)
record CplexReal{ Repart ; cnum.Repart | cons; Impart ; cnum.Impart | cons ]
end function

% conjugate{cnum)=Repart-Impart

function Conjg{cnum ; CplexReal RETURNS CplexReal)
record CplexReal Repart : cnum Repart; Impart : -crnum Impart |
end function

Jo Cneg(cnum)

Junction Cneg{cnum : CplexReal RETURNS CplexReal)
record CplexRealf Repart : -cnum.Repart; Impart ; -cnumImpart |
end function
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% Csqrt{cnum)
Sunction Csqri{cnum:CplexReal RETURNS CplexReal)
LET RR := cnum.Repart;

Il := cnum.Impart;

mag ;= SQRTR({ SQRTR(RR * RR + II * I} );

angle ;= ATAN{II / RR} | 2.0;

Re, Im ;= mag * COS(angle), mag * SIN{angle);
IN record CplexReal[Repart : Re; Impart : Im]
end LET
end function

% Cabs{cnum) refers to the MAGNITUDE of the complex number.
function Cabs{cnum : CplexReal RETURNS real)

SQORTR(cnum Repart * cnum Repart + cnum Impart * cnum. Impart)
end function

9% CabsSqr{cnum) refers to the MAGNITUDE Square of the complex number.

Sunction CabsSqr(cnum : CplexReal- RETURNS real}”
cnum.Repart * cnum.Repart + crum.mparl * cnum. Impart
end function

GFilename. Inital sis,

DEFINE Inital

type Arrint] = Arrayfimteger];
type ArrReall = Array(real],;

global SQRTR{num : real RETURNS real)

FUNCTION Inital{ir, ilong, iat, mx, jx, jxx : integer; zmeanl : real

Appendix A

RETURNS integer, integer, integer, integer, real, real, real, real, real, arrintl, arrintl, arrintl, arrreall))

LET

ww = 7202E. 5,
wo=ww* 2.0;
irmax e jr;

ilath, irmaxl, irmax2 = dat ! 2, irmax + 1, irmax + 2;

asqg, grav ;= 637122E3 * 6371.22E3, 9.80616;
zmean. = zmeanl * grav ! asq;

fonjx, kmjxx .=  FOR mlIN I, mx
RETURNS ARRAY of (m - 1) * jx
ARRAY of (m - 1) * jxx
END FOR;

ksg:= FORJINI ir+*2
RETURNS ARRAY of j*(j + 1)
END FOR;

epsilon_a := FOR mp IN I, mx

RETURNS VALUE of CATENATE
FORGIN I, jxx % epsilon_size is 1-272
Ie=j+mp-2;
mr=mp-1;
t = realf{l + m) * (I - m});
bi=real(d*i*!-1);
RETURNS ARRAY of SQRTR(t i b}
END FOR

END FOR;

epsilon = epsilon_afl : 0.0];

IN ir, ilong, ilath, irmax2, ww, zmean, tw, asq, grav, kmjx, kmjxx, ksq, epsilon

END LET
END FUNCTION
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YoFllename: InitFFT sis,

DEFINE InitFFT

type Arrintl = Array[integer];
type ArrReall = Arrayfreal]

global SIN(num : real RETURNS real)
global COS(num : real RETURNS real)

function facRecur(nparti, idiv, ifTi : integer; ifacti : Arrint]
RETURNS integer, integer, integer, Arrintl}
FOR INITIAL

npart = nparti;
iquot >= npart ! idiv;
T == ifTi;

ifact] = ifacti;

WHILE npart - idiv * iquot = 0 REPEAT
npart ;= old iquot;

iguot := npart | idiv;

ifT :=old T + I,

ifact] := old ifactififT : idiv]

RETURNS VALUE of npart
VALUE of iquot
VALUE of T
VALUE of ifactl

END FOR

END function % facRecur

Junction Loop_id(n : integer RETURNS integer, integer, Arrintl)

FOR INITIAL % loop id

id = 1
(T 2= 0;
npart '= n;

ifact := ARRAY _fill(1, 26, 0) % NOTE: wild guess

WHILE id <= n REPEAT
idiv:=IFoldid- ] <=0 THEN 2 ELSE old id
ENDIF;

npart, iquot, T, fact ;= facRecur(old npart, idiv, old ifT, old ifact);

id = IF iquot - idiv <= Q0 THEN n+ 1 % just to make it greater than n ELSE old id + 2

ENDIF,;

RETURNS VALUE of npart
VALUE of ifT
VALUE of ifact

END FOR

END function % Loop_id
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Junction FACTR4(n : integer RETURNS integer, arrintl)
LET

npart, ifT, ifact] = Loop_id(n);

iff :=if npart - I > 0 then ifT + lelse ifl END if;
tfact2 := if npart - 1 > O then ifactififf : npart] else ifuctl END if;

nfactT = iff;

n2 =  FORINITIAL
nd = 0;
i1

% n2 includes case i=nfactT

WHILE i <= nfactl’ REPEAT

iz=oldi+1;

n2 = if ifact2fold i] = 2 then old n2 + 1 else old n2 END if
RETURNS VALUE of n2

END FOR; % NOTE: very ineffecient!

nd:=n2}2;
ifact3 ;= ARRAY _fill(l, n4, 4)
)
Joriin nd + 1, nfactT - n4
RETURNS ARRAY of ifact2{nd + i]
END for
£
ARRAY_fili(nfactT - nd + 1, nfactT, 0);

nfact := nfactT - v,
IN nfact, ifact3

END LET
END function % factrd

% Subroutine InitFFT does the initialisations necessary so that the
% FFT's can be used. It factorises the number of longitudinal points.
% TRIGF are for forward transforms while TRIGB are for reverse.

Sunction InitFFI(n : integer RETURNS boolean, boolean, integer, arrintl, ArrReall, ArrReall)
LET
Abortinitfft :=  IF (MOD{n, 2} ~=0}n> 200) THEN true ELSE false
END IF;
AbortFFT := IF n> 96 THEN true ELSE false END IF;
pi o= 3.14159265;

afax, ifax := FACTR4(n);

trigf, trigh =
IF Aboriinitfft
THEN array ArrReall [], array ArrReall []

ELSE FORLpIN I, n
k:=(Lp+1)72;
Cargument := - 2.0* pi * real(k - 1 Yreal(n};
COStheta := COS{Cargument); % Repart
SiNtheta := SIN(Cargument); % Impart

RETURNS ARRAY of IF MOD(Lp, 2} = 0 THEN SINtheta ELSE COStheta END IF
ARRAY of IF MOD(Lp, 2) = (0 THEN - SINtheta ELSE COStheta END IF
END FOR
END IF

IN AbortFFT, Abortinitfft, nfax, ifax, trigf, trigh

END LET
END function
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PoFilename: gaussg sis.

DEFINE gaussg

type ArrReall = Array[real];
type ArrDreall = Array{double real]

global ACOS{num : double_real RETURNS double_real)
global SQRT(num : double_real RETURNS double_real)

global SIN{num : double real RETURNS double_real}
global COS(num : double_real RETURNS double_real)

FUNCTION ORDLEG(ir : integer; coa : double_real RETURNS double_real)
LET

irpp, irppm = ir+1, ir;

delta := ACOS{(coa);

sqr2 = SQRT(2.0d0);

theta := delta;
cl :=sqr2 * FOR rIN 1, irppm
fa=n
2 :=fn*2;
fni2sq = double real{fn * fn);
RETURNS VALUE of product SQRT(1.0d0 - 1.0d0 | fnZsq)
END FOR;
sl :=  FOR INITIAL
n = irppm;
Jn = double_real(irppm);
fr2 = fn* 2.0d0;
ang r=jfn* theta;
SIT = 0.040;
cd == 1.0d0;
a = -1.0d0;
b = 0.0d0;
nl:=n+1;
kk =1,
WHILE kk <= nl REPEAT
kk ;= old kk + 2;
k:=oldkk-1;

4T :=IF k=r THEN 0.5d0 * old c4 ELSE old ¢4 END IF;
SIT := old sIT + o4T * COS(old ang);
a = old a + 2.0d0;
b= old b+ 1.0d0;
Jk = double_real(k);
ang = theta * (frn - fk - 2.0d0);
ed:=a*{fn-b+ 10d0){(b*(fn2-a))*cdl;
RETURNS VALUE OF siT
END FOR;

sx =5l *cl;

IN sx

END LET

END FUNCTION

Po--mnmmmmmmmmmm e gaussgicycle
FUNCTION CYCLE(ir, irm, irp : integer; ft, a, b, xlim : double_real RETURNS double_real)
LET g :=ORDLEG(ir, ft);

gm 1= ORDLEG(irm, ft),

gp = ORDLEG(irp, ft);

gt:={ft*fr- LOdO)}(a* gp - b* gm);

Jremp ;= ft - g * g1;

gremp = ft - flemp;

finew = fremp,
IN IF ABS(gtemp) - xlim > 0.0d0 THEN CYCLE(ir, irm, irp, finew, a, b, xlim) ELSE finew END IF
END LET
END FUNCTION
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Gpemwmmmmmm mm oo £AUSSg

FUNCTION gaussg(nzero : integer RETURNS ArrReall, ArrReall, ArrReall, ArrReall, ArrReall, ArrDreall)
LET

xlim := 1.0d-12;

ir := nzero * 2;

Ji ;= double_real(ir);

fil ;= fi + 1.0d0;

pi o= 3.141592653589793d0;
piov2 = pi * 0.5d0;

Jn = plov2tdouble realfnzerc);

Wt = FOR lat IN [.nzero
' RETURNS ARRAY of double realflat} - 0.5d40
END FOR;

f= FOR lat IN l.nzero
RETURNS ARRAY of SIN{ wiflat] * fn + piov2 }
END FOR;

dn ;= fUSQRT(4.0d0 * fi * fi - 1.0d0);

dnl = filiISQRT(4.0d0 * fil * fil - 1.0d40);
a=dnl * fi;

br=dn*fil;

irpr=ir+1;

irm = ir-1;

frew = FOR latIN 1, nzero
RETURNS ARRAY of CYCLE(ir, irm, irp, fllat], a, b, xlim)}
END FOR;

winew, radnew, coangnew, sianew =

FOR lat IN 1, nzero

al :=2.0d0* (1.0d0 - fnew(lat] * fnewflat]);

bo := ORDLEG(irm, fnew(lat});

bl:=bo*bo*fi*fi,

wit s=al *{fi - 05d0) ! bi;

radt := ACOS(frewflat]};

coangt = radt * 180.0d0 1 pi;

stat '= SIN(radt);

RETURNS ARRAY of wit
ARRAY of radt
ARRAY of coangt
ARRAY of siat

END FOR;

WORKiyh 1= fnew || winew [ sianew [{ radnew [{ coangnew;

s, wis, sias, rads, coangs .=

FOR lat IN 1, nzero

RETURNS ARRAY of real{fnew(latj)
ARRAY of real(winewflat])
ARRAY of real(sianew(lat]}
ARRAY of realfradnew(lat])
ARRAY of real{coangnew(lat]}

END FOR;

IN fs, wis, sias, rads, coangs, WORKivh
END LET
END FUNCTION
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GoFilerame: legendre sis,

DEFINE legendre
type ArrDreall = Array[Double_real]

global SIN(num : double_real RETURNS double_real)
global COS(num : double_real RETURNS double_real)
global SORT(num : double_real RETURNS double_real)

FUNCTION legendrelir, irmax2, jxxmx : integer; coas, sias, deltas : real; RETURNS ArrDreall)
LET
p:=LET
coa ;= double_real{coas);
sia = double real(sias);
delta = double_real{deltas);
Irpp r=ir+2;
theta := delta;
sqr2 := SQRT(2.0d0);
pp .= FOR INITIAL
n=1l;
ol :=sqrZ;
ploopl -= ARRAY ArrDreall{i: 1040 [ sqr2] {f FOR jmIN 2, jxxmx
RETURNS ARRAY of 0.0d0
END FOR;
WHILE n <= irpp REFEAT
n:=oldn+1;
Jn = double_real(old nj;
fn2 = 2.0d0 * fn;
fri2sq := fn2 * fn2;
ol r= old ¢l * SQRT(1.0d0 - 1.0d0 | fulsq);
€3 r=cl 1 SQRT(fn * (fn + 1.0d0});

si, 52 := FOR INITIAL

kk:=1;
ang = fn* theta;
nl=oldn+ l;

ssi, 552 = (.0d0, 0.040;
cd, c5 = 1.040, fn;
a, b= - 1.0d0, 0.040;

WHILE kk <= nl REPEAT

kk = old kit + 2;

k=oldlk-1;

552 1= old ss2 + old c5 * SIN{old ang) * old c4;

odt:=  ifk=oldn then 05d0 % old cd else old c4
end if;

ssl = old ssl + cdit ¥ COS{old ang);

a = old a + 2.0d0;

b.:=oldb + 1.0dD;

J&k 1= double_real(k);

ang := theta * {fn - fk - 2.0d0);

cd:=(a*(fn-b+ 1.0d0)(b*(fn2 - a}}) * cdt;

¢5 = old c5 - 2.0d0

RETURNS VALUE of ssli
VALUE of s52 % to sl and s2
END FOR;

pLoopl :=IF oldn - irpp <0
i THEN old pLooplfoldn + I : s * cl; old n + irmax2 : 52 * c3]
ELSEIF old n - irpp = 0 THEN old pLooplfold n + irmax2 : 52 * c3]
ELSE old plLoopl
END IF

RETURNS VALUE of ploopl % topp
END FOR;
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p2:= IFir=2THEN pp
ELSE FOR INITIAL
mo=2;
ppp = pp

WHILE m <= ir REPEAT

mr=oldm+ 1,

Jfm = double_real{old m);

Jml, fm2, fm3 ;= fm - 1.0d0, fm - 2.0d0, fin - 3.0d0;

mml =aldm - 1;

ml:=oldm+1;

c6 ;= SQRT((2.0d0 * fm + 1.0d0)} | (2.040 * fm));

p3 = old ppplirmax2 * old m + 1 : c6 * sia * old pppfirmax2 * mml + 1}];
mpir:=oldm+ir+1;

mt ;= pld m;

ppp =
FOR INITIAL

l:=ml;

pd = ps;

WHILE | <= mpir REPEAT

l:=oldl+1;

Jn := double_real(old 1);

c7 :={fn* 2.0d0 + 1.0d0} I (fn * 2.0d0 - 1.0d0);
c8 = {fml + fn)i ((fm + pu) ¥ (fm2 + fn));

¢ = SORT((fn * 2.0d0 + 1.040) ! (fn* 2.0d0 - 3.0d40} * c8 * (fm3 + fu});
d = SORT(c7 * ¢8 * (fn - fnl));

e .= SQRT(c7 * (fn - fm} | (frn + fm));

Im = irme? ¥ mt + oldl -mt + 1;

Imm2 = irmax2 * (mt - 2) + old ! - mut + 3;
Imimm2 ;=1lmm2 - I;

Im2mm2 = lmimm2 - I;

Imim :=Im-1;

pd = IFoldl-mpir<0
THEN old p4[im:c ¥ old pdflm2mm2] - d * old p4[imImm2] * coa
+ e * old pdfimim] * coal

ELSEIF old ! - mpir > 0 THEN old p4

ELSE LET a = SQRT{fn* fn-025d0}1 {fn* fn - fimn * fm));
b o= SQRTU2.0d0 * fn + 1.0d0) * (fnr - fm - 1.0d0} * (fn + finl

1{((2.040 * fn - 3.0d0)} * (fn - fin} * {fn + fm}});

Im2m = Imim - I;

IN old p4flm : 2.0d0 * a * coa * old pifimim] - b * old pdfim2m]]

END LET
END IF
RETURNS VALUE of pd % to p6
END FOR;
RETURNS VALUE of ppp % to p2
END FOR
END IF
IN p2
END LET; 9 RETURNS p2 to p
INp
END LET

END FUNCTION
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GoF tlename: SasAlfa sis,

DEFINE SasAlfa

TYPE arrDreall = ARRAY [double real];
TYPE arrDreal2 = ARRAY [arrDreall);
TYPE arrDreal3 = ARRAY [arrDreall];
TYPE arrrealli = ARRAY [real];

TYPE arrreal? = ARRAY [arrreall];
TYPE arrreal3 = ARRAY [arrreall]

FUNCTION SasAlfafir, irmax2, pomx, dlath ; integer; alp : ArrDReall
RETURNS ArrReal3}

LET

Ipfin := IF MOD({ir, 2} = 0 THEN ir + 1 ELSE ir + 2 END IF;

alfa:= FOR hemi IN 1,2 CROSS latlev IN I,ilath
RETURNS ARRAY of IF hemi = [ % North
THEN FOR specindex IN 1, jpoomx
RETURNS ARRAY of reaifalpflatiev, specindex])
END FOR
ELSE FORmpIN I, ir +1 % South
RETURNS VALUE of CATENATE
FOR Ip IN 1, Ipfin
ilm = (mp - 1) % irmax2 + Ip;
RETURNS ARRAY of IFlp=1]MOD(Ip,2)~=0
THEN real{alp{latlev, ilm])
ELSE real(-alp{laitlev, ilm])
END IF
END FOR
END FOR
END IF
END FOR
IN alfa
END LET
END FUNCTION

% Filename: main.sis
9% Main Program

DEFINE MAIN

type Arrintl = Arrayfinteger];

type ArrReall = Array[real};

type ArrReal2 = Array[ArrReall];

type ArrReal3 = ArrayfArrReal2];

type ArrDreall = Array[Double reall;

type ArrDreal2 = Array[ArrDreall];

type CplexReal = Record{Repartfmpart.real];
type ArrCplexReal = Array{CplexReal];

global SIN(num : real RETURNS real)
global ACOSR(num : real RETURNS real)

glabal Cadd{cnuml, crnum? @ CplexReal RETURNS CplexReal)
global Crmul{cons : real; cnum ; CplexReal RETURNS CplexReal)
global CabsSqr(enum @ CplexReal RETURNS real)

global Inital(ires, ix, iy, mx, jx, jxx : integer; zmeanl : real
RETURNS integer, integer, integer, integer, real, real, real, real, real, arrintl, arrintl, arrintl, arrreall)

global InitFFT{ n:integer RETURNS boolean, boolean, irteger, arrintl, ArrReall, ArrReall)
global gaussg(nzero : integer RETURNS ArrReall, ArrReall, ArrReall, ArrReall, ArrReall, ArrDreall }
global legendre(ir, irmax2, jxxmx . integer; coas, sias, deitas : real RETURNS ArrDreall)}

global SasAlfa(  ir, irmax2, jxxmx, ilath : integer; alp double: ArrDReall RETURNS ArrReal3)
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Junction MAIN{
ires, ix, Iy,
ktotal, idelt, idumpt i, nrun, imp, istart, izon, ilin:integer;
zmean_I, hdiff, hdrag, vau:real;
p_in, c_in, z_in, zt_mountain:ArrCplexReal
RETURNS integer,
integer, integer, inieger, integer, inleger, integer,
integer, integer, inleger, integer, integer, integer, integer,
integer, integer, integer, integer, infeger, inleger, integer,
integer, integer, integer, real, real, real, real, real, real,
real, real, Arrintl, Arrintl, Arrintl, Arrintl, ArrReal!, ArrReall,
ArrReal3, ArrCplexReal, ArrCplexReal, ArrCplexReal, ArrCplexReal,
ArrReall, ArrCplexReal, ArrCplexReal, ArrCplexReal,
ArrReall, ArrReall)

LET
ixh = ix/2;
iyh o= iy/2;

Jxx o= ires + 2;
Jxo=ires+ I;

mx =lires+1I;

Jrxmx = jxx * mx;
Jxmx o= jx ¥ mx;
mxmx = mx ¥ mx;
mx2 =mx¥*2;
Jamx2 o= jxmx * 2;
Jrxmx2 := jxxmx ¥ 2;

ifirst := 1;
itflag := 1;
iglobe := 2;
delt := idelt;

idumpt := IF idumpt_i = 0 THEN 1000 ELSE idumpt i END IF;
zero = record CplexReal[Repart : 0.0; Impart : 0.0];

ir, ilong, ilath, irmax2, ww, zmean, tw, asq, grav,
kmjx, kmjxx, ksq_I_uncared for, epsi := Inital{ires, ix, iy, mx, Jx, jxx, zmean_l);

ksq := ARRAY[0 : 0] [| ksq_I_uncared_for || ARRAY([I : 0, 0];
AbortEFT, AbortInitFFT, nfax, ifax, trigf, trigh := InitFFT{ix);
coa, w, sia, delta, wocs, WORKiyh := gaussg(ilath); % size iyh

wix:= IFilin=20 D Indeed
THEN FOR lat level IN I, ilath
RETURNS ARRAY of wllat level] | real(ix)
END FOR
ELSE w
END IF; Yo size iyh; of the North

winv, coginv ;= FOR lat_level IN 1, ilath
winy c= wixfiy /2 + I - lat_level];
coginv ;= -coafty [ 2 + I - lat_level]
RETURNS ARRAY of winv
ARRAY of coainv

END FOR;
wiy, coaly '= wix [f winv, coa [f coainv; % size iy, of North & South
deltaly, sialy, wocsiy := %o size iy; of North & South

FOR lat level IN 1, iy
deltai := ACOSR(coaly{lat level]);
siai '= SIN(deltai};
wocsi r= wiy[lat_level] I (siai * siai};
RETURNS ARRAY of deltai
ARRAY of siai
ARRAY of wocst
END FOR;
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wocsilath, wilath := IF iglobe = 2 % Indeed, highlight the South
THEN wocsiy, wiy

ELSE FOR lat level in 1, ilath
woesiyhalf = 2.0 * wocesiyflat_level]
RETURNS ARRAY of wocsiyhalf
END FOR /f ARRAY adjust(wocsiy, ilath + 1, iy),

FOR lat level in 1, ilath

wiyhalf := 2.0 * wiy{lat_level]

RETURNS ARRAY eof wiyhalf

END FOR / ARRAY _adjust{wiy, ilath + 1, iy)
END IF;

alp_double :=
FOR lat level IN 1, ilath
alp LGN := legendre(ir, irmax2, jxxmx, coaiyflat_level], siaiy[lat_level], deltaiy{lat_level]);
RETURNS ARRAY of alp LGN
END FOR; % arraysize [iyh levels, spectral_indices]

alp := SasAlfa(ir, irmax2, jxxmx, ilath, alp_double);
constant := grav ! asq,

% Here is the Trouble Spot:

% When these two are put out seperately, iflopt disallows:

var ;= FOR diffindex IN 2, jxmx
RETURNS VALUE OF SUM CabsSqr(zi_mountainldiffindex])
END FOR;

f ;= FOR index IN 1, jxmx
RETURNS ARRAY OF Crmulfconstant, zi_mountain[index])

END FOR;
9% The inexplicable solution:
% var, h == FOR index IN I, jxmx
% RETURNS VALUE OF SUM IF index = 1 THEN 0.0
% ELSE CabsSqr(zi_mountainfindex])
% END IF
% ARRAY OF Crmul{constant, zt_mountainfindex])
% END FOR;
hrew = IF ilin=10 % Indeed
THEN h ELSE  ARRAY fill(1, jx, zero} j{ ARRAY adjusi(h, jx + 1, jxmx)
END IF;

p, c taken, z := FOR rowIN I, jxmx
p. ¢, 2:= IF row > 256 THEN zero, zero, zero ELSE p_infrow], c_infrow], z_in[row]
END IF;
RETURNS ARRAY ofp
ARRAY of ¢
ARRAY of z
END FOR;

Cl= IF istart = 0 THEN ARRAY _FILL(1, jxmx, zeroj %o Indeed
ELSEIF ARRAY_SIZE(c_in) = 0 THEN ARRAY_FILL(1, jxmx, zero)
ELSE c_taken
END IF;
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znew ;= [IF istart =0 % Indeed
o= mmm e e Linear Balance Equation
THEN FormlIN I, mx
RETURNS VALUE of CATENATE
FORJIN I, jx
Jm = kmjxfm] + j;
Jmx o= lonjxxim] + j;
realn ;= realim +j-2);
realnl = reain + 1.0;
zj: IF {j=1& m=1) THEN zero ELSEIF {j = jx & m = mx}
THEN Crmul( - tw | realn [ realn * epsifjmx], pfjm - 1]}
ELSE Crmul( - tw / realn ! realnl, Cadd{Crmul{realnl | realn * epsifimx], pfjm - 1]},
Crmul(realn ! realnl * epsifjmx + 1], pfim + 1])})
END IF
RETURNS ARRAY of zj
END FOR
END FOR

ELSEIF array_size(z in) = 0 THEN ARRAY _FILL(]l, jxmx, zero)
ELSE z END IF;
m = p;
I:= FORJIN I, jxmx
RETURNS ARRAY of pfjl.Repart
END FOR;
om =g
ZM = Znew;
th_time stepr=1I;

p
P

IN

1, mx, jx, jxx, ilin, mx2, jxmx, jxxmx, nfax, ilath, imp,

istart, idumpt, ir, irmax2, ires, ix, ixh, iy, delt, ilong, izon, ifirst, th_time_step,

hdiff, hdrag, tw, rmean, vau, asq, ww, grav, kmjx, kmjxx, ksq, ifax, epsi, wocsilath, alp,
p. ¢, znew, hnew, pl, pm, cm, zm, trigh, trigf

END LET

END FUNCTION
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Appendix B

SISAL PROGRAM OF SPECTRAL
BAROTROPIC NUMERICAL WEATHER
PREDICTION MODEL

This appendix consists of a listing of the parallellised speciral barotropic numerical
weather prediction code in SISAIL. The original FORTRAN code and the SISAL code
directly transliterated from FORTRAN are not listed here as they are too long. They are
listed only in the original thesis.

B.1 Parallel SISAL Version

Listed below is the parallel version of the weather model in SISAL, which was
implemented through the loop transformation heuristics deseribed in Chapter 3,
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# Author: Pau Sheong Chang
# Laboratory for Concurrent Computing Systems
# Spectral Barotropic Numerical Weather Prediction Model in SISAL, Version 1.9

# 1989

# makefile for the SISAL codes barotropic model Version 1.9

#Let

iflfiles = send.ifl SecondaryIntrFuncs.ifl ComplexFuncs.ifl \
Inital.if1 InitFFT.if1 GaussianQuadrature.ifl \
LegendrePolyOflstKind.if1 SasAlfaSphere.ifl Loop_TimeStep.ifl \
U_V_Spectral.ifl ComplexConversion.ifl SpecToFreqSphere.ifl \
MAFFTGrid.if] MdFFTFreq.ifl VertigSphere.ifl \
PassGrid.ifl IFACTg 2ETC.ifl IFACTg_3.if1 IFACTg 4.ifl \
PassFreq.ifl IFACTm_2ETC.if1 IFACTm_3.if1 IFACTm_4.if1 \
FreqToSpecSphere.ifl \
Linear.ifl TStep.ifl Energy.ifl AngMom.ifl Specam.ifl

SUFFIXES: .sis ifl

# Compile from .sis files o if] files

.sis.ifl: osc $*.sis -IF1

modell.9: $(iflfiles)

osc -v -inter -J -0 modell.9 $(if1files)

SecondaryIntrFuncs.sis

DEFINE ASINR, ACOSR, SQRTR, DSIN, DCOS

P ~mmmmmms Intrinsic Functions

GLOBAL SIN(num : real RETURNS real)

GLOBAL COS(num : real RETURNS real)

GLOBAL ASIN(num : double_real RETURNS double_real)
GLOBAL ACOS({num : double_real RETURNS double_real)
GLOBAL SQRT(num : double_real RETURNS double_real)

% Catering for real operations of Intrinsic functions
FUNCTION ASINR(num : real RETURNS real)
real{ ASIN(double_real{num)})

END FUNCTION

FUNCTION ACOSR(num : real RETURNS real)
real(ACOS(double_real{nurm)))
END FUNCTION

FUNCTION SQRTR(num : real RETURNS real)
real(SQRT(double_real{num))}
END FUNCTION

% Catering for double_real operations of Intrinsic functions
FUNCTION DSIN{num : double_real RETURNS double_real)
double_real{SIN(real{num})}

END FUNCTION

FUNCTION DCOS(num : double_real RETURNS double_real)

doubie_real(COS(real(num)))
END FUNCTION
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-- ComplexFunes.sis

DEFINE Cadd, Csub, Cmul, Cdiv, Crmul, Crsub, Crdiv, Conjg, Cneg, Csqrt, Cabs, CabsSqr

TYPE CplexReal = RECORD{[Repart Impart:real};
TYPE ArnrCplexReal = ARRAY[CplexReal];

% -wwemewInitrinsic Functions

GLOBAL SIN(num : real RETURNS real)
GLOBAL COS(num : real RETURNS real)
GLOBAL ATAN(num : real RETURNS real)
GLOBAL SQRTR(num : real RETURNS real)

% These subroutines do the arithmatics of complex numbers:

% couml + cnum2

FUNCTION Cadd(cnum], enum2 : CplexReal RETURNS CplexReal)

RECORD CplexReal[ Repart : cnumi. Repart + cnum?2.Repart; Impart : cnum1.Impart + coum?2. Impart ]
END FUNCTION

% cnumi - cnum?
FUNCTION Csub(cnum]i, cnum? : CplexReal RETURNS CplexReal)

RECORD CplexRealf Repart : cnum!. Repart - cnum2 Repart; Impart @ cnumn.Impart - cnum?.Impart }
END FUNCTION

% cnum) * cnum?2

FUNCTION Cmul{cnuml, cnum2 : CplexReal RETURNS CplexReal)

RECORD CplexRealf Repart : cnuml.Repart ¥ cnum?2.Repart - cnum1.Impart ¥ cnum?2 Impart;
Impart : cnuml.Repart ¥ coum2.Impart + cnuml.Impart * cnum2 Repart ]

END FUNCTION

% cnuml/onum?2

FUNCTION Cdiv{cnum], cnum? : CplexReal RETURNS CplexResl)

LET dnom:= cnum2.Repart * cnum2 Repart + cnum?2.Impart * cnum2.Impart;

IN RECORD CplexReall Repart : (cnuml.Repart*cnum?2.Repart + cnuml.Impart*cnum?2.Impart) / dnom;
Impart : (cnuml.Impart*cnum2. Repart ~ cnum!.Repart*cnum?2.Impart) / dnom ]

END LET

END FUNCTION

% Real_constant*cnum

FUNCTION Crmul{cons : real; cnum : CplexReal RETURNS CplexReal)
RECORD CplexReal[ Repart : cons * cnum.Repart; Impart : cons * cnum. Impart ]
END FUNCTION

% cnum-Real_constant

FUNCTION Crsub{cnum : CplexReal; cons : real RETURNS CplexReal)
RECORD CplexReal] Repart : cnum Repart-cons; Impart : coum . Impart |
END FUNCTION

% cnum/Real_constant

FUNCTION Crdiv(cnum : CplexReal; cons : real RETURNS CplexReal)
RECORD CplexReal] Repart : cnum.Repart / cons; Impart : cnum.Impart / cons }
END FUNCTION

% conjugate{cnum)=Repart-Impart

FUNCTION Conjg{cnum : CplexReal RETURNS CpiexReal)
RECORD CplexReal[ Repart : cnum.Repart; Impart : -cnum.Impart ]
END FUNCTION

% Cneg(cnum)

FUNCTION Cneg(cnum : CplexReal RETURNS CplexReal)
RECORD CplexReal[ Repart : -cnum.Repart; Impart : -cnum. Impart ]
END FUNCTION
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% Csgrt{cnum)
% This routine receives a complex number, then siripes it into Repart &
% Impart. It then calculates the magnitude and argument(angle) of the
% square root of this number and then reconstruct them inio the
% corresponding Real and Imaginary parts. The result is then structured
% as a RECORD of these two parts before it is returned.
FUNCTION Csgri{cnum:CplexReal RETURNS CplexReal)
LET RR := cnum.Repart;
I ;= cnum.Impart;
mag = SQRTR(SQRTR(RR *RR + H*1I) );
angle ;= ATAN(I/RR)/2.0;
Re, Im := mag * COS(angle), mag * SIN(angle);
IN RECORD CplexReal[Repart : Re; Impart : Im}
END LET
END FUNCTION

% Cabs(cnum) refers to the MAGNITUDE of the complex number.
FUNCTION Cabs{cnum : CplexReal RETURNS real)
SQRTR(cnum Repart * cnum.Repart + cnum Impart * cnum. Impart}
END FUNCTION

% CabsSqr{cnum) refers to the MAGNITUDE Square of the complex number.
FUNCTION CabsSqr{cnum : CplexReal RETURNS real)

enum.Repart * cnum.Repart + cnum.Impart * cnum.Impart

END FUNCTION

Inital.sis

DEFINE Inital

TYPE Arrintl = Amray[integer];
TYPE AnrReall = Array|real];

GLOBAL SQRTR(num : real RETURNS reai)

FUNCTION Inital(ir, ilong, ilat, mx, jx, jxx : integer; zmeanl : real

Appendix B

RETURNS integer, integer, integer, integer, real, real, real, real, real, arrintl, arrintl, arrintl, arrreall)

LET
ww = 7.292E-5;
wi=ww*2.0;
irmax:= ir;
ilath, irmax1, irmax2 := iat [ 2, irmax + 1, irmax + 2;
asq, grav := 6371.22E3 * 6371.22E3, 9.80616;
zmean:= zmeanl * grav / asq;
kmjx, kmjxx :== FOR mIN 1, mx
RETURNS ARRAY of (m- 1) * jx
ARRAY of (m - 1) * jxx
END FOR;
ksq:= FORJIN1, ir*2
RETURNS ARRAY of j*(3+ 1)
END FOR;

epsilon_a = FOR mpIN 1, mx

RETURNS VALUE of CATENATE
FOR jJIN 1, jxx % epsilon_size is 1-272
l'=j+mp-2;
m:=mp-1;
te=real{(l+m) * (1 -m)}
bi=real(4 *¥1*1- 1)
RETURNS ARRAY of SQRTR(t / b)
END FOR

END FOR;

epsilon := epsilon_a[l : 0.0];
IN ir, ilong, ilath, irmax2, ww, zmean, tw, asq, grav, kmjx, kmjxx, ksq, epsilon

END LET
END FUNCTION

Page B4



DEFINE InitFFT

TYPE ArrIntl = ARRAY[integer};
TYPE ArrReall = ARRAY[real}

GLOBAL SIN{num : real RETURNS real)
GLOBAL COS(um : real RETURNS real)

% Subroutine FACTRA4 factors an integer n into its prime factors.
% For example, n=1960 is factorised into six prime factors(thus
% nfact=6), which are(thus fact(ifT)=) 2,2, 5, Tand 7.

% The version below is modified to give the factor 4, so as to

% be used by the new FFT. Thus, the subsequent factors are 4, 2,
% 5, 7 and 7, and nfact=5.

Gorowmmovsm remos s factr4/facStep/facRecur

FUNCTION facRecur(nparti, idiv, ifTi : integer; ifacti : ArrInt}
RETURNS integer, integer, integer, Arrintl)

FOR INITIAL

npart := nparti;

iquot := npart / idiv;

HT := if Ty,

ifactl := ifacti;

WHILE npart - idiv * iquot = 0 REPEAT
npart 1= old iquot;

iquot := npart / idiv;

ifT :=0ld ifT + 1;

ifactl = old ifact1{ifT : idiv]

RETURNS VALUE of npart
VALUE of iquot
VALUE of ifT
VALUE of ifactl]

END FOR

END function % facRecur

L factr4/facStep
FUNCTION Loop_id(n : integer RETURNS integer, integer, ArrIntl)
FOR INITIAL % loop_id

id:=1;
ifT :=0;
npart = n;

ifact := ARRAY_FILL(1, 20,0) 9% NOTE: wild guess

WHILE id <=n REPEAT
idiv:=IFoldid- 1 <=0 THEN 2 ELSE oldid END IF;

npart, iquot, ifT, ifact := facRecur(old npart, idiv, old ifT, old ifact);

id:= IF iquot - idiv<=0 THEN n+1 % just to make it greater thann
ELSEoldid+2 END IF;

RETURNS YVALUE of npart
VALUE of ifT
VALUE of ifact

END FOR

END FUNCTION % Loop._id

function FACTRA4(n : integer RETURNS integer, arrintl)
LET
npart, ifT, ifact! = Loop_id(n);

iff ;= TF npart - 1 > 0 THEN ifT + 1 ELSE ifT END IF;
ifact? ;= IF¥ npart - 1 > 0 THEN ifact1[iff : npart} ELSE ifact] END 1F;
nfactT = iff; ‘

InitFFT sis
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Page B.S



Appendix B

FOR INITIAL

n2 =1{;

=1

% n2 includes case i=nfactT

WHILE i <= nfactT REPEAT

i=oldi+1;

n2 ;= IF ifact2{old i] = 2 THEN old n2 + 1 ELSE old n2 END IF
RETURNS VALUE of n2

END FOR; % NOTE: very ineffecient!

nd:=n2/2;
ifact3 :== ARRAY_FILL(l, nd, 4)

I for iin nd + 1, nfactT - nd
RETURNS ARRAY of ifact2{nd + i
END for

lF ARRAY _FILL(nfactT - nd + 1, nfactT, 0}

nfact := nfactT - n4;

IN nfact, ifact3

END LET
END FUNCTION % factrd
9

i

% Subroutine InitFFT does the initialisations necessary so that the
% FFT's can be used. It factorises the number of longitudinal points.
% TRIGF are for forward transforms while TRIGB are for reverse.

FUNCTION InitFFT(n : integer RETURNS boolean, boolean, integer, arrintl, ArrReall, ArrReall)

LET

Abortinitift :=  IF (MOD{n, 2) ~= 0 |n > 200} THEN true ELSE false END IF;
AbortFFT :=1F n > 96 THEN true ELSE false END IF;

pi = 3.14159265;

nfax, ifax = FACTR4(n),

trigf, trigh := IF Abortinitfft THEN array ArrReall {], array ArrReall []

ELSE FORIpINLn
ke=(Ip+1)/2;
Cargument = - 2.0 * pi * real(k - 1)/real{n});
COStheta = COS{Cargument}; % Repart
SINtheta := SIN(Cargument); % Impart
RETURNS ARRAY of IF MOD(Lp, 2)=0 THEN SINtheta ELSE COStheta
END IF
ARRAY of IF MOD{Lp, 2) =0 THEN - S§INtheta ELSE COStheta
END IF
END FOR
END IF

IN AbortFFT, Abortinitfft, nfax, ifax, trigf, trigh
END LET
END function
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GaussianQuadrature.sis (GaussGrid)

DEFINE GaussianQuadrature

TYPE ArrReall = Arrayireali;
TYPE ArtDreall = Array{double_real]

GLOBAL ACOS{num : double_real RETURNS double_real)
GLOBAL SQRT(num : double_real RETURNS double_real)

GLOBAL SIN(rium : double_real RETURNS double_real)
GLOBAIL COS(num : double_real RETURNS double_real)

FUNCTION ORDLEG(ir : integer; coa : double_real RETURNS double_real)
LET irpp, irppm = ir+1, ir;

deita := ACOS(coa);

sqr2 = SQRT(2.040);

theta := dela;

cl = sqr2 * FOR nIN i, irppm
fi := 1
m2:=1fn*2;
fu2sq ;= double_real(fn2 * Mm2);
RETURNS VALUE of product SQRT(1.040 - 1.0d0 / fn2sq)
END FOR;

sl := FOR INITIAL

n = irppm;

fn := double_real(irppm);
n2 := fn * 2.0d40;
ang = fn * thets;

s1T := 0.040;

c4d = 1.0d40;

a = -1.0d0;

b = 0.0d0;

nl:=n+1;

kk == 1:

WHILE kk <=n! REPEAT
kk:=old kk + 2;
k=oldkk-1;

cAT := IF k=n THEN 0.5d0 * old ¢4 ELSE old ¢4 END IF;
s1T ;= old 53T + ¢4T * COS{old ang);

a:=old a + 2.0d0;

b :=old b + 1.0d0:

fk := double_real(k);

ang 1= theta * (fn - fk - 2.0d40);
cdi=a*{fn-b+ 1.0d0)/ (b * (M2 - a)) * 4T,

RETURNS VALUE OF 51T
END FOR;
sX = sl * cl;
IN sx
END LET
END FUNCTION
L U

% Subroutine GaussianQuadrature calculates the cosine of the

% Colatitudes(f//fs) and the weights(wt/fwis) for the

Y% Gaussian Quadrature with NZERO Gaussian points between the pole
% and the Equator. Caleulations are done in double

% precision, but the results are returned in single

% precision.
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........... Zauss gfcycle

FUNCTION CYCLECr, itm, irp ; integer; ft, &, b, xlim : double_real RETURNS double_real)

LET

IN

g = ORDLEG(r, fi);

gm = ORDLEG(irm, ft);

gp = ORDLEG(irp, ft);

gto={(ft* ft . 1.0d0)(a * gp - b * gm);

flemp:=1ft-g* gt

gtemp = ft - ftemp;

finew = ftemp;

IF ABS(gtemp) - xlim > 0.0d0 THEN CYCLE(r, itm, irp, finew, a, b, xlim)
ELSE fmew END IF

END LET
END FUNCTION

G- e J auUSS AN Quadratire
FUNCTION GaussianQuadrature(nzero © integer

LET

RETURNS ArrReall, ArrReall, ArrReall, ArrReall, ArrReall, ArrDreall)
xlim := 1.0d4-12;
ir = nzero * 2;
fi := double_real(ir);
fi1 := fi + 1.040;
pi = 3.141592653585793d0;
piov2 = pi * 0.5d0;
fn := piov2/double_real(nzero);
wt FOR lat IN 1.nzero
RETURNS ARRAY of double_real{lat) - 0.5d0
END FOR,;
fi= FOR lat IN 1,nzero
RETURNS ARRAY of SIN( wtlat] * fn + piov2 )
END FOR;
dn = [/SQRT(4.040 * fi * fi - 1.0d0);
dnl := fil/SQRT(4.0d0 * fil * il - 1.0d0);
a:=dnl ¥ fi;
b= dn * fil;
irp:=ir+1,;
imm:=ir-1;
fnew := FOR latIN 1, nzero
RETURNS ARRAY of CYCLE(r, irm, irp, f{lat], a, b, xlim)
END FOR;
winew, radnew, coangnew, sianew =
FOR lat IN 1, nzero
al := 2.0d0 * (1.0d0 - fnew[tat] * fhew({lat]);
bo := ORDLEG(irm, fnew([lat]);
bli:=bo*bo*fi*fi
wit ;= al * {fi - 0.5d0) / bl;
radt := ACOS(fnewf{lat]);
coangt := radt * 180.0d0 / pi;
siat ;= SIN(radt);
RETURNS ARRAY of wit
* ARRAY of radt
ARRAY of coangt
ARRAY of siat
END FOR;

1)

WORKiyh := fnew il wnew |l sianew [l radnew H coangnew;

fs, wts, sias, rads, coangs =

FOR lat IN 1, nzero

RETURNS ARRAY of real(fnew{lat])
ARRAY of real{wtnew(lat])
ARRAY of real(sianew[lat])
ARRAY of real(radnew(lat])
ARRAY of real{coangnewilat]}

END FOR;

IN fs, wis, sias, rads, ceangs, WORKiyh
END LET
END FUNCTION
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................................ ' — ----- LegendrePolyOf1stKind.sis (Legendre)
DEFINE LegendrePolyOflstKind

TYPE ArrDreall = Array{Double_real]

GLOBAL SiN(num : double_real RETURNS double_real)
GLOBAL COS{num : double_real RETURNS doubie_real)
GLOBAL SQRT(num : double_real RETURNS double_real)}

% The COMMON statement{WORK) CATENATE:s inte ARRAY P, the following

% ARRAY' in the order of F(20), WT(20}, STA(20), RAD(20) and

%o COANG(20), followed by 172 new empty cells. This has to be taken

% into consideration.

% Hence from start, an ARRAY of "family” P has to be created to be

% as such.

% NOTE:

% However, this should be done in the main program beforehand,

% before the main program calls LegendrePolyOf1stKind ILATH times, because once
% the program enters subroutine LegendrePolyOflstKind, it includes WORK to update
% the containt of WORK. This should be investigated again because

% of the presence of SIA in the variable-passing and WORK. Is 8TA

% passed the updated SIA in WORK?

% p should be returned as double_real for cocsistency in MAIN, in

% contrast to the Fortran codes

FUNCTION LegendrePolyOflstKind(ir, irmax2, jxxmx : integer; coas, sias, deltas : real
RETURNS ArrDreall)
LET
p =LET
coa := double_real(coas);
sia ;= double_real(sias),
deliz ;= double_real(deltas);
ppi=ir+2;
theta ;= delta;
sqr2 := SQRT(2.0d0Y;
pp:= FOR INITIAL

n:=1

cl 1= sqr2;

pLloopl ;= ARRAY AmDreall [1: 1.0d0 / sqr2] H FOR m 1IN 2, jxxmx
RETURNS ARRAY of 0.0d0
END FOR;

WHILE n <= irpp REPEAT

n:=oldn+ 1;

fn := double_real(old n);

m2 = 2.040 * fn,

fn2sq := fn2 * 2,

¢l := old ¢l * SQRT(1.0d0 - 1.0d0 / fn2sq);
¢3 :=cl /SQRT{n * (fn + 1.0d0Y);

si, s2 .= FOR INITIAL
kk == 1;
ang := fn * theta;
nl:=oldn+1;
ssl, s52 = 0.0d0, 0.040;
c4, €5 = 1.040, fn;
a, b = - 1.6d06, 4.0d40;
WHILE kk <= n} REPEAT
kk := old kk + 2:
k = old kk - 1;
ss2 := old ss2 + old ¢5 * SIN(old ang) * old c4;
cdt ;= if k = old n then 0.5d0 * old ¢4 else old ¢4 END if;
ssl := old ssl + c4t * COS{old ang);
a:= old a + 2.0d0;
b :=old b+ 1.040;
fk := double_real(k);
ang := theta * (fn - fk - 2.0d0);
cd = {a* (fn-b+1.0d0) /(b * (fa2 - 2))) * c4t;
c5 = old ¢5 - 2.040
RETURNS VALUE of ssi
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VALUE of ss2 % to sl and 52
END FOR;

ploopl := IF oldn - irpp < 0 THEN old pLooploldn + 1 : sl * ¢l; old n + irmax2 : 52 * 3]

ELSEIF old nn - irpp = 0 THEN old pLoopl{old n + irmax2 : s2 * ¢3]

ELSE old pLoopl

END IF
RETURNS VALUE of ploopl % topp
END FOR;

p2:= IFir=2THEN pp
ELSE FOR INITIAL

mi=2;
PPP = PP
WHILE m <= ir REPEAT
m:=oldm«+1;
frn := double_real(cld m);
fml, fm?2, fm3 = fm - 1.0d0, fm - 2.040, fm - 3.040;
mml:=oldm-1;
ml :=oldm+1;
c6 1= SQRT((2.0d0 * fm + 1.0d0) / (2.0d0 * fm));
p5 = old ppplirmax2 *old m + 1 : ¢6 * sia * old pppfirmax2 * mm1i + 1]};
mpir:=oldm +ir+ 1;
mt ;= old my

ppp == FOR INITIAL
: l:=ml;

p4 = p5;
WHILE 1 <= mpir REPEAT
I=oldi+ L;
fnn := double_real{old I);
c7 = (fan * 2.040 + 1.0d40) / (fa * 2.040 - 1.040);
c8 = (fml + fn) / (fm + fn) * (fm2 + fa));
¢ = SQRT{{fn * 2.040 + 1.0d0) / (fn * 2.0d0 - 3.040) * ¢8 * (fm3 + fn));
d = SQRT(c7 * c8 * (fn - fm1));
e = SQRT(c7 * (fn - fm) / {{n + fm));
o= imax2 *mt+old1-mt + 1;
nm2 = imax2 * (mt - 2+ oldl -mt + 3;
mimm?2 = lmm2 - 1;
m2mm?2 = lmimm?2 - 1;
Imim = lm - ;

pd:= IFoldl-mpir<0
THEN old pdflm:c * old p4[lm2mm2] - d * old p4[lmimm2] * coa
+e * old p4{lmim} * coa}
ELSEIF oid | - mpir > 0 THEN old p4
ELSE LET a:=SQRT((fn * fn - 0.25d0)/ {fn * n - fm * fm));
b = SQRT({2.0d0 * fn + 1.0d0) * (fn - fm - 1.0d0) * (fn + fm1)
/(2,040 * fn - 3.640) * (fn - fm) * (fn + fm)));
Im2m:=Ilmlm-1;
IN old p4{lm : 2.0d0 * a * coa * old p4{lmlm] - b * old pd4{Ilm2m]]

END LET
END IF
RETURNS VALUE of p4 % 1o pb
END FOR;
RETURNS VALUE of ppp 9% to p2
END FOR
END IF
IN p2
END LET; % RETURNS p2 top
INp
END LET

END FUNCTION
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SasAlfaSphere.sis (SymAsymSphere)
DEFINE SasAlfaSphere

TYPE arrDreall = ARRAY [double_real];
TYPE artDreal?2 = ARRAY [anrDreall];
TYPE arrDreal3 = ARRAY {arrDreai2];
TYPE amrreall = ARRAY [real];

TYPE arrreal2 = ARRAY [arrreall];
TYPE arrreald = ARRAY [arrreal?]

% The parallelism in .ASS. is improved here by rewriting the original
% two nested .while. loops in .forall. loops.
% Here Ipfin. in reversely defined to suit the forall environment.

FUNCTION SasAlfaSphere(ir, irmax2, jxxmx, ilath : mteger; alp : ArDReal2 RETURNS ArrReal3)
LET

%olpfin 1= IF MOEXir, 2) =0 THEN ir + 1
% ELSEir+2
% ENDIF;

alfa:= FOR hemi IN 1, 2 CROSS latlev IN 1,ilath
RETURNS ARRAY of
IF hemi =1 9% North
THEN FOR specindex IN 1, jxxmx
RETURNS ARRAY of real(alp{iatlev, specindex])
END FOR
ELSE FORmpIN1,ir+1 % South
RETURNS VALUE of CATENATE
9% FOR Ip IN 1, Ipfin
FOR IpIN 1, irmax2
itm = (mp - 1) * rmax2 + Ip;
RETURNS ARRAY of
IFlp=11MOB(p, 2) ~=0
THEN real(alp{latlev, iim])
ELSE real{-alp{latlev, ilm})
END IF
END FOR
END FOR
END IF
END FOR
IN alfa
END LET
END FUNCTION

----- U_V_Spectral.sis (UVspectral)
DEFINE U_V_Spectral

TYPE ArrReall = Array[real};

TYPE CplexReal = Record[Repart,Impart:real];

TYPE ArrCplexReal = Array[CplexReal];

GLOBAL Cadd{cnuml, cnum? : CplexReal RETURNS CplexReal)
GLOBAL Csub(cnum], cnum? : CplexReal RETURNS CplexReal)
GLOBAL Cmul(cnuml, cnum? : CplexReal RETURNS CplexReal)
GLOBAL Crmul(cons : real; cnum : CplexReal RETURNS CplexReal)
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FUNCTION U_V_Spectral( mx,jx,jxx: integer; epsi: ArrReall; p, c: AmrCplexReal
RETURNS AnCplexReal, ArrCplexReal)
LET
iz := RECORD CplexReal{Repart : 0.0; Impart : 1.0];
zero := RECORD CplexReal{Repart : 0.0; Impart : 0.0};
u,vi= FORmINI, mx % size of jaxmx=272
realm := real(m - 1);
ul, vi = FOR jIN I, jxx
nreal :=j+m - 2;
realn := real(nreal);
realnl = realn + 1.0;
jme=(m -1 *jx +j§;
jmxc={m-D*ixx +§
coeffd, coeffc, coeffu, pd, pe, pu, cd, ¢, cu:=
IF j=1 THEN zero, IF nreal =0 THEN zero
ELSE zero replace [Impart : realm [ realn / reainl)
END IF,
zero replace [Repart:epsi{imx + 1] / realnl],
zero, plim], plim +1], zero, efjm], cfjm + 1}
ELSEIF j=jx THEN zero replace [Repart : epsifjmx] / realn],
zero replace [Impart : realm [ realn [ realnl],
zero replace [Repart : epsifjmx + 1] / reaini],
plim - 11, plim], zero, ¢[jm - 1], c[jm}, zero
ELSEIF j=jxx THEN zero replace [Repart : epsifjmx] / realn], ‘
zero, zero, plim - 13, zero, zero, c{im-1], zero, zero
ELSE  zero replace [Repart : epsi[jmx] / realn],
zero replace [Impart : realm / realn / realnl},
zero replace [Repart : epsi[jmx + 1] / realni],
plim - 1}, plim], pljm + 13, cfim - 13, c[jm}, cfjm + 1}
END IF;
ujm ;= Cadd(Crmul{ - 1.0, Cmul{coeffd, pd)), Csub(Cmul(coeffu, pu), Cmul(coeffe, cc)));
vim 1= Csub{Csub(Cmul{coetfd, cd), Crmul{coeffu, cu)), Cmul(coeffc, pc));
RETURNS ARRAY of ujm
ARRAY of vjm
END FOR
RETURNS VALUE of CATENATE ul
VALUE of CATENATE v}
END FOR
Inu, v
END LET
END FUNCTION

----------------- ComplexConversion,sis (LinearCoenversion & ComplexConversion)
DEFINE Complexing_ct_e_pt_ztSp, Decomplexing p zdiff u_v
TYPE ArrIntl = ARRAY [integer];
TYPE ArrReall = ARRAY freall;
TYPE CplexReal = RECORD [Repart, Impart : real];
TYPE ArrCplexReal = ARRAY[CplexReal]
FUNCTION Complexing_ct_e_pt_ztSp (jx, mx : integer; kmjx : Arrintl; ct, e, pt, zt : ArrReall
RETURNS ArrCplexReal, ArrCplexReal, AnCplexReal, ArrCplexReal)
LET <tC, eC, ptC, 2tC =
FOR min i, mx
ctC, eC, piC, 2t o=
FOR jin 1, jx
complex_index := kmjx[m] + j;
index = complex_index * 2
RETURNS ARRAY of RECORD CplexReal[Repart : ctfindex - 1]; Impart : ctfindex]]
ARRAY of RECORD CplexReal[Repart : efindex - 1]; Impart : e[index]]
ARRAY of RECORD CplexReal[Repart ; pifindex - 1]; Impart : ptfindex]]
ARRAY of RECORD CplexReal[Repart : zt{index - 1]; Impart : zt{index]]
END FOR
RETURNS VALUE of CATENATE ctC
VALUE of CATENATE eC
VALUE of CATENATE ptC
VALUE of CATENATE zC
END FOR
IN «C, eC, piC, z1C
END LET
END FUNCTION

Page B.I2



Appendix B

FUNCTION Decomplexing p_zdiff_u_v (jx, mx, jxx : integer; p, zdiff, u, v : ArrCplexReal
RETURNS ArrReall, ArrReall, ArrReall, ArrReall)
LET pr, 711, u, vri :=
FORmMIN1, mx*2
pri, zri = FOR jIN 1, jx
real_index := jx * (m - 1) + j;
complex_index := (real index + 1)/ 2;
pri, zri = IF MOD(real index, 2) = 0
THEN plcomplex_index]Impart, zdiff]complex_index].Impart
ELSE plcomplex_index].Repart, zdifffcomplex_index].Repart
END TF
RETURNS ARRAY of pri
ARRAY of zri
END FOR;
url, vri = FOR jin 1, jxx
real_index := jxx * (m -1) + J;
complex_index := (real_index + 1}/ 2;
ur, vri ;= ITF MOD(real_index, 2) =0
THEN u[complex_index].Impart,- vicomplex_index].Impart
ELSE ufcomplex_index].Répart, vicomplex_index].Repart
END IF
RETURNS ARRAY of uri
ARRAY of vri
END FOR
RETURNS VALUE of CATENATE pri
VALUE of CATENATE zrni
VALUE of CATENATE uri
VALUE of CATENATE vni
END FOR

IN pri, 2ri, uri, vri

END LET
END FUNCTION

- SpecToFreqSphere.sis

DEFINE SpecToFreqSphere
TYPE amintl=arraylinteger];
TYPE arrreall=arraylreal];
TYPE arrreal2=array[arrreall];
TYPE armeal3=array[anreall]

FUNCTION SpecToFregSphere (jx, mx, jxx, ilath, ixh : integer; kmjx, kmjxx : Arrinti;
alp : ArReal3; pri, zri, uri, vri : ArrReall RETURNS ArrReal3, ArrReal3, ArrReal3, AmrReal3)
LET
% The rest_0 beiow is to set the right size, ie (ix + 1) * 2, for MDFFTG
% rest_0 := ARRAY_FILL(L, (ixh * 2 + 1 - mx) * 2, 0.0);
% But let MAFFTG worries for itself
% However the actual computation of MDFFTG can live even with size of n
% for pg, zg, ug and vg. Therefore
% rest_( := ARRAY_FILL(1, {ixh - mx) * Z, 0.G);
% This is & trial:
% rest 0 = array_fili{1, (ixk-mx)*2, 0.0
pg. g, ug, vg =
FOR hemi IN 1, 2 CROSS latlev IN 1, ilath
g, 78, ug, vg:=
FOR mmmi IN I, mx * 2
m = {mmi+ 1)/ 2;
pe, zg :=FOR jIN 1, jx
im = kmjx[m] + 3
mx = kmjxx[m] + j;
jmrjmi = jm * 2 - mod(mmi, 2);
pei 7gj = IF ~(m = 1 & j = 1) THEN alp]hemi, latlev, jmx| * pn[jmrjmi],
alpihem, latlev, jmx] * zr{imrjmi]
ELSE 0.0, 0.0 END IF;
RETURNS VALUE of SUM pgj
VALUE of SUM zgj
END FOR;
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ug, vg :=FOR jIN 1, jxx
Jmx = kmjxxfm] + J;
Jmrmi = jmx * 2 - mod(mmi, 2)
RETURNS VALUE of SUM alplhemi, latlev, jmx] * uri{jmrjmi]
VALUE of SUM aip[hemi, latlev, jmx] * vni{jmrjmi]
END FOR;

RETURNS ARRAY of pg
ARRAY of zg
ARRAY of ug
ARRAY of vg
END FOR;

RETURNS ARRAY of pg %l rest_ 0
ARRAY of zg %ll rest_} % Without this catenation,
ARRAY of ug %ll rest_0 % their sizes willbemx * 2
ARRAY of vg %l rest_0

END FOR;

IN pg, zg, ug, vg
END LET
END FUNCTION

IFACTg 2ETC.sis

DEFINE IFACTg_2ETC
TYPE ArrReall = ARRAY [real]

FUNCTION TFACTg _2ETC(m, la, iink, jink, jump, incl, inc? : integer; a, ci, trigs : ArrReall
RETURNS ArrReall)

FOR INITIAL

k=0

ia = 1;

WHILE k <=m /2 REPEAT
k=oldk+ g
ia, ja, ¢ i=

IFoldk=0

THEN LET ial, jal, cl :=

FOR INITIAL
I:=1;

ial := old ia;
jal == old ja;
cl:=oldc;

WHILE | <= 12a REPEAT

1:=o0ld1+1;

ial := old ial + incl;

jal ;= old jal + inc2;

ib = old ial + {ink:

jb = old jal + jink;

¢l = old cllold jal : ajold ial] + alib]; jb : ajold ial} - a[ib]];

RETURNS VALUE of ial
VALUE of jal
YALUE of c1
END FOR

IN ial, jal + jump, cl
END LET

ELSEIF 2*oldk <m
THEN LET ial, jal, ¢ :=
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ELSE

FOR INITIAL
kb:=oldk * 2;

lower = iink + 2;

lupper = iink + jink * 2 - 2;
1 := lower;

ial = old ia;

jal = old ja;

¢l =oldc;

WHILE 1 <= lupper REPEAT

I:=0ld1+4;

izl := old ial + incl;

jal = old jal + inc2;

ib = old jal + jink;

ibxx := o0id 1 - old ial;

cjb = afold ial] - afibxx];

djb := afold ial + 1] + a[ibxx + 1};

tempr := cjb * trigs{kb + 1] - djb * trigs{kb + 2}
ternpi = cjb * trigsfkb + 2] + djb * wigs[kb + 1};
¢l = old c1[old jal : afold ial] + a[ibxx]; jb : tempr;

old jal +1 : afold ial + 1] - afibxx + 1}; jb + 1 : tempi};

RETURNS VALUE of ial
VALUE of jal
VALUE of ct
END FOR

IN ial, jal + jump, ct
END LET

FOR INITIAL
o1,

tal = old ig;
jal = old ja;
cl:=oldg;

WHILE 1<=1a REPEAT
Ii=oldl+1;

ial := old ial + incl;

jal = old jal + inc2;

jb = old jal + jink;

¢l = old clfold jal : 2.0 * afold ial]; jb:-2.0 * afold ial + 1]};

RETURNS VALUE of ial
VALUE of jal
VALUE of ¢l
END FOR '

END IF;

RETURNS VALUE of ¢
END FOR
END FUNCTION

Appendix B

Page B.15



Appendix B

IFACTg_3.sis
DEFINE IFACTg 3
TYPE ArrReall = Array[real],

FUNCTION IFACTg _3(m, la, iink, jink, jump, incl, inc2 : mteger; 4, ci, trigs ; arrReall
RETURNS arrReall)

FOR INITIAL

sin60 := (.866025403784437;

k:=0;

ia = 1;

jai=1;

c=cl

WHILE k <=m /2 REPEAT
k:=oldk +la;
ia, ja, ¢ =

IFoldk=0

THBEN LET ial, jal, cl:=

FOR INITIAL

=1

ial = old ia;
jal ;= old ja;
cl:=oldc;

WHILE | <= 1a REPEAT
=oldl+1;
ial := old ial + incl;
jal = old jal + inc2;
ih = old ial + iink;
jb = old jal + jink;
ic = jb + jink;
al := afold ial} - a[ib};
bl := 2.0 * sin60 * afib + 1];
¢l = old ¢lfold jal:afold ial] + 2.0 * alib]; jbral - bl; jeial + bi}

it

RETURNS VALUE of ial
VALUE of jal
VALUE of cl
END FOR

IN ial, jal + jump, ¢l
END LET

ELSEIF 2*oldk<m
THEN LET ial, jal, ¢l =

FOR INITIAL
kb:=oldk * 2;
ke:=kb* 2;

lower := Bink + 2;

lupper = iink + jink * 2 - 2;
1 := lower;

ial := old ig;

jal = old ja;

¢l =oidcg;

WHILE 1 <= lupper REPEAT
l:=oldl+4;

ial := old 1al + incl;

jal := old jal + inc2;

ib = old ial + iink;

icxx = old 1 - old ial;

jb = old jal + jink;

jc = jb + jink;

al := a[ib} + aficxx];

bl = a[ib + 1] - afioxx + 1];

i
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82 := afold 1al] - 0.5 * al;

b2 := ajold ial + 1] - 0.5 * bi;

a3 := sin60 * (afib] - aficxx]);

b3 = sin60 * {alib + 1} + alicxx + 1]}

cjb = a2 - b3;

djb 1= b2 + a3;

cje == a2 +b3;

djc :=b2 - a3;

temprl = cjb * trigsfkb + 1} - djb * trigs{kb + 21,

tempil := ¢jb * trigsfkb + 2] + djb * wigs[kb + 1];

tempr2 := cjc * trigsfkc + 1} - djc * trigsfke + 2};

tempi? := cic * trigs{ke + 2] + djc * wigsfke + 1};

¢l :=old clfold jal : afold 1al} + al; jb : tempri; je : tempr2; old jal + 1 : afold ial + 1] + bl;
jb+ 1: tempil; je + 1 : tempi2];

RETURNS VALUE of ial
VALUE of jal
VALUE of c1
END FOR

IN ial,jal + jump,cl
END LET

ELSE FOR INITIAL
=1
ial := old ia;
jal := old ja;
cl:=oldc;

WHILE 1<=1a REPEAT

li=o0ldl+1;

ial := old ial + incl;

jal := old jai +inc2;

ib == old ial + link;

jb == old jal + jink;

jo = jb + jink;

al := 0.5 * afold ial] - afib]:

bl := 5in6) * afold ial + 1}

cl := old cliold jal : a[old ial] + a[ib]; jb : al - bl; jc: - al - bl]

RETURNS VALUE of ial
YALUE of jal
VALUE of ¢l
END FOR
END IF;

RETURNS VALUE of c
END FOR
END FUNCTION

-------------------------------------------------------------------------- IFACTg_4.sis
DEFINE IFACTg 4
TYPE ArrReall = Array[real};

FUNCTION IFACTg_4(m, la, iink, jink, jump, incl, inc2 : integer;
a, cf, trigs : ArrReall
RETURNS ArrReall)

FOR INITIAL

sind5 = 0.7071067812;

k:=0;

ia = 1;

ja=1;

¢ = el
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WHILE k <= m /2 REPEAT
k:=oldk+la;
ia, ja, c:=

IFoldk =0

THEN LET ial, jal, ¢l :=

FOR INITIAL,
=1

ial := old ia;
jal = old ja,
cl:=old ¢

WHILE ! <= la REPEAT
l:i=0ld1+1;

ial = old ial + inc};
jal := old jal + inc2;
ib := old izl + iink;

ic := ib + iink;

jb == old jal + jink;

jc = jb + jink;

jd = jo + jink;

al := alold ial} + alic];
a2 = 2.0 * afib};

a3 := alold ial] - afic];
a4 ;= 2.0 * afib + 1];

W

¢l :=old clfold jal:al + a2; jh:a3 - ad; jcial - a2; jd:a3 + ad];

RETURNS VALUE of ial
VALUE of jal
VALUE of c1
END FOR

IN ial, jal + jump, ¢l
END LET

ELSEIF 2*oldk<m
THEN LET ial, jal, cl =

FOR INITIAL

lower ;= iink + 2;

Iupper = iink + jink * 2 - 2;
1 :=lower;

tal 1= old ia;

jal := old ja;

cl:=oklc

WHILE | <= lupper REPEAT
l:=old1+4;

ial := old ial + incl;

jal := old jal +incZ;

ib = old ial + link;

idxx = old | - old 1al;

icxx = idxx + iink;

jb = old jal + jink;

je = jb + jink;

id = je + Jink;

kb= oldk * 2;
ke:=kb*2:

kd = ke + kb

al) := afold ial] + aficxx];

WO oW

al := afib] + afidxx];

22 := afold ial] - aficxx];

a3 := a[ib} - a[idxx};

bl := alold a1 + 1] - aficxx + 1};

bi := a[ib + 1] - afidxx + 1};

b2 := alold ial + 1] + aficxx + 1];
b3 = a[ib + 1] + alidxx + 1];

¢ib = a2 - b3;

djb ;= b2 + a3;

L]
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cjc = a0 - al;

djc :==b0 - bl;
cid := a2 + b3,
djd :=bH2 - a3,

temprl := cjb * migsfkb + 1] - djb * wigs[kb + 2];

tempil := ¢jb * trigs{kb + 2} + djb * trigsfkb + 1];

tempr2 = ¢jc * wigslke + 1} - djc * migs{ke + 2);

tempi2 := cjc * wigs{ke + 2] + dje * migs{ke + 1];

tempr3 := cjd * trigs(kd + 1] - djd * trigs{kd + 2J;

tempi3 1= cjd * trigsfkd + 2} + djd * trigsfkd + 1];

¢l := old clfold jal : a0 + al; jb: temprl; jc 1 tempr2; jd : tempr3;

oldjal +1:b0 +bl; jb + 1 : tempil; jo + } : tempi?; jd+ 1 :tempi3];

RETURNS VALUE of ial
VALUE of jal
VALUE of cl
END FOR

IN ial, jal + jump, ¢1
END LET

ELSE FOR INITIAL
1:=1;
ial := old ia;
jal :=old ja;
cl:=oldc

WHILE 1 <=1a REPEAT

Ir=old1+1;

ial := old izl + incl;

jal = old jal + inc2;

ib := old ial + ink;

jb = old jal + jink;

jc = jb + jink;

jd = jc + jink;

al = gind5 * (afold ial + 1] + afib + 11);

a2 = sind3 * {afold 1al] - a[ib]);

¢l := old cl{old jal:2.0 * (afold ial] + alib]); jb:2.0 * (a2 - al);
jer2.0 * (afib + 1] - afold ial + 1}); jd: - 2.0 * (al + a2}]

RETURNS VALUE of ial
VALUE of jal
VALUE of ¢l
END FOR
END IF;
RETURNS VALUE of ¢
END FOR
END FUNCTION
-------------------------------------------------------------------------- PassGrid.sis
DEFINE PassGrid
TYPE ArrReall = Amay{real}

GLOBAL IFACTg 2ETC(m, la, iink, jink, jump, incl, inc2 : integer; a, ci, trigs : AmrReall
RETURNS ArrReall)

GLOBAL IFACTg_3(m, la, iink, jink, jump, incl, inc2 : integer; a, ci, trigs : arrReall
RETURNS arrReall)

GLOBAL IFACTg_4(m, la, iink, jink, jump, incl, inc2? ; integer; s, ci, trigs ; ArrReall
RETURNS ArrReall)
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FUNCTION PassGrid(incl, inc2, n, ifac, la : integer; a, ¢, trigs : ArtReall RETURNS ArrReall) % ¢
LET m = n [ ifac;
imk = incl ¥ m;
jink 1= inc2 * la;
jump := (ifac - 1) * jink;
igo =ifac - 1;
c_return = IF igo =2 THEN IFACTg_3(m, la, iink, jink, jump, incl, inc2, a, c, trigs)
ELSEIF igo = 3 THEN IFACTg, 4(m, la, iink, jink, jump, incl, inc2, a, ¢, rigs)
ELSE IFACTg_2ETC(m, la, iink, jink, jump, incl, inc2, a, c, krigs)
END IF;
IN ¢_return
END LET
END FUNCTION

------------------------------------------------------------------------ MAFFTGrid.sis
DEFINE MdFFTGrid

TYPE Arrintl = Array[integer];
TYPE ArReall = Array{real}

GLOBAL PassGrid(incl, inc2, n, ifac, la ! integer; a, c, trigs : ArrReall RETURNS AnReall) % ¢

FUNCTION MdJFFTGrid( nlev, nwave, nfax, n : integer; Gonwave=mx
ifax : AnlIntl; wigs, gridii : ArrReall RETURNS ArrReall)

LET

e Need to fix itself, hence: gridii has size mx * 2; grid n*242

gridi = gridii | ARRAY_FILL(L, n *2 + 2 - nwave * 2, 0.0);

x = ARRAY FILL{l, (n+ 1} * 2, 0.0);
work := ARRAY_FILL(L, (n + 1) * 2, 0.0);
grid ;= IF nfax <= 1 THEN PassGrid(2, 2, n, ifax[1], 1, gridi, x, trigs)
ELSE LET grid_2dim:=
FOR ilev IN 1, nlev
next_R, x_R, work_R :=
IF MOD{nfax, 2) = 1
THEN 40, PassGrid(2, 2, n, ifax[1], 1, gridi, x, trigs), work
ELSE 50, x, PassGrid(2, 2, n, ifax[1], 1, gridi, work, trigs}
END IF;
1a3, work_la3 =
FOR INITTAL
loop = 2;
a3 = 1,
next3 := next_R:
x_la3 := x_RK;
work_la3 = work_RK;
WHILE loop <= (nfax - 1) REPEAT
loop := old loop + 1;
la3 := old 1a3 * ifax[old loop - 1];
nexi3, x_1a3, work_la3:=
IF old next3 = 50 THEN 40, PassGrid(2, 2, n, ifax{old loop], 1a3,
old work_1a3, old x_la3, trigs),
old work_la3
ELSE 50, old x_la3,
PassGrid(2, 2, n, ifax[old loop], 143, old x_la3, old work_la3, trigs)
END IF,
RETURNS VALUE of 1a3
VALLUE of work_1a3
END FOR;
la:=1a3 * ifax[nfax - 1];
grid:=PassGrid(2, 1, n, ifax{nfax], la, work_la3, gridi, trigs);
RETURNS ARRAY of grid
END FOR
IN grid 2dim{1} % Here only the first layer is needed
END LET
END IF;
IN gnid
END LET
END FUNCTION
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DEFINE VertigSphere

TYPE ArrReall = ARRAY[real};
TYPE ArrReal2 = ARRAY[ArrReall];
TYPE ArrReal3 = ARRAY[ArrReal2]

FUNCTION VertigSphere (longitude_END, ilath : integer; pg, zg, ug, vg @ ArrReal3
RETURNS ArnrReal3, ArrReal3, ArrReal3, ArrReal3, ArrReald)

LET

% The rest_( below is calenated with the longitude point array in order to

% satisfy the requirement for MDFFTM which needs arraysize of ix * 2+ 2

% rest_ 0 = ARRAY_FILL(1, longitude END + 2, 0.0);

%

9% But MdFFTGrid supplies Grid arrays of size ix * 2 + 2 already, so this

% is unmecessary here

eg, pvg, pug, zvg, zug =
FOR hemi IN 1, 2 CROSS latlev IN 1, ilath
eg, pvg, pug, Zvg, Iug =
FOR longpt IN 1, longitude_END * 2+ 2 % modified bound
RETURNS ARRAY of ug[hemi, latlev, longpt] * uglhemi, latlev, longpt]
+ vglhemi, latlev, longpt] * vglhemi, latlev, longpt]
ARRAY of pgfhemi, latlev, longpt] * vglhemi, latlev, longpt]
ARRAY of pglhemi, latlev, longpt] * uglhemi, latlev, longpt]
ARRAY of zglhemi, latlev, longpt] * vglhemi, latlev, longpt]
ARRAY of zg[hemi, latlev, longpt] * ugfhemi, latlev, longpt]

END FOR
% hence unnecessary
RETURNS ARRAY of eg il rest 0
ARRAY of pvg Gl rest_0
ARRAY of pug Foil rest_0
ARRAY of zvg A rest_0
ARRAY of zug Pl rest_ 0
END FOR
IN eg, pug, pvg, mg, zvg

END LET
END FUNCTION

IFACTm_2ETC.sis

DEFINE IFACTm _2ETC
TYPE AmReall = Amay(real]

FUNCTION IFACTm_2ETC(m, la, iink, jink, jump, incl, inc2 : integer; a, ci, rigs : ArrReall
RETURNS ArrReall)

FOR INITIAL

k=0

ia:=1;

ja=1;

ci=ci

WHILE k <=m /2 REPEAT
k:=o0ld k + la;
ia, ja, ¢ =

IFoldk=10

THEN LET ial, jal, ¢l :=

FOR INITIAL
1:=1;

ial := old ia;
jal = old ja;
cl:=old g

Appendix B
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WHILE ! <= 1a REPEAT

l:=o0ldl+1;

ial = old ial + incl;

jal := old jal + inc2;

ib := old ial + iink;

jb = old jal + jink;

¢1 = old clfold jal : afold ial] + a[ib]; jb : alold ial]-a[ib]]

RETURNS VALUE of ial
VALUE of jal
VALUE of c1
END FOR

IN ial + jump, jal, ¢l
END LET

ELSEIF 2 *oldk<m
THEN LET ial, jal, cl :=

FOR INITIAL
kb:=oldk * 2;
lower = jink + 2;
lupper := iink * 2 + jink - 2;
i :=lower;
ial = old ia;
jal := old ja;
cl:=oldc;
WHILE 1 <= lupper REPEAT
l:=o0ld]+4;
ial := old ial + incl;
jal := old jal + inc2;
ib := old ial + iink;
jbxx :=old | - old jal;
tempr = afib] * wigs[kb + 1] - afib + 1} * migs{kb + 2J;
tempi = afib] * trigs[kb + 2] + al[ib + 1] * trigs[kb + 1];
cl := old clfold jal : afold ial] + tempr; jbxx : ajold ial} - tempr;
old jal +1: afold ial + 1] + tempi; jbxx + 1: tempi - afold ial + 11};
RETURNS VALUE of ial
VALUE of jal
VALUE of ¢l
END FOR

IN ial + jump, jal, ¢l
END LET

ELSE FOR INITIAL
1=1;
ial = old ia;
jal = old ja;
cl:=qoldg;

WHILE 1<=1a REPEAT

l:=oldl+1;

ial := old ial + incl;

jal := old jal + inc2;

i = old 1al + iink;

¢l = old cl{old jal : afold ial]; oid jal + 1 : - a[ibi];

RETURNS VALUE of ial
VALUE of jal
VALUE of ¢l

END FOR

END IF,
RETURNS VALUE of ¢

END FOR
END FUNCTION
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IFACTm_3.sis
DEFINE IFACTm_3
TYPE ArrReall = ARRAY [real]

FUNCTION IFACTm_3(m, la, iink, jink, jump, incl, inc2 : integer; a, ci, trigs : ArrReall
RETURNS ArrReall)

FOR INITIAL

sinél ;= 0.866025403784437;

k=0

ia = };

jar=1;

c =iy

WHILE k <=m /2 REPEAT
k=oldk +la;
ia, ja, c:=

IFoldk=0

THEN LET ial, jal, ¢l :=

FOR INITIAL

1:=1;

1al := old ia;
jal .= old ja;
cl=old ¢

WHILE 1 <= 12 REPEAT
li=oldl+I;

ial := old ial + incl;

jal :=old jal + inc2;

ib = old ial + iink;

ic := ib + iink;

jb = old jal + jink;

al := afib] + afic];

a2 := afold ial] - 0.5 * al;
a3 = sinb0 * (afic] - alibl);
¢l = old cl{old jal : afold ial] + al; jb: a2; jb+ 1 : a3];

li

RETURNS VALUE of ial
VALUE of jal
VALUE of ¢l
END FOR

IN ial + jump, jal, cl
END LET

ELSEIF 2*oldk <m
THEN LET ial, jal, ¢l :=

FOR INITIAL
kbi=o0ldk*2;

kc:=kb * 2;

lower = jink + 2;

lopper := iink * 2 + jink - 2;
1:= lower;

ial ;= old ia;

jal = old ja;

cl=oldc;

WHILE 1 <= lupper REPEAT

l:=0ldl+4;

ial := old ial + incl;

jal = old jal +inc?;

ib 1= old ial + nnk;

ic = ib + iink;

jb = old jal + jink;

joxx = old I - old jal;

temprl := a[ib] * tigs[kb + 11 - a[ib + 1] * migsikb + 2];
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tempil := a[ib] * trigs{kb + 2] + a[ib + 1} * wigsfkb + 1];
tempr2 1= afic] * trigs{ke + 1] - afic + 1] * wigs{ke + 2];
tempi2 := afic] * trigsfke + 2] + afic + 1} * migsfke + 1];
al = temprl + tempr2;

bl := tempil + tempi2;

a2 := afold iall - 0.5 * al;

b2 := a[old 12l + 1] - 0.5 * bl;

a3 := sin60 * (tempr? - temprl);

b3 = sinb0 * (tempi2 - tempil);

cl=  old clfold jal:a[old ial] + al; jb:a2 - b3; jexx:a2 + b3;

old jal + l:afold ial + 1} + bl; jb + 1:b2 + a3; jexx + 1:23 - b2];

RETURNS VALUE of ial
VALUE of jal
VALUE of ¢l
END FOR

IN ial + jamp, jal, ¢l
END LET

ELSE FOR INITIAL
=1
ial := old ia;
jal = old ja,
cl:=old¢;

WHILE 1 <=1aREPEAT

I:=o0ldl+1;

ial := old ial + incl;

jal = old jal + inc2;

ib := old ial + iink;

ic = ib + link;

jb = old jal + jink;

al = alib] - afic];

cl = old clfold jal : afold ial] + 0.5 * al; jb: afold ial] - al; old jal + 1 : -sin60 * (alib] + afic])];

RETURNS VALUE of ial
VALUE of jal
VALUE of ¢c1
END FOR
END IF;

RETURNS VALUE of ¢
END FOR
END FUNCTION

IFACTm_4.sis

DEFINE IFACTm 4
TYPE AmrReall = ARRAY [real]

FUNCTION IFACTm_4(m, lIa, iink, jink, jump, incl, inc2 : integer; a, ci, trigs : AmrReall
RETURNS ArnReall}

FOR INITIAL

sind5 = 0.7071067812;

k=G

ia=1;

ja:=1;

C = i)
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WHILE k <=m /2 REPEAT
k=o0ldk+ia;
ia, ja, c:=

iFoldk=0

THEN LET ial, jal, cl =

FOR INITIAL
T=1;

ial := old ia;
jal := old ja;

cl :=oldc;

WHILE ] <= la REPEAT
li=oldl+1;

ial := old ial + incl;

jal := old jal + inc2;

ib == old ial + iink;

ic :=ib + iink;

id = ic + iink;

jb = old jal + jink;

j¢ = jb + jink;

al := afold ial} + afic];

a2 := afib} + afid];

a3 := ajold ial} - afic];

ad 1= a[id] - afib];

cl =oldcifold jal :al +a2;jb:a3; jo:al -a2;jb+ 1 : ad]

W n

RETURNS VALUE of ial
VALUE of jal
VALUE of c1
END FCR

IN ial + jump, jal, ¢l
END LET

ELSEIFZ*oldk<m
THEN LET ial, jat, cl =

FOR INITIAL

lower := jink + 2;

Iupper := iink * 2 + jink - 2;
1 := lower;

ial := old ia;

jal :=old ja;

¢l :=oldc;

WHILE 1 <= lupper REPEAT
l:=o0ldi+4;

ial := old ial + inci;

jal := old jal + inc2;

ib = old ial + iink;

ic = ib + link;

id = ic + iink;

jb = old jal + jink;

jdxx ;= old 1 - old jal;

Jexx = jdxx + jink;

L

kb:=oldk *2;
ke i=kb * 2;
kd = ke + kb;

tempr] := afib] * trigs(kb + 1] - afib + 1] * wigs[kb + 2}
tempil := a[ib] * trigs[kb + 2] + a[ib + 1] * trigs[kb + 1];
tempr? := afic] * wigs[ke + 13 - aJic + 1] * wigsfke + 2];
tempi? = afic] * tigsfke + 2] + afic + 1] * wigs[ke + 1];
tempr3 ;= afid] * migs{kd + 1] - afid + 1] * trigs[kd + 2];
tempid := a[id] * trigsfkd + 2] + afid + 1] * wigsfkd + 1};
a0 := afold ial] + tempr2;

al = temprl + temnpr3;

a? := afold ial] - tempr2;

a3 = tempr] - tempr3;

WA
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bl = afold ial + 1] + tempi2;
bl ;= tempil + tempi3;
b2 := afold ial + 1} - tempi2;
b3 := tempil - tempi3;

cl :=oldclfold jal : a0+ al; jb: a2 + b3; jexx: af - al; jdxx : a2 - b3;
oldjal +1:b0-+bl;jb+1:b2-23; jexx+1:bl-b0;jdxx+1:-b2-a3f

RETURNS VALUE of ial
VALUE of jal
VALUE of ¢1
END FOR

IN ial + jump, jal, cl
END LET

ELSE FOR INITIAL

=1

ial = old ia;

jal = old ja;

cl :=old c;

WHILE ! <=1a REPEAT

l:==oldl+1;

ial := old ial + incl;

jal := old jal + inc2;

ib ;= old ial + iink;

ic = ib + iink;

id := ic + ink;

jb = old jal + jink;

al := sind5 * (a[ib} - a[id1);

a2 = sind5 * (a[ib} + afid])

cl := old clfold jal : afold ial} + al; jb: afold ial] - al; old jal + 1 : . afic] - a2; jb+ 1 : afic] - a2];

RETURNS VALUE of ial
VALUE of jal
VALUE of c1

END FOR

END IF;
RETURNS VALUE ofc

END FOR
END FUNCTION

PassFreq.sis

DEFINE PassFreq
TYPE ArrReall = Array [real]

GLOBAL IFACTm_2ETC(m, la, ink, jmk, jump, incl, inc? : integer; a, ci, trigs : ArrReall
RETURNS ArrReall)
GLOBAL IFACTm_3(m, la, iink, jink, jump, incl, inc2 : integer; a, ¢i, trigs : ArrReall
RETURNS ArrReall)
GLOBAL IFACTm_4(m, la, iink, jink, jump, incl, inc2 : integer; a, ci, trigs : ArrReall
RETURNS ArReall)

FUNCTION PassFreq(incl, ine2, n, ifac, la : integer; a, ¢, trigs : ArrReall RETURNS AmrReall) % c
LET m :=n/ ifac;
jimk := inc2 * m;
iink := incl * la;
jump = (ifac - 1) * iink;
igo :=ifac - 1;
c_retum := IF igo=2 THEN IFACTm_3(m, la, iink, jink, jump, incl, inc2, a, c, trigs)
ELSEIF igo=3 THEN IFACTm, 4(m, la, iink, jink, jump, incl, inc2, a, ¢, trigs)
ELSE IFACTm_2ETC(m, la, tink, jink, jump, incl, inc2, a, ¢, trigs)
END IF;
IN ¢_return
END LET
END FUNCTION
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- MdAFFTFreq.sis

DEFINE MdFFTFreq

TYPE Arntl = Array [integer];
TYPE ArmReall = Array [real}

GLOBAIL PasskFreq(inci, inc2, n, ifac, la : integer; a, ¢, trigs : ArrReall RETURNS AnReall) % ¢

FUNCTION MdFFTFreg( nlev, nwave, nfax, n : integer; ifax : ArrIntl; trigs, grid ; ArrReall
RETURNS ArrReall)
LET
lal == n [ ifaxfi];
x_0 := ARRAY_FILL (1,n*2+2,0.0);
work_0 := ARRAY_FILL (1,n*242,0.0%
fourter_2dim:=
FOR level IN 1, nlev
x:= JF nfax <=1 THEN PassFreq(l, 2, n, ifax[1], lal, grid, x_0, trigs)
ELSE LET nexrl, x1, workl :=
IF MOD(mfax, 2) = 1
THEN 40, PassFreq(1, 2, n, ifax[1], 1al, grid, x_0, trigs), work_0
ELSE 50, x_0, PassFreq(l, 2, n, ifax{1], lal, grid, work_0, trigs)
END IF:
%x:= FOR INITIAL
loop = 2;
la ;= lal;
next := nextl;
x :=x1;
work = workl;
WHILE loop <= nfax REPEAT
loop = old loop + 1;
la = old la / ifax[old loop];
next, x, work :=
IF old next = 50
THEN 40, PassFreq(2, 2, n, ifax{old loop], 1a, old work, old x, trigs), old work
ELSE 50, old x, PassFreq(2, 2, n, ifax{old loop], la, old x, old work, trigs)
END IF;
RETURNS VALUE of x
END FOR;
INx
END LET
END IF;

fourier := FOR truncated_index IN I, nwave * 2
RETURNS ARRAY of x{truncated_index]
END FOR
H ARRAY FILL(awave * 2 + 1, n, 0.0)

RETURNS ARRAY of fourier
END FOR

IN fourier_2dim{1] % Only one layer is needed

END LET
END FUNCTION
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- FreqToSpecSphere.sis .

DEFINE FreqToSpecSphere

TYPE arrreall=ARRAY [real};
TYPE AnrReal2=ARRAY [ArrReall];
TYPE ArrReal3=ARRAY [ArrReal2};
TYPE arrintl=ARRAY [integer]

FUNCTION FreqToSpecSphere(jx, mx, mx2, ilath, iy : integer; kmjx, kmjxx : Arrintl;
wocs, epsi : ArrReall; alp @ ArrReal2; ef, puf, pvf, zuf, zvf : ArrReal3
RETURNS ArrReall, ArrReall, ArrReall, ArrReall)

LET
eP, puP, pvP, zuP, 2vP, % symmetric: North + South
eM, puM, pvM, zuM, zvM:= % anti-symmetric: North - South

FOR latlev IN 1, ilath CROSS mri IN 1, mx2

RETURNS % symmetric
ARRAY of effl, latlev, mri] + eff2, latlev, mri]
ARRAY of puff1, latlev, muri] + puf2, latlev, mri]
ARRAY of pvfll, latlev, mri] + pvi[2, latlev, mri}
ARRAY of zufll, latlev, mri] + zuff2, latlev, mri]
ARRAY of zvill, latlev, mri} + zvi[2, latlev, mri]

% anti-symmetric

ARRAY of ef{l, latlev, mri] - ef[2, latlev, mri}

ARRAY of puffl, latlev, mri] - puf]2, latlev, mri]

ARRAY of pvf[l, latlev, mri] - pvf[2, latlev, mri]

ARRAY of zufli, latlev, mri] - zof[2, latlev, mri]

ARRAY of zvi[l, latdev, mri] - zvf]2, latlev, mri]
END FOR;

ctri, erd, ptri, ztrl 1=

FORmMIN 1, mx

mi=m*2;

mr=mi-I;

realm:=m- 1;

ctri_m, eri_m, ptri_m, ziri_m := % loop
FORGINL x*2
J=Gir1)/2;
jm = kmix{m] + j
jmrjmi := jm * 2 - mod(jj, 2%
jmx = kmjxaxfm] + j;
realn :=real( j+ m - 2);

ctri_jj, erl_jj, piri_jj, ziri_jj=

FOR lailev IN 1, ilath

ihem =iy + 1 - latlev;
Yo for symmetric parts

gwplm = alp[latlev, jmx] * wocs|ihem];

b = real(realm) * gwplm;
K for antisymmetric parts

alpm :=IF j~=1 THEN alp{latlev, jmx - 1] ELSE 0.0 END IF,;

alpp = alp[latlev, jmx + 1];

a 1= ((realn + 1.0) * epsiljmx] * alpm - realn * epsi[jmx + 1] * alpp) * wocs[ihem};
L

ctri_jm, eri_jm, ptri_jm, ztri_jm =
IF~(j=1&m=1)
THEN IFMOD(m, 2)=0
THEN 1IFMOD(mrimi,2) = 0
THEN a* puP{latlev, mi} + b * pvM[latlev, mr],
gwplm * eM[latlev, mi],
a * pvP(latlev, mi] - b * puM{latiev, mr},
a * zvPilatlev, mi] - b * zuMilatlev, mr]
ELSE a* puP{latlev, mr] - b * pvM[latlev, mi],
gwplm * eM]latlev, mr],
a * pvP{latlev, mr] + b * puMilatlev, mi],
a * zvP[latlev, mr} + b * zuM[latlev, mi]
END IF
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ELSEIF MOD(jmrjmi, 2) = 0 THEN a * puMjflatlev, mi] + b * pvPflatlev, mr],
gwplm * eP[latlev, mil,
2 * pvM([latlev, mi} - b * puP[latdev, m1},
a * yvM[latlev, mi} - b * zuP{latlev, mr]
ELSE a * puM[ladev, mr] - b * pvP{latlev, mi],
gwplm * eP{latlev, mr}],
a * pvM[latlev, mr} + b * puP[latlev, mi],
a * zvM[latlev, mr] + b * zuP[latlev, mi)
END IF
ELSE 0.0, IF jj=1
THEN eP[latlev, 1] * wocs{ihern] * alp[latlev, 1]
ELSE 0.0 END IF,
0.0, 0.0
END IF

RETURNS  VALUE of SUM ctri_jm
VALUE of SUM eri_jm
VALUE of SUM ptri_jm
VALUE of SEM ztri_jm

END FOR
RETURNS ARRAY of ctri_jj
ARRAY of eri_jj
ARRAY of ptri_jj
ARRAY of ztri_jj
END FOR

RETURNS VALUE of CATENATE ctri_m
VALUE of CATENATE eri_m
VALUE of CATENATE piri_m
VALUE of CATENATE ziri_m
END FOR

IN ctri, er, ptri, ztri

END LET
END FUNCTION

______________________ Linear.sis {AddLinear)

DEFINE Linear

TYPE ArrInt! = ARRAY [integer];

TYPE ArrReall = ARRAY [real];

TYPE CplexReal = RECORD [Repart,Impart:real];
TYPE ArrCplexReal = ARRAY [CplexReal]

GLOBAL Csub(cnuml, cnum? : CplexReal RETURNS CplexReal)
GLOBAL Cadd{cnuml, cnum? : CplexReal RETURNS CplexReal)
GLOBAL Crmul(cons ; real; cnum : CplexReal RETURNS CplexReal)

% This subroutine adds the linear terms to the time-derivatives.
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FUNCTION Linear(mx, jx : integer; kmjx, kmjxx, ksq : ArrIntl; tw : real; epsi : ArrReall;
¢, p, u, ¥, ctin, ¢, ptin : ArrCplexReal
RETURNS ArrCplexReal, ArrCplexReal}

LET

zero ;= record CplexRealfRepart : 0.0; Impart : 0.0];

pt, ¢t:=FOR mIN I, mx
pi_m, ct_m =

FORjIN 1, jx
I=j+m-2;
Kl := real(ksq[ll)
jm = kmjix{m] + j;
m pl:=im+1;
jm_ml:=jm-1;
jmx = kmjxx[m] + j;

pim_pl, cim_pl := IF j= jx THEN zero, zero ELSE p{jm_pl]. cfjm_p!] END IF;
pim_ml, cim_ml := IF j=1THEN zero, zero ELSE p[im_ml], c[im_ml1] END IF;

RETURNS ARRAY of Csub( ptin[jm], Crmul{tw, Cadd(Crmul{epsi[jmx]; cjm_ml),
Cadd(Crmul{epsi{jmx + 1], cjm_p1}, v[jmx])}) )
ARRAY of
Cadd{ ctin]jm], Cadd(Crmul(tw, Csub{Cadd({ Crmukepsi{jmx], pjm_m1},
Crmul{epsifjmx + 1}, pim_pl} ), ubjmx])}, Crmul(0.5 * K, e[jm]}} )
END FOR;

RETURNS VALUE of CATENATE pt_m
VALUE of CATENATE ct_m
END FOR;

IN pt, ct
END LET
END FUNCTION

TStep.sis

DEFINE TStep

TYPE ArrIntl = ARRAY [integer];

TYPE ArrReall = ARRAY [real];

TYPE CplexReal = RECORD [RepartImpart:real};
TYPE ArCplexReal = ARRAY [CplexReal]

GLOBAL Csub{cnum?, cnum? : CplexReal RETURNS CplexReal)
GLOBAL Cadd(cnuml, cnum?2 : CplexReal RETURNS CplexReal)
GLOBAL Crmul{cons : real; cnum : CplexReal RETURNS CplexReal)
GLOBAL Crsub{cnum : CplexReal; cons : rea! RETURNS CplexReal)

GLOBAL Crdiv(cnum : CplexReal; cons : real a CplexReal)
or,

FUNCTION TStep(jx, mx, delt, izon, ifirst, imp, istart : integer; hdiff, hdrag, zmean, vou : real;
kmix, kmjxx, ksq : ArrIntl; pl : ArrReall; ¢, p, z, cm, pm, zm, ct, pt, zt : ArCplexReal
RETURNS integer, ArrCplexReal, ArrCplexReal, ArrCplexReal,
ArrCplexReal, ArrCplexReal, ArrCplexReal, ArrCplexReal, ArrCplexReal, ArrCplexReal)

LET

deltt2 := IF ifirst = 0 THEN real(delt) * 2.0 ELSE real(delt) END IF;
deltt = delu2 * 0.5;

zero := RECORD CplexReal[Repart : 0.0; Impart : 0.0];

newc, newp, Newz, NewcIn, NewWp, NewZm, Newct, newpt, newzt =
FOR m IN 1, mx
C_m, p_M, Z_m, CIn_m, pr_m, Zm_m, ci_m, pt_m, zt_m =
FORGINI, jx
jm = kmixfm] + j;
ki := real(ksqfj + m - 2]);
dkl = ki - 2.0;
¢_js P_js 2§, cm_j, pm_j, zm_j. ctj, ptj, zj =
IFm=1&1zon=1)Im=1
THEN c[jm], pljm], z[jm], cma[im}, pm[jm], zm[im], ct[jm], pt[jm], zt{jm]

Page B.30



Appendix B

ELSE LET
ptim = Csub{ Csub(pt{jm], Crmul(dkl * hdiff, pm[jm]}),
Crmul(hdrag, Crsub{pm{jm], pl1{ijmi)} %
ctjm = Csub({ ct[jm], Crmulthdrag + dkl * hdiff, cm[jm}) );
ztjm = Csub{ zi[jm], Crmul{dk] * hdiff, zm{jim]}
ppv = Cadd( pmfjm], Crmul{deltt2, pt[jm]) );
cev, zzv = IF imp=1
THEN LET
cevl = Crdiv(Cadd{cm([jm], Crmul{deltt2, Cadd{ctjm,
Crmul(kl, Cadd{zm[jm], Crmul(delu,
Csub(ztjm, Crmul(0.5 * zmean, cmfim)NNN),
1.0 + delit * deltt * ki * zmean );

zzv1 = Cadd(zmljm], Crmul(deltt2, Csub(ztjm,
Crmul{0.5 * zmean, Cadd{emljm), ccvl1)))))

IN cevl, zzvl
END LET

ELSE Cadd(em[jm], Crmul{deltt2, Cadd(ctjm, Crmul(kl, z[jm]))),
Cadd( zm[jm], Crmul(delt2, Csub(ztjm, Crmul{zmean, c[im]))))

END IF;

pmjm, cmjm, zmjm, pjm, cjm, zjm =
IE ifirst = 0
THEN Cadd(p[jm], Crmul(vnu, Cadd(Csub(pm{jm], Crmul(2.0, p[jm[}), ppv))

Cadd{c[jm], Crmul{vnu, Cadd{Csub{cm[jm}, Crmul(2.0, c[ijm}), ccv))),
Cadd(z[jm], Crmul(vnu, Cadd(Csub(zm{jm], Crmul(2.0, z{jm])), zzv}}),
POV, CcCv, Z2v

ELSE pm{jm], cmijm],
IF istart = 0 THEN Crdiv{ctjm, - k1) ELSE zm[jm] END IF,
ppvs
IF istart = 0 THEN zero ELSE cov END TF,
IF istart = 0 THEN Crdiv{ctjm, - ki) ELSE zzv END IF
END IF; :

IN ¢jm, pjm, zim, cmjm, pmjm, zmjm, ctjm, ptjm, z{jm
END LET

END IF;

RETURNS ARRAY of ¢_j

ARRAY of p_j

ARRAY of z_j

ARRAY of cm_j
ARRAY of pm_j
ARRAY of zm_j
ARRAY of ct_j
ARRAY of pt_j
ARRAY of zt_j

END FOR;

RETURNS

END FOR;
ifirst_R = O;

VALUE of CATENATE c_m
VALUE of CATENATE p_m
VALUE of CATENATE z_m
VALUE of CATENATE cm_m
VALUE of CATENATE pm_m
VALUE of CATENATE zm_m
VALUE of CATENATE ct_m
VALUE of CATENATE pi_m
VALUE of CATENATE zi_m

IN ifirst_R, newc, newp, newz, newcni, newpni, newzm, newct, newpl, newzt

END LET

END FUNCTION
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R B R R i R = Energy.sis
DEFINE Energy
TYPE CplexReal = RECGRD [RepartImpartireal];
TYPE ArrCplexReal = ARRAY {CplexReal}
GLOBAL Csub{cnuml, cnum?2 : CplexReal RETURNS CplexReal)
GLOBAL Cmui(cnum!i, cnum? : CplexReal RETURNS CplexReal)
GLOBAL Conjg(cnum : CplexReal RETURNS CplexReal)

FUNCTION Energy(jx, jxmx : integer; zmean, asq : real; ¢, b, zm : arrCplexReal
RETURNS real, real, real)
LET
% The following asSUMes hi1] and e[1] not having non - zero Impart.
% Otherwise, the following has to be rewritten.
grnass = 4.0 * (zmean - h{1].Repart) / asq;
backdown := 2 + jxmx;
ptotl, ktotl := FOR jIN 2, jxmx
k = backdown - j;
zm_R := zmfk].Repart;
zm I = zm[k].Impart;
conjg..e = Conjgle{k])
potential ;= zm_R * zm_R+zm_] * zm_I;
kinetic := Cmul{Csub(zm[k], hik]), conjg_e).Repart;
RETURNS VALUE of SUM IF k > jx THEN 2.0 * potential ELSE potential END IF
VALUE of SUM IF k> jx THEN 2.0 * kinetic ELSE kinetic END IF

END FOR;
ptot := ptotl/gmass;
ktot := (ktotl + e{}].Repart * 1.4142136 * (zmean - hf1].Repart)} / gmass;
total ;= ptot + kiot;
IN piot, kiot, total
END LET
END FUNCTION

______________ AngMom.sis

DEFINE AngMom

TYPE CplexReal = RECORD [Repart, Impart : real];

TYPE ArrCplexReal = ARRAY {CplexReal]

GLOBAL SQRTR{num : real RETURNS real)

GLOBAL Csub(enuml, cnum? : CplexReal RETURNS CplexReal)
GLOBAL Cmul(cnum], cnum? : CplexReal RETURNS CplexReal)
GLOBAL Conjg(cnum : CplexReal RETURNS CplexReal})

FUNCTION AngMom(jx, jxmx : integer; zmean, asq, ww : real; u, h, zm, z : ArrCplexReal
RETURNS real, rcal, real, real, real)

LET

cl, 2, c3, o4 = 0942809, 0421637, 1.4142136, 1E-5;

gmass = 4.0 * {(zmean - h[1].Repart) { asq;

atotl = u[1].Repart * ¢3 * (zmean - hi1].Repart);
backdown := 2 + jxmx;
atotup := FOR jIN 2, jxmx
k := backdown - j;
conjg_u = Conjgulk]);
relative := Cmul{Csub(zm[k], h[k}}, conjg_u).Repart;
RETURNS VALUE of SUMIF k > jx THEN 2.0 * relative ELSE relative END IF
END FOR;

atot := (atoti «+ atotup) / gmass * ¢4;

atot_} := atotl / gmass * c4;

wtot := ww * { - ¢2 * (z{3].Repart - h[3].Repart)} / gmass * c4;
total 1= atot + wiot;

total]l = atot 1 + wiot;

IN atot, atot_1, wtot, total, totall

END LET
END FUNCTION
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- - Specam sis
DEFINE Specam

TYPE Arrlntl = ARRAY linteger];

TYPE ArmReall = ARRAY [real];

TYPE CplexReal = RECORD [Repart,Impart:real];
TYPE ArrCplexReal = ARRAY [CplexReal]

GLOBAL SQRTR(num : real RETURNS real)

a9, J—

FUNCTION Specam(jx, mx : integer; kmix : Arrlnti; asq, ww, grav : real; ¢, p, z : AnCplexReal
RETURNS ArrReall, ArrReall, ArrReall)
LET ampk, ampvor, ampz :=
FORmIN 1, mx
ampk_m, ampvor_m, ampz_m =
FORGIN 1, ix
jm = kmjx{m] + j;
c_R.c_J = ¢fjm].Repart, c[jm].Impart;
p_R,p_I = pljm].Repart, p[jm].Impart;
z_R,z_I = z[jm].Repart, z[jm].Impart;
divi=ecR*¥cR+cl*c I;
vor:=p R*p R+pl*pl
sqi=z_ R*z R+z 1%z 1;
divsq, vorsq, zsq 2= IF m > 1 THEN 2.0 * div, 2.0 * vor, 2.0 * sq
ELSE div, vor, sq END IF;
RETURNS VALUE of SUM divsg
YALUE of SUM vorsq
VALUE of SUM zsq
END FOR;

RETURNS ARRAY of SQRTR{(ampk_m) / ww * 10.0
ARRAY of SQRTR(ampvor_m) [ ww
ARRAY of SQRTR{(ampz_m) * asq / grav
END FOR;
IN ampk, ampvor, ampz
END LET
END FUNCTION

...................................... --- Loop_TimeStep.sis (Timeloop Section)
DEFINE Loop_TimeStep

TYPE Arrint] = ARRAY [integer];

TYPE ArrReall = ARRAY [real];

TYPE ArrReal?2 = ARRAY [ArrReall];

TYPE ArrReal3 = ARRAY {ArrReal2];

TYPE CplexReal = RECORD {RepartImpart:real];
TYPE ArrCplexReal = ARRAY [CplexReal};

GLOBAL Csub(cnuml, cnum2 : CplexReal RETURNS CplexReal)

GLOBAL U_V_Spectral(mx, ix, jxx: integer; epsi: ArrReall; p, ¢: ArrCplexReal
RETURNS ArrCplexReal, ArrCplexReal)

GLOBAL Decomplexing_p_zdiff u_v (jx, mx, jxx : integer; p, zdiff, v, v : ArrCplexReal
RETURNS ArrReall, ArrReall, ArrReall, ArrReall)

GLOBAL SpecToFreqSphere(jx, mx, jxx, ilath, ixh : integer; kmjx, kmjxx : ArrIntl;
alp : ArrReal3; pri, zri, uri, vri : ArrReafl
RETURNS ArrReal3, ArrReal3, ArrRezl3, ArrReal3)

GLOBAL MAJFFTGrid( nlev, nwave, nfax, i : integer; ifax : ArrIntl; wigh, gridi : ArrReall
RETURNS ArrReall}
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GLOBAL VertigSphere(longitnde_END, ilath : integer; pg, z8, ug, V& : ArrReall
RETURNS ArrReal3, ArrReal3, ArrReal3, ArrReal3, ArrReal3)

GLOBAL MdFFTFreq( nlev, nwave, nfax, n : integer; ifax : Arrntl; wrigf, grid : ArrReall
RETURNS ArrReall)

GLOBAL FreqToSpecSphere(
jx, mx, mx2, ilath, iy : integer; kmjx, kmixx : Arrintl; wocs, epsi @ ArrReall; alp : AmrReal2;
ef, puf, pvi, zuf, zvf : ArrReal3 RETURNS ArrReall, ArrReall, ArrReall, AmReall)

GELOBAL Complexing_ct_e_pt_ztSp (jx, mx : integer; kmjx : ArIntl; ct, e, pt, zt : ArrReall
RETURNS ArCplexReal, ArrCplexReal, ArrCplexReal, ArrCplexReal)

GLOBAL Linear( mx, jx ! integer; kmjx, kmjxx, ksq : Amlnt}; tw : real; epsi : ArrReall;
¢, p, U, v, ctin, e, ptin : ArrCplexReal RETURNS ArrCplexReal, ArrCplexReal)

GLOBAL TStep(jx, mx, delt, izon, ifirst, imp, istart : integer; hdiff, hdrag, zmean, vnu : real;
kmix, kmjxx, ksq : ArrIntl; pl : ArrReall; ¢, p, z, cm, pm, zm, ct, pt, zt : ArrCplexReal
RETURNS integer, ArrCplexReal, ArrCplexReal, ArrCplexReal, AnmCplexReal,
ArrCplexReal, ArrCplexReal, ArrCplexReal, AmrCplexReal, ArrCplexReal)

GLOBAL Energy( jx, jxmx : integer; zmean, asq : real; e, h, zm : anCplexReal
RETURNS real, real, real)

GLOBAL AngMom( jx, jxmx : integer; zmean, asq, ww : real; u, h, zm, z : ArCplexReal
RETURNS real, real, real, real, real)

GLOBAL Specam( jx, mx : integer; kmjx : ArrIntl; asq, ww, grav : real; c, p, z: ArrCplexReal
~ RETURNS ArrReall, ArrReall, ArrReall)

FUNCTION Loop_TimeStep {mx, jx, jxx, ilin, mx2, jxmx, jxxmx, nfax, ilath, imp, istart, idumpt,
ir, irmax?2, ires, ix, ixh, iy, delt, ilong, izon, ifirst, ihkont : integer;
hdiff, hdrag, tw, zmean, vnu, asg, ww, grav : real;
kmjx, kmjxx, ksq, ifax : ArIntl; epsi, wocs 1 ArrReall; alp : ArReald;
P, ¢, 2. h : ArrCplexReal; pl : ArrReall; pm, cm, zm : ArrCplexReal; trigh, trigf : ArrReall
RETURNS Integer, ArrCplexReal, ArrCplexReal,
ArrCplexReal, AaCplexReal, ArrCplexReal, ArrCplexReal,
ArrCplexReal, ArrCplexReal, ArrCplexReal, ArrCplexReal,
YoArrReal2, ArrReal2, ArrReal2, ArrReal?,
ArrReall, ArrReall, ArrReall, real, real, real, real, real, real, real, real)

LET

%zaiff = FOR jm IN 1, jxmx

Yo RETURNS ARRAY of Csub{z[jm], h[jm])
% END FOR;

% Introducing static indexing array kmjx:

zdiff = FOR mIN 1, mx
RETURNS VALUE of CATENATE
FOR FIN 1,jx
jm = kmjxfm] + j
RETURNS ARRAY of Csub(z[jm], h[jm])
END FOR
END FOR;

u, vi=  U_V_Spectralimx, jx, jxx, epsi, p, ¢} % The spectral U- and V-fields
pDec, zDec, uDec, vDec = Decomplexing_p_zdiff_u_v(jx, mx, jxx, p, zdiff, u, v};
pIF, zIF, ulF, vIF := SpecToFreqSphere(jx, mx, jxx, ilath, ixh, kmjx, kmjxx, alp, pDec, zDec, ubec, vDec);
p..Grid, z_Grid, u_Grid, v_Grid :=
FOR hemi IN 1, 2 CROSS latlev IN 1,ilath
RETURNS ARRAY of MAFFTGrid(1, mx, nfax, ix, ifax, trigh, pIFfhemi, latlev])
ARRAY of MAFFTGrid(1, mx, nfax, ix, ifax, trigh, zIF[hemi, latlev]}
ARRAY of MAFFTGrid{1, mx, nfax, ix, ifax, wigh, ulF{hemi, latlev])
ARRAY of MdFFTGrid(1, mx, nfax, ix, ifax, trigh, vIF[hemi, latiev])
END FOR;

e_QGrid, pu_Grid, pv_Grid, zu_Grid, zv_Grid ;= VertigSphere(ilong, ilath, p_Grid, z_Grid, u_QGrid, v_Grid);
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elF, pulF, pviF, zulF, zvIF =

FOR hemi IN 1,2 CROSS latlev IN 1,ilath

RETURNS ARRAY of MdFFTFreq(1, mx, nfax, ix, ifax, trigf, e_OGrid{hemi, latlev])
ARRAY of MdFFTFreq(l, mx, nfax, ix, ifax, trigf, pu_Gridthemt, latlev])
ARRAY of MdFFTFreq(1, mx, nfax, ix, ifax, trigf, pv_Grid[hemi, latlev])
ARRAY of MdFFTFreq(l, mx, nfax, ix, ifax, trigf, zu_Grid[hemi, latdev])
ARRAY of MdFFTFreq(l, mx, nfax, ix, ifax, trigf, zv_Grid{hemi, latlev])

END FOR;

ctSp, eSp, piSp, ztSp = FreqToSpecSphere(jx, mx, mx2, ilath, iy, kmijx, kmjxx,
wocs, epsi, alp[1], eIF, pulF, pvIF, zulF, zvIF);

ct, e, pt, zt = Complexing_ct_e_pt_ztSp(jx, mx, kmjx, <tSp, eSp, ptSp, ztSp);
ptlin, ctlin := Linear(mx, jx, kmjx, kmjxx, ksq, tw, epsi, ¢, p, u, v, ct, e, pt); % c, e, p, u, v, pi, ct);

ifirst_ttp, ¢_tip, p_ttp, z_tp, cm_Up, pm_up, zm_ttp, ci_ttp, pt_tip, zt_Up =
TStep(jx, mx; delt, izon, ifirst, imp, istart, hdiff, hdrag, zmean, vau, kmjx, kmjxx, ksqg,
pL ¢ p, 2, cm, pm, zm, ctlin, ptlin, zt);

ptot, ktot, TotalEnergy := Energy(jx, jxmx, zmean, asq, e, h, zm_tp);
atot, atotl, wtot, totalangmom, totalangmom]l = AngMom(jx, jxmx, zinean, asq, ww, u, h, zm_ttp, 7_tip);

ampk, ampvor, ampz := ¥ mod(ikkont, idumpt) = 0
THEN Specam(jx, mx, kmjx, asq, ww, grav, c_LUp, p_ttp, z_tip}
ELSE ARRAY ArrReall [], ARRAY ArrReall {], ARRAY ArrReall [}
END IF;

IN ifirst_ttp, ci_ttp, pi_ttp, zt_ttp, e, c_ttp, p_tip, z_tip, cm_up, pm_iip, zm_Lip,
%p_Grid[1] fl p_Grid{2], z_Gridf1] [ z_Grid[2],
%vu_Gridf1} !l u_Grid[2], v_Grid{1] | v_Grid[2],
ampk, ampvor, ampz, atot, atotl, wtot, totalangmon, totalangmom!, ptot, ktot, totalenergy

END LET
END FUNCTION

- send.sis (Main Program)
DEFINE MAIN

TYPE Arrntl = ARRAY [integer];

TYPE ArrReall = ARRAY {real];

TYPE ArrReal2 = ARRAY [ArrReall];

TYPE ArrReal3 = ARRAY [ArrReal2};

TYPE ArrDreall = ARRAY [Double_real];

TYPE ArDreal2 = ARRAY [ArrDrealll;

TYPE CplexReal = RECORD [RepartImpart:reall;
TYPE ArrCplexReal = ARRAY [CplexReal];

GLOBAL SIN(num : real RETURNS real)
GLOBAL ACOSR(num : real RETURNS real)

GLOBAL Cadd{cnuml, cnum? : CplexReal RETURNS CplexReal)
GLOBAL Crmul(cons : real; cnum : CplexReal RETURNS CplexReal)
GLOBAL CabsSqr{cnum : CplexReal RETURNS real)
GLOBAL Inital (ires, ix, iy, mx, jx, jxx : integer; zmean] : real
RETURNS integer, integer, integer, integer, real, real, real, real, real,
arrintl, arrintl, arrint}, arrreall)

GLOBAL InitFFT (n : integer RETURNS boolean, boolean, integer, arrintl, ArrReall, ArrReall)

GLOBAL GaussianQuadrature(nzero :© integer
RETURNS ArrReall, ArrReall, ArrReall, ArrReall, ArrReall, ArrDreall)

GLOBAL LegendrePoly(Qf1stKind(ir, irmax2, jxxmx : integer; coas, sias, deltas : real
RETURNS AnDreall)
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GLOBAL SasAlfaSphere( ir, irmax2, jxxmzx, ilath : integer; alp_double: ArDReal2 RETURNS ArrReal3)

GLOBAL Loop_TimeStep{ mx, jx, jxx, ilin, mx2, jxmx, jxxmx, nfax, ilath, imp,

istart, idumpt, ir, irmax2, ires, ix, ixh, iy, delt, ilong, izon, ifirst, ihkont : integer;

hdiff, hdrag, tw, zmean, vnu, asq, ww, grav : real; kmjx, kmjxx, ksq, ifax : ArrIntl;

epsi, wocs 1 ArrReall; alp 1 ArrReal3; p, ¢, 2 h : ArrCplexReal; pl : ArrReall;

pmt, cm, zm : ArrCplexReal; trigh, trigf : AnReall

RETURNS Integer, ArrCplexReal, ArrCplexReal, ArrCplexReal, ArrCplexReal,
ArnCplexReal, ArrCplexReal, ArrCplexReal, ArrCplexReal, ArrCplexReal, ArrCplexReal,

%ArrReal2, ArrReal?, ArrReal?, ArrReal2,

ArrReall, ArrReall, ArrReall, real, real, real, real, real, real, real, real)

FUNCTION MAIN (ires, ix, iy, ktotal, idelt, idufnpt_i, nrun, imp, istart, izon, ilin:integer;
zmean_]1, hdiff, hdrag, voureal; p_in, c_in, z_in, zt_ mountain:ArrCplexReal
RETURNS Boolean, Boolean, % ArrReal3, AoReal3, ArrReal3, ArrReal3, % _Grid fields
ArrCplexReal, ArrCplexReal, ArrCplexReal, ArrCplexReal, % tendency

ArrReall, ArrReall, ArrReall, %o energy
ArrReall, ArrReall, ArrReall, ArrReall, ArrReall, % Angularmomentum
ArrReall, ArrReall, ArrReall) %o specam

LET

ixh = ix/2;

ivh = iy/2;

JXX = jres + 2;
jX=ires +1;

mx = ires + 1;

jxxmx = jxx * mx;
jXmx = jx * mx;
MXmMX 1= mx * mx;
mx2 = mx * 2;
jxmx2 = jxmx * 2;
jxxmx2 = jxxmx * 2;

Hirst := 1;
itflag 1= 13
iglobe = 2;
delt := idelt;

idumpt ;= IF idumpt_i = 0 THEN 1000 ELSE idumpt_i END IF;

zero ;= RECORD CplexRealfRepart : 0.0; Impart : 0.0;

ir, ilong, ilath, irmax2, ww, zmean, tw, asq, grav, kmjx, kmjxx, ksq_1_uncared_for, epst =
Inial(ires, ix, iy, mx, jx, jxx, zmean_1);

ksq = ARRAY [0 : 0] I ksq_1_uncared_for f ARRAY [1:0,0};
AbortFFT, AbortInitFFT, nfax, ifax, trigf, trigh = InitFFT(ix);
coa, w, sia, delta, wocs, WORKIyh := GaussianQuadrature(ilath); % size tyh

wix = JFilin=0 % Indeed
THEN FOR lat_level IN 1, ilath
RETURNS ARRAY of wllat_level] / real(ix)
END FOR
ELSE w
END IF; % size iyh; of the North

winv, cozinv := FOR lat_fevel IN 1, ilath
winv o= wix{iy /2 + 1 - lat_level};
coainv = -coa[iy / 2 + 1 - lat_level}
RETURNS ARRAY of winv
ARRAY of coainv

END FOR;
wiy, coaly := wix |l winv, coa i coainv; % size iy; of North & South
deltaiy, siaiy, wocsly := % size iy; of North & South

FOR lat_level IN 1, iy

deltai := ACOSR(coaiyilat_level]);

sial ;= SIN{deltai);

wocsi == wiy[lat_level] / (siai * siai);

RETURNS ARRAY of deitai
ARRAY of siai
ARRAY of wocsi

END FOR;

B
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wocsilath, wilath =
IF iglobe = 2 9% Indeed, highlight the South
THEN wocsiy, wiy ELSE FOR lat_level IN 1, ilath
wocsiyhalf := 2.0 * wocsiy[lat_level]
RETURNS ARRAY of wocsiyhalf
END FOR
H ARRAY_ADJUST (wocsiy, ilath + 1, iy),

FOR lat_level IN 1, ilath

wiyhalf := 2.0 * wiy{lat_level]

RETURNS ARRAY of wivhalf

END FOR

IARRAY_ ADJUST(wiy, ilath + 1, iy)
END IF;

alp_double := FOR lat_level IN 1, ilath
alp_ LGN := LegendrePolyOflstKind (ir, irmax2, jxxmx, coaiy{lat_level], siaiy{lat_level],
deltaiy{lat_levell);
RETURNS ARRAY of alp_LGN
END FOR; % arraysize [iyh levels, spectral_indices]

alp = SasAlfaSphere (ir, irmax2, jxxmx, itath, alp_double);

% When these two are put out seperately, iflopt disallows.

Yoconstant ;= grav [ asq;

%ovar ;= for diffindex in 2, jxmx returns value of sum CabsSqr(zt_mountain{diffindex]} end for;
Poh = for index in 1, jxmx returns array of Crmul(constant, zi_mountainfindex]) end for;

constant := grav [ asq;
var, b := FOR index IN 1, jxmx
RETURNS VALUE OF SUM I[F index ~= 1 THEN CabsSqr(zt_mountain{index}}
ELSE 0.0 END IF
ARRAY OF Crmul(constant, zt_mountain[index])
END FOR;

hnew := IF ilin = 0 % Indecd
THEN h
ELSE ARRAY_FILL(]1, jx, zero) |l ARRAY_ADJUST(h, jx + 1, jxmx) END IF;

p. c_taken, z ;= KFOR row IN 1, jumx
P, € Z:= IF row <= 256 THEN p_infrow], c_infrow], z_in{row] ELSE zero, zero, zero
END IF;
RETURNS ARRAY of p
ARRAY of ¢
ARRAY of z
END FOR;

C = IF istart = 0 THEN ARRAY _FILL(], jxmx, zero) % Indeed
ELSEIF ARRAY _SIZE(c_in) = 0 THEN ARRAY_FILL(l, jxmx, zero)
ELSE ¢_taken END IF;

znew = IF istart = 0 % Indeed
THEN FORmINI, mx %--------mmmmm Linear Balance Equation
zim:= FOR jIN 1, jx

Jm o= kmjx[m] + j;

jmx = kmjxxfm] + j;

realn := real{m 4+ - 2);

realni = realn + 1.0;

zi=IF ~(j=1&m=1} & ~(= jx & m = mx)
THEN Crmul( - tw / realn / realnl, Cadd(Crmul(realnl / realn * epsifjmx], p[ijm - 11},

Crmul(realn / realnl * epsi[jmx + 1], p{jm + 1))

ELSEIF {j = jx & m = mx} THEN Crmul( - tw / realn / realn * epsi{jmx], p{im - 1])
ELSE zero END IF

RETURNS ARRAY of zj

END FOR
RETURNS VALUE of CATENATE zjm
END FOR Gl mmmmm e e
ELSEIF ARRAY_SIZE{(z_in) = 0 THEN ARRAY _FILL(1, jxmx, zero)
ELSE z END IF;
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pm = p;
pl = FOR;GIN 1, jxmx
RETURNS ARRAY of plj].Repart
END FOR;
em i=c¢;
Zm = Znew;

% Loop TimeStep Procedure
% ktotal denotes the total number of timesteps intended.

%p_GridSphere, z_GridSphere, u_GridSphere, v_GridSphere,
newct, newpt, newzl, newe, ptot, kiot, totalenergy,
atot, atotl, wtot, totalangmom, totalangmoml, ampk, ampvor, ampz =

FOR INITIAL
emptyArrCplexReal := ARRAY ArCplexReal [}; %emptyArrReal2 ;= ARRAY ArrReal? [];
emptyArrReall ;= ARRAY ArrReall [J;
Ifirst_loop := ifirst;
newct, newpt, newzt, newe = emptyArrCplexReal, emptyArrCplexReal,
emptyArrCplexReal, empty ArrCplexReal;

Tewe, ewp, NeWZ, NEWCH, REWDM, NeWZMm = ¢, P, ZNewW, CMm, Pm, Zm;
%p_GridSphere, z_GridSphere, u_GridSphere, v_GridSphere:=emptyArrReal2;
ampk, ampvor, ampz .= emptyArrReall, empiyAmReall, emptyArrReall;
atot, atotl, wtot, totalangmom, totalangmoml,

ptot, ktot, totalenergy := 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0;
th_time_step := I;

WHILE th_time_step <= ktotal REPEAT
th_time_step := old th_time_step + 1;

Ifirst_loop, newct, newpl, newzt, newe, newe, newp, Newz, NEwWCn, Newpnl, newzm,

%p,. GridSphere, z_GridSphere, u_GridSphere, v_GridSphere,
ampk, ampvor, ampz, atot, atotl, wtot, totalangmom, totalangmoml,
ptot, kiot, totalenergy ;=

Loop_TimeStep(mx, jx, jxx, ilin, mx2, jxmx, jxxmx, nfax, ilath, imp,

istart, idumpt, ir, irmax2, ires, ix, ixh, iy, delt, ilong, izon, old Ifirst_loop, old th_time_step,

hdiff, hdrag, tw, zmean, vnu, asq, ww, grav, kmix, kmjxx, ksq, ifax, epsi, wocsilath, alp,
old newp, old newe, old newz, knew, pl, old newpm, old newem, old newzm, trigh, trigf);

RETURNS %ARRAY of p_GridSphere %ARRAY of z_GridSphere
%ARRAY of u_GridSphere %ARRAY of v_GridSphere
VALUE of newct
VALUE of newpt
VALUE of newzt
VALUE of newe
ARRAY of piot
ARRAY of kiot
ARRAY of TotalEnergy
ARRAY of atot
ARRAY of atot}

ARRAY of wiot

ARRAY of twotalangmom
ARRAY of totalangmom1
VALUE of ampk
VALUE of ampvor
VALUE of ampz

END FOR;

IN AbortFFT, AbortlnitFFT, %p_GridSphere, z_OridSphere, u_GridSphere, v_GridSphere,
newct, newpt, newzt, newe, piot, ktot, totalenergy,
atot, atotl, wtot, totalangmom, totalangmoml, ampk, ampvor, ampz

END LET

END FUNCTION % -- Main
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FAST FOURIER TRANSFORMATION (FFT)
CODES

This appendix consists of the listings of Fast Fourier Transformation codes. Sections
C.1 and C.2 list the original C version and the SISAL version respectively.

C.1 Original Code in C

The two dimensional FFT routines are readily available in image processing
textbooks. Listed below is one recoded from an example in [GW].

/* program to perform Fast Fourier Transform */
/* two dimentional data */

#include<sidio.h>
#include<math.h>

#define pi 3.141593
#define n 512

#define In 9

struct complx{ float re,im; };

double sine[512],cosine[512];

unsigned char imagefn]in]; F* input-output image */
struct complx ffin][a]; J* input - output array */
struct complx fln]; f* row - columm decompositions array */

struct compix z,z1,2z2,23,wl;

main(}

{
int ij;
char filenamef10];
FILE *fopen(),*{p;

/* get input data ¥/
printf(" Enter input filename: ");
scand{{"%s", filename),
fp=fopen(filename,"r");
fread(&image[0]{0],sizeof(image[0}[0]),n*n,fp);
fclose(fp);
conversion();



Appendix C
/* perform forward Fourier Transform */
- sin_cos();
do_ff1();

/* create a Fourier spectrum image */
printf(" Enter Fourier spectrum filename: ");
scan{("%s" {ilename);

fp=fopen(filename,"w");
make_mag(fp);

/* create a phase spectrum image */
printf(" Enter phase spectrum filename: "),
scanf("%s" filename);
fp=fopen(filename,"w");
make_phase(fp);

/* convert real image Into complex image with imaginary part is zero */
conversion()

int i

for(i=0; i<n; i++) "
for(j=0; j<n; j++)
{

complex{(float)image[i]{j],0.0%;
flillil=w1;
]

}

f* function to compute sin_cos table */
sin_cos()

{
int m;
double me,mel;

for(m=0; m<=In-1; m++)

me=pow{2.0,(float)m);
cosine[m}=cos{pi/me};
sine[m]=sin{pi/me);

}
i

/* do_fit */
do_fft()
{

int ij;

/¥ do column transformation */

for(j=0; j<n; j++)
{

for(i=0; i<m; i++)
flil=£il{];

fe(-1);

for(i=0; i<n; i++)

1=tk
!
* do row transformation */
“for(i=0; i<n; i4+)
for(G=0; j<n; j++)

=il
ffi-1);
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f* divide results by n */
for(j=0; j<n; j++)
{

{ifi}{j].re=f]j] reftfloat)n;
} {1151 im=f{j].im/{float)n;
}
}

/* create an image file ¥/
make_mag(fp)

FILE *fp;

{

int ij;

for(i=0; i<n; i++)
for(i=0; j<mn; j++)
image[i]{jl=sqru(ff{i])[j] re* {3} (i} -re+ LI (] im* {11 [j].im);
fwrite(&image[0]{0],1,n*n,fp);
felose(fp);
}

/*
3.3k ae ofe e e ke b o sk e e e e e ok ake ke ke e ofe sk ok ok a3k e 3 e sk ke e e sk ok Sk ke e Sk ke ok ke b sk sk ok b abe ke ke ke ok el ok o e ok K
*
* create an phase image file
£

e ok ok e ek o ok ok ok 3k 3 ok ok ok oK 3 o ke ke ok ke ok ok o 6 3 sk o ok K KR ok o ok o R o o e kel s ok ok ok ok ok ok

*/

make_phase(fp)
FILE *fp;
{

int 4j:

for(i=0; i<n; i++)

for(j=0; j<n; j++}
image[i][j]=atan(filiJ{i] im/fHii1(] xo);

fwrite(&image[01f0], 1,n*n,ip);

fclose(fp);

/* fft function */
fft{sign) f* sign = -1 for forward FFT, 1 for inverse FFT */
int sign;
{
struct complx u,w,t,cmpl;
double lelel;
int il,nv2le2,le3,Lk,ip;
int jn=0;

/* Reordered the input array */
nv2=r/2;
for(il=0; il<n-1; il++)

k=nv2:
ifal<jn)
{

t=f{jn);
fml=flil];
flitl=t;

i
while(k<=in)
{

jn=jn-k;
kek/2s
!

jn=jn+k; |
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[* Perform successive_doubling calculations */

for(l=0; l<=In-1; 1++)

le=pow(2.0,(float}l};
lel=le*2.0;
complex(1.0,0.0%;
u=wl;
complex{cosinefl],sign*sine(l]);
w=wl;
for(jn=0; jn<=le-1; jn++)

for(il=jm; il<=n-1; il=il+lel)
{
ip=il+le;
mult(fiip]u);
t=z1;
sub(flil].th
flip]=22;
add(f[iil.eh
flil]=z;
}
muli(u,w);
w=z];
}
)
i

complex{vall,val2)
float vall,val2;

wl.re=vall;
wl.im=val2;

}

add(x,y)
struct complx x.y;
{
LIe=x.Je + y.Ie;
zim=xim + y.im;

}

sub(x,y)
struct complx x,y;
{
zlre=xre - y.Ie;
Z2.hm=x.im - y.im;

}

mult{x,y)

struct complx x.y;

{
zlre=x.re*yre - xim™y.im;
zlim=x.re*yim + x.im¥y.re;

j

Appendix C

Page C.A4



Appendix C

C.2 SISA). Version

The SISAL code listed below is, in most parts, a translated version from the C code :

% Author: Pau Sheong Chang

% let the mput be (8, 3) or (4, 2)

DEFINE MAIN

TYPE ArrInt = ARRAY {integer];

TYPE ArrReal = ARRAY [real];

TYPE AstReal2 = ARRAY [ArrReal];

TYPE Cplex = RECORD [Repart, Impart: real];
TYPE AnrCplex = ARRAY [Cplex];

TYPE ArrCplex2 = ARRAY [AnrCplex]

GLOBAL SIN(num: real RETURNS real)
GLOBAL COS(num: real RETURNS real)
GLOBAL ATAN(num: real RETURNS real)
GLOBAL SQRT(num: rea]l RETURNS real)

FUNCTION Cadd(x,y: Cplex RETURNS Cplex)
RECORD Cplex {Repart: x.Repart + y.Repart; Impart: x Impart + yImpart]}
END FUNCTION

FUNCTION Csub(x,y: Cplex RETURNS Cplex)
RECORD Cplex [Repart: x.Repart - y.Repart; Impart: x Impart - y.Impart]
END FUNCTION

FUNCTION Cdiv(x: Cplex; y: real RETURNS Cplex)
RECORD Cplex {Repart: x.Repart / y; Impart; x Impart / y]
END FUNCTION

FUNCTION Cmult(x, v : Cplex RETURNS Cplex)

LET  xre, xim, yre, yim := x.Repart, x.Jmpart, y.Repart, y.Impart

IN RECORD Cplex [Repart: xre * yre - Xim * yim; Impart: xre * yim + xim * yre]
END LET

END FUNCTION

FUNCTION fft(sign:real; In, n: integer; sine, cosine: ArrReal; twotothepower:Arring;
input_f: ArrCplex RETURNS ArrCplex)
% ReorderinputArray
LET
fi= FOR INITIAL
il:=0;
n:=0;
fi=input_f{;
WHILE il <n-} REPEAT
ki=n/2;
il:=0LD il + 1;
fi= IF OLD il<OLD in
THEN OLD {{OLD i1: OLD f[OLD jn]; OLD jn: GLD flOLD i1}]
ELSEOLD
END IF;
jni= FOR INITIAL
kk:=k;
jnju:=0LD jn;
WHILE kk<=jnjn REPEAT
nju:=0LD min-OLD kk;
kk:=0LD kk/2;
RETURNS VALUE of jnjn+kk
END FOR
RETURNS VALUE of f
END FOR;
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% Perform successive_doublINg calculations */

fnew ;= FOR INITIAL
1=
f1:=1;
WHILE I <=1n -} REPEAT
Ie ;= twotothepower[OLD 1};
lel i=le*2;
w := RECORD Cplex [Repart: cosine[OLD I}; Impart: sign * sine[OLD 1];
fl = FOR INITIAL
jn=0;
u = RECORD Cplex {Repart: 1.0; Impart: 0.0];
{2 .= OLD fi;
WHILE jn <=le - 1 REPEAT
f2:= FOR INITIAL
il = 0OLD jn;
£3:=0LD{2;
WHILE il <=n -1 REPEAT
ip:=0LD 1l +1le;
t := Crult(OLD f3[ip], OLD u);
f3:= OLD f3{OLD il: Cadd(OLD f3[OLD il], t); ip: Csub{OLD 3[OLD il}, 1}};
il := OLD il + lel;
RETURNS VALUE of 3
END FOR;
u = Crnlt{OLD v, w);
jn=O0LD jn+1;
RETURNS VALUE of 2
END FOR;
P=0OLD1+1;
RETURNS VALUE of f1
END FOR;
IN frnew
END LET

END FUNCTION
O,

7o

FUNCTION do_ffi(ln, n: integer; sine, cosine: ArrReal; twotothepower: Amint; ff: AnCplex2
RETURNS ArrCplex2)
LET
% [* do row transformation */
realn:= REAL(n);
ffrow:= FORiINO,n-1
RETURNS ARRAY of ft(-1.0, In, n, sine, cosine, twotothepower, fii])
END FOR;
%* do column transformation *costly/
newff:= FOR;INO,n-1
column:= FORiINO,n-1
RETURNS ARRAY of Cdiv{ffrow[i, j], realn)
END FOR;
RETURNS ARRAY of f{ft(-1.0, In, n, sine, cosine, twotothepower, column}
END FOR; % here the matrix has been ransposed
%o f* divide the results by n ¥/
IN newff
END LET
END FUNCTION
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FUNCTION MAIN(m, In:integer RETURNS ArrReal2, ArrReal2)

LET .

% * get input data */

pit= 3.141593;

Goconversion()

%ff:= FORIINO,n-1CROSSjINO,n-1

%o RETURNS ARRAY of RECORD Cplex [Repart: 1.0; Impart: 0.0}
% END FOR;

twotothepower:= FOR pow INQ, In-
RETURNS ARRAY of IF pow =0
THEN FOR jIN 1, pow
RETURNS VALUE of PRODUCT 2
END FOR
‘ ELSE1 ENDIF
END FOR;

% f* perform forward Fourier Transform *f

% ¥ FUNCTION to compute SIN_COS table *% SIN_COS()/

cosine, sine = FORmING In-1
pionme 1= pi / REAL{iwotothepower[ml);
RETURNS ARRAY of COS{pionme)

ARRAY of SIN({pionme)

END FOR:

newff := do_fli{ln, n, sine, cosine, twotothepower, ff);

%/* create a Fourier spectrum image */
image_magnitade, image_phase = FORJINO,n-1 CROSSiINGn-1
re, im := newff[i, j].Repart, newff[i, j]lImpart;
RETURNS ARRAY of SQRT{re * re + im * im)
ARRAY of IF re=0.0 THEN 0.0 ELSE ATAN(im / re) END IF
END FOR;
IN image_magnitude, image_phase
END LET
END FUNCTION
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