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Abstract:

Computational stress analysis is now widely used in geomechanics for back analysis of
observed rock mass behaviour around surface and underground excavations and as a tool
for excavation design in mining and civil engineering. The distinct element (DE) method,
which represents a rock mass as a discontinuum, has been shown to be more realistic than
finite element (FE) or boundary element (BE) (continuum) methods for modelling systems
such as subsiding strata over underground coal mine excavations. However, whereas
even 3D FE and BE analyses can now be performed readily on engineering workstations
or the more powerful personal computers, the DE method generally requires orders of
magnitude more computer processing time for analyses of comparable complexity. The
feasibility of using multiprocessors has been studied in this paper, using two of the
simplcr distinct element stress analysis programs as test cases.




PARALLEL PROCESSING FOR THE
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1. Introduction

Computational stress analysis is now widely used in geomechanics for back analysis
of observed rock mass behaviour around surface and underground excavations and as
a tool for excavation design in mining and civil engineering. The distinct element (DE)
method, which represents a rock mass as a discontinuum, has been shown to be more
realistic than finite element (FE) or boundary element (BE) (continuum) methods for
modelling systems such as subsiding strata over underground coal mine excavations.
However, whereas even 3D FE and BE analyses can now be performed readily on
engineering workstations or the more powerful personal computers, the DE method
generally requires orders of magnitude more computer processing time for analyses of
comparable complexity. This has so far prevented the DE method from being applied
widely in excavation design in industry.

Some significant work has been done, particularly at several of the U.S. National
Laboratories, on developing DE codes which can be run very much faster by utilising
the vector-processing capabilities of supercomputers. These machines, and therefore
these DE codes, are generally not available to engineers in industry, so other options
for speeding up DE programs need to be explored.

Most DE codes are based upon an explicit time integration of Newton's laws of
motion for each DE, usually involving many thousands of time steps or solution
cycles in a full analysis. The explicit numerical method implies that, within each
cycle, calculations for each DE could be carried out in parallel. The potential therefore
exists for creating much faster DE codes, which would run on moderately-priced and
therefore more accessible machines, through the use of parallel processing.

Several different software techniques and hardware options have been applied to
develop parallel processing versions of two relatively simple 2D DE stress analysis
codes.

The changes made to the programs will be outlined, times for the original and
modified versions reported, and some preliminary conclusions drawn regarding the
usefulness of various parallel processing options for DE stress analysis codes.

2. The Distinct Element Method

The DE method of stress analysis was introduced in {1] to deal with problems 1n rock
mechanics which could not be treated adequately by the conventional continuum
methods. The earliest DE programs (e.g. program RBM in [2]) assumed that
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the blocks were rigid, so that all deformations within the system took place at the
block interfaces. A second program described in {2], SDEM, allowed modelling of
three simple modes of deformation of each block - two compressive and one shear
mode. The DE programs which are most widely used at present are UDEC [3] and
3DEC [4]; the blocks in each of these may be modelled as fully deformable via
intemnal finite difference zoning.

The main factor working against the adoption of these programs for routine
engineering design of excavations in highly jointed rock is the very large computer
execution times which are required for analyses involving substantial numbers of
distinct elements.

The feasibility of parallel processing has been studied in this paper, using two of the
simpler distinct element stress analysis programs which are available:

- DECYL: 2-D analysis of systems of interacting, rigid circular DEs of equal
radius {5];

- SDEM: 2-D analysis of systems of interacting, simply deformable
polygonal DEs [2]{6].

2.1 Theoretical basis

Most DE programs are based on force-displacement relations describing block
interactions and Newton's second law of motion for the response of each block to the
unbalanced forces and moments acting on it.

‘The normal forces developed at a point of contact between blocks are calculated from
the notional overlap of those blocks and the specified normal stiffness of the
inter-block joints. Tensile normal forces are usually not permitied, i.e. there is no
restraint placed upon opening of a contact between blocks.

Shear interactions are load-path dependent, so incremental shear forces are calculated
from the increments in shear displacement, in terms of the shear stiffness of the
joints. The maximum shear force is usually limited by a Mohr-Coulomb or similar
strength criterion.

The motion of each block under the action of gravity, external loadings and the forces
arising from contact with other blocks is determined from Newton's second law. A
damping mechanism is also included in the model to account for dzssupanon of
vibrational energy in the system.

The equations of motion may be integrated with respect to time using a central
difference scheme to vield velocities and then integrated again to yield displacements.
The velocity dependent damping terms have been omitted here for simplicity, but the
same form of equations hold even when damping is included.

u(t+AY2) = ui(-A42) + (CF(0)/m +g;) . At M
u (+AD) = 1) + u (FAY2) . At (2)
where 1= 1,2 correspond to x and y directions respectively;

u; are the components of displacement of the block centroid;

F, are the components of non-gravitational forces acting on the block;
g; are the components of gravitational acceleration;

m is the mass of the particular block.



The equation of rotation for each block can be integrated similarly. Note that, in the
integrated equations, block velocities and displacements are expressed explicitly in
term of values at a previous time and so may each be calculated independently.

The calculation cycle proceeds, with the calculated displacements being used to update
the geometry of the system, and thence to determine new block interaction forces.
These, in turn, are used in the next stage of the explicit integration of Newton's
equations.

This explicit ime integration scheme is only conditionally stable. Physically, the time
step must be small enough that information cannot pass between neighbouring blocks
in one step, thus justifying the independence of the integrated equations of motion. In
practice, this implies that very many (often tens of thousands) solution cycles must be
calculated. For example, some very large UDEC analyses of roof strata collapse and
subsidence induced by underground coal mining [7], which included over 2000 fully
deformable DEs, required about 200,000 solution cycles and about six days of Sun
SPARCstation CPU time to come to final equilibrium.

The complex data structures which are used in DE programs to keep track of changing
block contacts in an efficient manner, would need to be substantially rewritten to
allow vectorisation on a conventional supercomputer. This has been done by several
groups at different U.S. National Laboratories [8]. Another approach to developing
DE programs which are computationally more efficient is to use parallel processing to -
integrate the equations of motion for many blocks simultaneously.

3. Machines and languages
3.1 Machines

The machines used in this study were the Encore Multimax multiprocessor and the
IBM RS6000 Model 530 uniprocessor workstation. The latter was chosen as its
CPU performance is likely to be representative of CPUs in foture medium cost
multiprocessors.

3.2 Languages
The languages used in the study were SISAL and FORTRAN.

SISAL [9]{10] is an applicative language which has been targetted at a wide variety of
systems including uniprocessors, current generation multiprocessors such as the
Encore Multimax and research dataflow machines [11][12]{13]. The textual form of
SISAL, in terms of control structures and array representations, (Appendix) provides
a relatively easy transition for those familiar with imperative langunages and the
optimising SISAL compiler (osc) from Colorado has yielded performance competitive
with FORTRAN [14]{15]. SISAL requires no directives or annotation at the source
level.

The epf and xIf FORTRAN compilers were used for the Encore and RS6000
respectively. The epf compiler provides automatic analysis and annotation of the
FORTRAN source with parallel and other directives. The intermediate annotated
source is available for further explicit or manual annotation; alternatively the analysis
and annotation stages may be bypassed permitting explicit annotation only.

Both the epf and current SISAL compilers exploit loop concurrency. Loops with no
dependencies between cycles are 'sliced’ into several loops each over some
sub-interval of the original loop bounds. The number of slices is deternnned at
runtime with the slices being executed concurrently,



4, Results
4.1 DECYL

DECYL. is a simple program which is based on the same explicit integration algorithm
used in DE programs for practical stress analysis of highly jointed rock. DECYL
assumes that any of the circular DEs comprising the system being modelled may be in
contact with any other DE; contact lists are not maintained and physical locality is not
exploited. The diagramatic representation of a DECYL system is is shown in Figure
1. The general flow of computation in DECYL is shown in Figure 2.

moment normal and-shear forces

Figure 1. a DECYL system

while not stable do
for jin 1 to no_DEs do
for iin j+1 to no_DEs do

if touching DE[i] and DE[j] then
compute normal force

if normal force > 0 then
compute moment
compute shear force

if slipping then
adjust shear force

resolve force components
accumulate forces and moments acting on DE[j} and DE{1}
integrate accelerations on DE{j]

compute new position of DEfj]

Figure 2. DECYL computational flow



4.1.1 Automatic annotation

The DECYL program written in FORTRAN was translated to SISAL and run against
FORTRAN on the Encore and IBM RS6000 systems. The speedups for a 1000 DE
system are shown in Figure 3.

Figure 3. Speedup of DECYL in FORTRAN and SISAL

The speedup for FORTRAN is 2.34 and for SISAL  2.16. Greater than 50%
machine utilisation is achieved in both cases.

4.1.2 Explicit Annotation

DECYL searches for contacting DEs on each iteration. This is done for each DE
within an outer loop over all DEs. Inspection of the annotated FORTRAN revealed
that the innermost loop was selected by epf to run in parallel rather than outer loop. In
DECYL the outer loop has a sequential tail where the accelerations and displacements
are computed and this in turn adversely effects speedup in that maximum speedup is
the ratio of the time to execute the sequential section of the application to the time to
execute the whole application on a single processor e.g. 5% sequential code implies a
maximum speedup of 20.

To amortise the startup cost of loop slices it is best to maximise the work done for
each slice, The strategy then is parallelise outer loops where possible; inner loops
need only be parallelised if the bounds of the outer loop are such as to not provide
sufficient slices to load the machine. In most scientific and engineering problems the
loop ranges exceed the number of available processors by some factor.

The speedup for DECYL with the outer loop annotated explicitily is shown in Figare
4 and the collected time results for a single time step of DECYL for FORTRAN and
SISAL on the Encore Multimax and IBM RS60({/530 are given in Table 1.
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Figure 4. Speedup of DECYL in FORTRAN with explicit annotation

Language 1 processor 4 processors (speedup)

FORTRAN (Encore epf implicit)  31.5+3.1  12.9+19 2.3
FORTRAN (Encore epf explicity  28.7+3.3  8.2+1.9 (3.2)

SISAL (Encore 0sc) 422+32 20.0+1.1  (22)
FORTRAN (IBM xIf) _ 6.5+1.9

SISAL (IBM osc) 9.0+1.2

FORTRAN (Cray YMP ¢ft77) 0.8

Table 1. Times (user+system) for DECYL (1000 DEs 1 time step)

Further improvement in SISAIL performance is expected, reducing overheads due
mainly to the array construction and access mechanisms of the current implementation
of SISAL. SISAL permits structures to change size at runtime involving indirect
access to matix elements via a vector of pointers to each matrix row. There are also
consequential memory allocation overheads as structures are progressively
constructed. The potential gains from static allocation of structures have been
acknowledged by the developers of SISAL and will be seen in SISAL version 2.0
[15].

4.2 SDEM

SDEM's main computational cycle (Figure 5) consists of computing the new position
of blocks given the current forces acting on them, and then from these positions,
determine the new forces induced by blocks on their neighbours; these steps are
repeated until the system stabilises. Contact lists, or lists of the other blocks a block is
touching, are maintained to exploit locality in contrast to DECYL. If the displacement
of any block is greater than some threshold then the contact lists of all blocks are
updated; this deals with sudden events/collapses in the system occurring in a
particular ime step.



while not stable do

if update required then
update all contacts - currently sequential

for all blocks do
compute motion
if major block displacement then
record update required

for all blocks do
if block moved then
for each corner do
recompute bounding box

for all blocks do
compute stresses

for all blocks do
for each contacting block do
compute forces
fock block records
accumulate inter block forces
unlock block records

Figure 5. SDEM computational flow (explicit parallel version)

4.2.1 Automatic annotation

The Encore Multimax epf compiler was used to automatically annotate and compile
the original FORTRAN source. The speedup obtained is shown in Figure 6.

Figure 6. Speedup of SDEM with antomatic annotation



It can be seen that not only was no speedup obtained, but there was actually some
slow down. In the case of SDEM all major processes are called as subroutines e.g.
computation of block motion. Inspection of the analysis listings produced by epf
showed that any statement involving a subroutine call was deemed to be not
concurrent i.e. epf does not perform inter-procedural analysis. This is reasonable if
one assumes that FORTRAN routines may be linked as precompiled modules and that
they may involve hidden manipulation of structures through COMMON. It does
however mitigate against the use of subroutine calls in loops which are the primary
source of concurrency!

4.2.2 Explicit annotation

It was decided to reject the expansion of subroutines inline as a solution, as this
would result in a cumbersome difficult to maintain source. Further inspection showed
that the loops over all blocks in the main iterative cycle and its subroutines could be
made parallel subject to:

- the detection of a major block displacement for conditional updating of all
block contacts;

- the locking' of blocks when accumulating new inter-block forces.

The resulting speedup for explicit annotation of SDEM is shown in Figure 7.

Figure 7. Speedup for explicit annotation (105 DE system for 20000 time steps)

The execution times for a number of machines for system of 105 blocks over 20000
time steps is shown in Table 3.



Machine 1 processor 4 processors

Encore Multimax  2735.6+89 982.1+4.2 (2.79)

IBM R&§6000/530 201.9+1.3
Cray YIMP 103.3

Table 2. Times (user+system) for SDEM (105 DEs 20000 time steps)

5. Conclusions

The analysis and initial parallelisation of SDEM was made difficult by the complicated
data structures. The major data structure is contained in a single integer/real vector
with several consecutive elements of the vector constituting a record describing a
block. Some of the elements point in turn to other records of contact blocks and all -
fields are referred to numerically rather than symbolically. It is not suprising that the
annotators and vectorisers have some difficulty extracting performance gains.

There remain a number of sequential regions of code in the main time step loop, and
its associated subroutines, which are limiting the speedup obtained to date. Work is
continuing on reducing their impact and it is expected there will be further small
gaias.

The study has shown that it is possible to obtain good speedup on current
multiprocessors. These processors have relatively poor scientific performance but it is
likely that next generation processors will be greatly improved in this respect.

Current FORTRAN annotators provide some promise of implicit parallel
programming without resorting to explicit annotation although there appears to be
some scope for improvement in the heuristics used by the epf annotator.
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APPENDIX - Fragment of DECYL in SISAL

while {iter <= its) repeat % for number of iterations

fxstamyj, fysumj, msumyj, fa, m = for jin 1,ncyl
alidu ; vector == array_addh{old du,old dufj]);
alidv : vector = array_addh(old dv,-r};
allddu : vector = array_addh{old ddu,0.0);
aliddv : vector := array_addh{old ddv,0.0);
aligamma : veclor = array _addh(old gamma,(-old ddufj])/r};

fxsumyi, fysumji, msumiji, fnjfi, mji == foriin j+1,n
dudif : real = alldufi] - alidulij;
dvdif : real 1= atigvlji - alldv(i];
z : real = sqri{dudif*dudif + dvdil"dvdif);
% Interactions with other cylinders?
fxsumiji, fysumyji, msumiji, fnji, mji i real =
H{z>d]j=1i)then
0.0,0.0,0.0,0.0,00
alse
let
zdudif :real ;= dudif/z;
zavdif :real == dvdil/z;
ddudif :real = allddufi] - aliddulj];
ddvdif :real = allddvii] - allddv]j];
% calculate the normal force between iand j
dfn : real ;= akn * (ddvdif*zdvdif + ddudif*zdudif);
testin : real = {old fn{j,i}} + dfn;
retfxsum, retfysum, retmsurm, retin, retm : real ==
if (testfn < 0.0} then
0.0, 0.0, 0.0, 0.0, 0.0
else
fet
% Calculate moment
theta :real ==
(ddvdif*zdudif - ddudif*zdvdif)/d,
dm : real ;= -aks “(aligammali] + allgammali] - theta);
mji : real == old m{j,i] + dm;
% Calculate shear force
testft : real ;= mjirr;
% 1s slip occurring
ff : real := mu * testin;
abft : real = abs(testft);
fi:real =
if (abft > ff) then fi * tesift / abft
else testft
end if;
retmji = it
% Calculate force compenents {fx,fy)
fx : real = (testin®zdudif) - {ft"zdvdif);
{y < real := (iestin*zdvdil} + (frzdudif);
in
{x, fy, retmji, testfn, retmji
end let
end if;
in
retixsum, retfysum, retmsum, retin, retm



end let
end if;
returns
value of sum fxsumji
value of sum fysumji
value of sum msumiji
array of fnj
array of mji
end for,
returns
array of fxsumji
array of fysumji
array of msumji
array of fnji
array of mji
end for;
% Now infegrate accelerations to find displacements
u,v,w,ddu,ddv,gamma,du,dv:=
forjin1, ncyl
uj,vj,wj,ddui,ddvj,gammaj.duj,dvi=
if j=1 then
(Ixsumijfjy/mass)*tdel) /(1.0+conl), ({fysumjlil/mass+g) tdel) /{1.0+conl),
{{msumijfj}/moi)“tdel) /{1.0+cont),
0.0, 0.0, {{msumi{jl/moiy*tdel) /(1.0+con1)"del, 0.0,0.0
else
let
tujzreal:=(old uff]*{1.0-cont) + ({fxsumjlijl/mass}tdel)} /(1.0+con1);
tvjrreal:={old v[j]*(1.0-con1} + ({fysumjfjl/mass+g) tdel}) /(1.0+cont);
twijrreal:={old wijJ*(1.0-con1) + ({msumjfj/moi} idel}} /(1.0+con1);
tdduj=tuj*tdel;
tddvj:=tvj*tdel;
tgammaj=twj*tdel
in
tuj, tvj, twj,tdduj,tddvj, tgammayj,old dufjj + tdduj,oid dv{j] + tddvj
end let
end if;
refurns
array of 4j
array of vj
array of wj
array of dduyj
array of ddvj
array of gammaj
array of duj
array of dvj
end far;
iter .= old iter + 1;
cylinders = for j in 1,ncyl
returns
array of record dudv_recfdu:dulj]; dv:dv{j]
end for;
returns
array of cylinders when (mod(iter,50) = 0}
end for % number of iterations






