A\

LABORATORY FOR
CONCURRENT COMPUTING SYSTEMS

COMPUTER SYSTEMS ENGINEERING
School of Electrical Engineering

Swinburne Institute of Technology

John Street, Hawthom 3122, Victoria, Australia.

Some
Parallelisation Issues
in a Triangular Matrix Problem

Technical Report 31-022

P.S. Chang
pau@stan.xx.swin.oz(.aw)

G.K. Egan
ghe@stan.xx.swin.oz(.au)

Version 1.0 (November 16, 1990)
Version 2.0 (December 16, 1990)
Version 3.0 (December 21, 1990)

Abstract

This report describes an application study in explicit and implicit parallel
computing for a simplified electrical transmission line which is modelled in a
triangular structural form to evaluate the potential distribution in its cross section. A
traditional (sequential) formulation and a parallel formulation of the numerical
algorithm to Laplace Eguation, which solves this problem, are described. They are
implemented serially, and the parallel formulation is also implemented in parallel.
The codes are executed on an IBM RS6000/530 workstation, and a 4 XPC processor based,
as well as a 20 APC processor based, Encore Multimax multiprocessors. The results of the
complete runs show that the formulation for parallel implementation is competitive with
the sequential traditional formulation. The benchmarks on the two Multimax
environments show scalable, and close to ideal, speedup performance for the explicit
implementation in C, with low parallelisation overhead. The speedup performance of the
SISAL implementation is poor in the computations for triangular matrices because the
loop slicing scheme implemented in OSC fails to distribute the decomposed loops more
equally. This scheme, and a solution to this load balancing problem by way of loop
splitting, are critically analysed and their results discussed. The analysis shows that
loop splitting is a better general solution than loop slicing to gain good code performance
and parallel processing support in shared memory multiprocessor environments
similar to that of Encore Multimax,

Some
Parallelisation Issues
in a Triangular Matrix Problem

P.S. Chang
G.K. Egan

Version 1.0 (November 16, 1890)
Version 2.0 (December 16, 1950)
Version 3.0 (December 22, 1990)

Introduction

This project was originated from an attempt to utilise the syncronization primitives in
the parallel programming library (UMAX 4.3 and UMAX V) of Encore Multimax to perform
explicit parallel computing on a share memory MIMD muliiprocessor.

The engineering problem being investigated is a numerical algorithm for Laplace
Equation (it was part of the author's second year undergraduate programming project (1985) in
Electrical Engineering at the University of Melbourne). In this case, the equation is used to .
evaluate the potential distribution in an electrical transmission line. The simplified
transmission line is assumed to have a rectangular cross section. And only one quarter of the
section is focused on due to symmetry, resulting in a model with a triangular structure.

Two implementations of the numerical algorithm are being examined. The first is a
traditional method targeted for conventional sequential computers. This version is potentially
sequential, and hence is unsuitable for parallelisation. As a result, another version was
formulated to expose the inherent large amounts of parallelism, which can be effectively
exploited in a multiprocessor environment.

The numerical algorithm for Laplace Equation is implemented in C, and explicitly
parallelised also in C. The implicit implementation in SISAL [1] is a straightforward
translation from the C parallel version, with minor modifications. The results of these
implementations, which are obtained from an IBM RS6000/530 and two Encore Multimax
multiprocessors, are critically analysed and compared. The degradation in the speedup
performance of SISAL and OSC [2] is observed and examined. The dominant factor to the
degradation due to loop scheduling, and a solution to this problem are presented.

1. Laplace Equation

Laplace Equation is Poisson's Equation equated to zero.

Poisson’s Equation: VY= vy
Laplace Equation: wy=0

This equation can be used to analyse and solve many engineering problems, such as modeling
streamline in fluid flow and electrical field or potential distribution in a transmission line.

Page 1

1.1 Formulation of Numerical Algorithm

A numerical solution to this equation is via an iterative method, in which ealculations
are repeated until the values of the grid points converge. Traditionally, this is formulated as:

.. Sy s .. L .. ;- RF .,
V(i) = [Vfirlj) + V,(g+1) + V,_y(i-10) + V,_(ij-1) - 4.0V, () | * —o= +V, (i)

where RF is a relaxation factor arbitrarily chosen to help speeding up the convergenee of the
results, and the relative North, East, South, West and Centre points of the n-th iteration can be
visualised as (i,j)-cordinates as shown in Figure 1a. The computation takes turn from the
bottom to the upper rows {i) and propagates from the left to the right columns () in every row.
Hence, the values of the West and the South points are in fact of the current (n-th) iteration,

If the strategy of parallelisation is to compute from the left to the right columns
sequentially for all rows simultaneocusly (in other words, to parallelise at the row level}, then
this formulation will cause write-read race conditions which constrain parallelisation. It is
thus obvious now that ansther formulation which is suitable for parallelisation is needed. One
such formulation is

V(i) = [V, y+10) + Vi y(i+]) + V,_j(i-1g) + V, ((i-1) - 40V, (04} | ¥~ + ¥, (i)

as described in Figure 1b. Using two separate storages for V_and V., this method is free of
any write-read race condition, and therefore it is suitable for parallelisation (with the tradeoff
that the storage requirement is doubled).

vn{i+1, 3} Vvn-1(i+1, 3)
T) 4R ‘ D
N1/ |/ i/ N/
vn{i, j-1} Vn-1(i, 3+1) vo-1(1, i-1) Va1 (1,13} va~1 (i, 3+1}
vi(i, §) \. Vo (i, 3}
Pl ™ 10N N
1/ |/ L/ 1/
Vo (i-1, j) V-3 (i-1, 9
(o) Sequential Formulation (b) Parallel Formulation

Figure 1: Formulation of the iterative method.

Page2

1.2 An Engineering Application

The chosen engineering application of Laplace Equation, in this case, is to evaluate the
potential distribution in a simplified electrical transmission line, The ¢ross section of the
transmission line is assumed, for the sake of simplicity, to be rectangular as shown in Figure
2a. Owing to symmetry, only one quarter of the section needs to be investigated; the problem to
be delt with is thus a triangular structure (Figure 2b) which may be represented by triangular
matrices.

dielectric
region

=Y

1=0 B
j:

{a) (b)

Figure 2: Modeling transmission line

In this model, the conductor and insulater regions have constant potentials which are
normalised to 1.0 and 0.0 respectively. This leaves the dielectric region to be computed.
Referring to Figure 2b, there are three conditions (areas) in the evaluation i.e. the vertical
border on the extreme left (3=0 & i>Y) whose East points are the mirror of their West points ,
the horizontal border at the bottom (i=0 & 3>X) whose North points are the mirror of their South
points, and the rest of the dielectric region which follows the diagram in Figure 1. The starting
values of the points in this region are initialised to 0.5. The structure of the transmission line
is set to be M=1000, X=6 and Y=10 (these values may be altered). And finally, the relaxation
factor RF is set {0 0. 9.

The terminating condition of the computation is the difference between the newly

evaluated values of all grid points and their corresponding old values, which must be less than
0.0001 (this value is variable, depending on the required accuracy of the final results).

Page3

2. Implementation of Formulations

The sequential and parallel formulations of the numerical algorithm for Laplace
Equation are implemented in the C pregramming language, The parallel formulation has
also been implemented in SISAL (Appendix).

2.1 Sequential Formulation

In tradmat.c, the traditional (sequential) formulation is implemented using only one
matrix, ie VIill[jl, to express the solution as illustrated in Figure la. Another equivalence is
tradpoint.c, in which pointers to arrays, i.e. (*rowV) [j1, are used in place of the matrix so
as to speedup the execution of this sequential formulation.

2.2 Parallel Formulation

The parallel formulation has been implemented in segmat.c, segpoint.c, parmat.c
and parpoint.c.

22,1 Sequential Implementation

segmat .c is a sequential implementation of the parallel formulation illustrated in
Figure 1b, in that none of its program parts involves creation and syncronisation of multiple
processes, and job distribution for these processes. In this code, the new and old values of the
potentials are stored in newv{i] {3} and V[i] [3] matrices respectively. ((*rownew) [3] is
used in place of newv[il [j] in seaqpoint.c, the corresponding pointers-to-arrays version).
By swapping the first pointers of (*rowV) [j] and (*rownew) [j] before the computations are
repeated in the next iterations, the old and new matrices have their values swapped in
negligible time (the parallel formulation is thus costly in standard FORTRAN
implementation because the former does not provide such luxury).

2.2.2 Explicit Parallel Implementation in C

The parallel implementation of the paralle]l formulation, parmat.c and parpoint.c,
are coded using the synchronization primitives of the parallel programming library
{parallel.h) on Encore’'s UMAX 4.3 and UMAX V operating systems, These primitives are
used in creating shared memory spaces, in createshare (), for the matrices and other shared
variables. Child processes (there are nproc number of them) are created in spawn () and
merged in join (). Once the program has called spawn (), the program section down to the eall
to join (), and the non-shared data, are replicated for each created child process. By such, the
workload is decomposed tc all processes. However, work is shared only at the loop level using
Loop Splitting (Figure 8);

for {i=id; i<=M; i+=nproc)

2.2.3 Implicit Parallel Implementation in SISAL

Except for some minor modifications to checking for program termination condition, the
{parallel) implementation in SISAL, which represents a matrix as an array of arrays, is
relatively much simpler than that in C. It is almost a straightforward translation from the
sequential implementation in segmat.c;in sisal.sis,OLD V{il{3) is used to naturally
represent the old values of v[i] [3]. Furthermore, in SISAL, one does not have to explicitly deal
with shared memory allocation, process creation and termination, loop decomposition, work
scheduling and process synchronization as they are otherwise necessary in the explicit
parallel implementation in C because these are all conducted by SISAL's compiler, OSC, and
0OSC's dynamic routines.

Page4

3. Performance

These codes have been executed on a 4 XPC processor based (4 MIPS per processor) and a
20 APC processor based (2 MIPS per processor) Encore Multimax multiprocessor, as well as an
IBM RS6000/530 (30 MIPS) workstation. The Multimax multiprocessors are useful in the
research on the prospective performance of (shared memory) parallel computations although
their processors are not high performance RISCs like the RS6000 processors. The latter is
therefore used here as a contrast to indicate the realistically achievable run time and speedup
performance of multiprocessor systems which are based on high performance processors of the
class, or better, of the RS60600.

3.1 Performance Comparisons of Traditional and Parallel Formulations

As already described, the computations are iterated until the results converge to less than
a threshold of 0.00601 with RF set to 0.9 (this RF value has been checked to ensure good
convergence speed for both formulations). Thus it is important to compare the convergence
speed of both formulations in terms of the number of iterations (iter) required for
convergence, and their computation times for complete runs {(programs execute until the results
converge) of their programs. For these comparisons, the program termination condition in the
codes is:

while {(repeat>()}
iterate;

where repeat is set to 0 if the values of all points satisfy the termination threshold, and to 1
otherwise.

The results obtained from the IBM RS6000/530 and the 4 XPC processor based Encore
Multimax are tabulated in Table 1. They indicate that the parallel formulation is competitive,
in every sense, with the traditional formulation (except that the storage requirement is twice, of
course). The former actually converges approximately 2% faster. However, although it
completes in also 2% less time on the RS6000 machine, it surprisingly takes 2% more time on
the 4 XPC based Multimax.

On the other hand, the SISAL implementation of the parallel formulation runs
significantly slower on the RS6000 machine because, currently, the IF1 cede optimisation
routines has not yet been successfully installed in the OSC compiler on the machine. The result
would have been (more) competitive with the C implementations otherwise, as indicated by the
SISAL run time on the 4 XPC Multimax which is over 2 hours faster than parpoint . c.

machines RS6000/530 4 XPC processor Encore
formulationg traditional parallel traditional parallel

codes |tradmatc | tradpoint.c |[seqpoint.c | sisal.c| tradpointc iseqpointc [parpoint.c | sisal.sis

iter 1835 1835 1801 1802 1835 1801 1802 1802

time(s} 3343 3341 3276 5501 36784 37568 38894 30607

Table 1: Results of complete runs on two different machines

Pageb

3.2 Performance on Encore Multimax Multiprocessors

The performance evaluation of the complete runs on the Multimax multiprocessors
serves to demonstrate the time significance of parallelism in codes and parallelisation of these
codes. On the other hand, the evaluation of the one-iteration runs is meant for detailed
investigation of the parallel processing performance of these codes.

3.2.1 Complete Runs

A complete run of each of the codes developed requires a long execution time on the two
Multimax multiprocessors. parpoint.c, for example, takes nearly 11 hours on one processor
of the 4 XPC Multimax, and is expected to take twice this time on the 20 APC Multimax. As a
result, the benchmark of the complete runs has been performed only on the faster Multimax
(being the 4 XPC Multimax), and using only the code that runs faster (being segpoint.c,
parpoint.c and sisal.sis). The results of the complete runs on Table 2 amply indicate the
impact of parallel processing support on reducing computation time. With 94% utilisation of 4
processors (Figure 4), the run time of parpoint.c (Figure 3) has been significantly reduced
down to approximately 3 hours (264% faster than its single CPU run time).

seqpoint.c parpoint.c sisal.sis

Proc time(s) time(s) S Sco times(s) S

1 | 36784 (10.2 howrs) 38894 (10.8 h) | 1L.00 § 0.95] 30607 (8.5h) | 1.00
- 20310 (56h) | 1.927 1.81] 22498 (6.2h) | 1.36
- 13900 (39h) | 2.80] 2.65| 17528 (49n) | L.75
- 10403 (2.9 h) | 3.74]| 3.54 }14903 (4.1 h)| 2.05

E- N NV

Table 2: Results of complete runs on a 4 XPC processor based Encore Multimax multiprocessor

Run Time vs #Procs (20-APC Encore} ‘or4’
40 .0
3

35,04
30.0-4

""""""" segpoint.c
parpoint.c
sisal.sis

Time(xlOODsec?s'O“
20,0

15.04
10.0-

Numkber of Processors

Figure 3: Execution curves for complete runs on the 4 XPC based Multimax

Page 6

Speedup

Speedup vs #Frocs (4-XPC Encore) ‘crlapd’

-5

SO NN W W
e 1 e s
]

}

PN

Ideal
S parpoint.c
= Seo
S sisa

..-Sslice

3.0

Number of Processors

Figure 4: Speedup curves for complete runs on the 4 XPC based Multimax

3.2.1 One-Iteration Runs
iradmat.c fradpoint.c lseqmat.c parmat.c beqpoint.c parpoint.c (SSIISaAIEiiz) 25[?:?;23
Proc| Time(s) Time{s) Time(s)|Time(sy S Sco {Time(s) |Time(sy S | Sco | Time(s] SU [Sslice |Ssplit
1 81.0 550 | 86.6 | 88.8 }1.00 |0.98 { 58.8 598 | 1.00] 098 | 52.6 |1.00}1.00] 1.00
2 - - - 447 11.99 |1.94 - 302 1 1981195 | 41.0411.28}1.33 § 2.00
3 - - - 30.0 12.96 |2.89 - 206 { 290285 | 32.2211.63]1.80 {1 2.99
4 - - - 22,7 $3.91 |3.81 - 155 1 3.8613.79 | 26.701197}2.29 § 3.99
5 - - - 18.2 |4.88 j4.76 - 12.7 1 4.71|4.63 | 23.5812.23]12.78 | 4.98
6 - - - 15.6 [5.69 {5.55 - 10.6 | 5.64]5.55 | 20.80]2.5313.27 | 597
7 - - - 13.6 }6.53 {6.37 - 9.20 | 6.5016.39 | 18.782.80{3.77 | 6.96
8 - - - 11.8 }7.53 {7.34 - 8.10 § 7.38]7.26 | 17.5213.00{4.27 | 194
9 - - - 10.5 1846 {8.25 - 7.20 § 83118.17 | 16.5213.18{4.77 | 8.93
10 - - - 9.50 19.35 |9.12 - 6.90 | 8.67]|8.52 | 15.52]3.39/5.26 | 991
11 - - - 9.00 19.87 19.62 - 5.90 {10.100 9.97 | 14.72]3.5715.76 110.89
12 - - - 8.10 110.96110.69] - 5.80 1103110141 14.1213.7216.26 |11.87
13 - - - 7.60 111.68{11.39 - 540 1 11.07710.89| 13.5213.89{6.76 | 12.85
14 - - - 7.30 12.16}11.86 - 490 112.20012.00{ 13.0674.03}17.26 }13.82
15 - - - 7.00 112.69412.37 - 4.60 | 13.00012.781 12.8214.10]17.76 | 14.79
16 - - - 6.30 |14.10/13.75] - 440 | 13.5913.36] 12.66{4.15[8.26 |15.76

Table 3: Results gathered from the 20 APC processor based Encore Multimax

Page7

tradmat.c fradpoint.c !se(;mat.c parmat.c beqpoint.d parpoint.c SIS;?{?SVZ 0
Proc| Time(s} Time(s) jTime(s)| Time(s] S Sco | Time(s) | Time(s] S { Sco { Time(s)| S
1 316§ 226 34.6 | 375 |1.00 |092 | 266 274 | 1.00{097] 15.35 | 1.00
2 - - - 19.9 11.88 | 1.74 - 147 | 1.86]1.81 § 1139 | 1.35
3 - - - 13.9 12.70 | 2.49 - 10.1 | 271{263] 859 | L79
4 - - - 10.3] 3.64 13.36 - 8.10 | 3.38{3.28] 8.02 | 191

Table 4: Results gathered from the 4 XPC processor based Encore Multimax

All the implemented codes spend most of their life time iterating in the loop iteration
section. For the purpose of investigation into the parailel processing support given to the
parallel codes with up to 16 processors, it suffices therefore to benchmark these codes with only
one loop iteration, This eases the benchmark on the 20 APC based Multimax. Thus, the
program termination condition of these codes for this benchmark is:

while (iter<=0)

iterate;
Rurn Time ves #Procs (20+-APC Encore} *lap20’
90. 09 ... L o T ST T R e
B80.0 1al
~~~~~~~~~ Serlal: segmat.c
70,0 parmat.c
60.0 e e tEIrma. Serials  geqpolint. o,
Time(se0350 o parpoint.c
: sisal.sis
40.0
30.0
20.0
10.0
e
0.0

2.0

Number of Progessors

4.0 6.0 8.0 10.0 12.0 14.0 16.0

Figure 5: Execution time curves in the 20 APC processor based environment

Run Time vs #Procs (20-APC Encore) ‘lapd’
40,0 4
B PN
S-S gegmat Lo
30.0 parmat.c
) a5 g S N e escw Segpoednt G -w
Time (sec) * parpoint,c
20.0 aeeee sisal.sis
15.0-4
1o.om\m_m_h_‘
5.0. '
0.0

1.

Number of Processors

Figure 6;: Execution time curves in the 4 XPC processor based environment

Page 8




The execution results of these codes on two separate Encore Multimax multiprocessor
environments are tabulated in Table 3 and Table 4. The run times and speedups for the two
environments as a function the number of processors are plotted in Figures 5 to 8. The versions
of OSC compilers on the 20 APC and 4 XPC processor based Multimax environments are
"SISAL 1.2" (perhaps V1.0 ?7) and "SISAL 1.2 V2.0" respectively.

It is worth noted also that the 20 APC based Multimax has abundantly free processors to
service other jobs in the system at the time of the benchmark while the 4 XPC based Multimax
has not. Hence, the results gathered from the latter may be less consistent or accurate than they
should be.

3.2.2.1 Execution Time

As a result, the comparisons in the single processor run times of segqmat.c with
parmat.c, and that of seqpoint.c with parpoint.c in Table 3 (20 APC based) show that the
overhead due to parallelisation is gratifyingly low, being around 2.5% and 2% respectively.
And the same comparisons in Table 4 (4 XPC based) show the respective parallelisation
overheads of 8% and 3%.

The update in-place optimisation and the adoption of microtasking in OSC has improved
the run time of SISAL codes. This is demonstrated by the execution time curve of sisal.sis in
Figure 5 which shows that, on the single processor run, the implicit SISAL implementation
runs 12% faster than the more efficient version of the explicit C implementation (parpoint.c).
The new version of OSC performs even faster, being 44% for similar comparison, as shown in
Figure 6.

Speedup vs #Procs (20-APC Encore) ‘lap20’
16,0 ASsplit
14,04

Tee—— 5 parmat ..o
12,0~ -rememeee- Sco
——— 0 parpoint.c
SpeeduplD'O" - ot =) .
8.0 sisal, siges _.-Sslice
Ide e
6.0 A e e
4.0 DD
2.0
.ol , ‘ . . . . :
2.0 4,0 6.0 8.0 10.0 12,0 14.0 16.0
Number of Processors

Figure 7: Speedup curves in the 20 APC processor based environment

Speedup vs #Procs {4-XPC Encore) ‘lapd-”
4.0
3.54
Ideal
3.0 4 T & parmat.c 7 _Im
Speedup2'5’ St _Sslice
2.0  rommeeree _____ —
1.5 -
1.0 e
0.5 4
0.0 : -
1.0 2.0 3.0 4.0
Number of Processors
|

Figure 8: Speedup curves in the 4 XPC processor based environment

Page s



3.2.2.2 Speedup

The implementations in C {(parmat.c and parpoint.c) are effectively parallelised with
the speedup curves in Figures 7 and 8 showing very good parallel processing support provided
by the two Multimax multiprocessors. Owing to the effect of different system configuration
described earlier, the speedup performance on the 4 XPC based Multimax could be expected to be
as good as that on the other Multimax if it has the same ideal configuration.

Nevertheless, the results have clearly indicated that more processors may be
incorporated to obtain further scalable speedups with very high machine utilisation, thus the
success of the explicit parallelisation in C.

While the single processor run time of the SISAL code is significantly faster than the C
equivalence, it is unfortunate that SISAL's speedup performance is shown to be poor in this
case, and worse when more processors are incorporated (only approximately 30% of the C codes'
speedups at 16 processor, in Figure 7). The vital factor contributing to the poor performance of
the SISAL code is the inefficiency of the job scheduling scheme, called Loop Slicing, adopted by
0SC to decompose and distribute, in this case, uneven loops which deal with triangular
matrices. This leads to the analysis in the next section.

The results also indicate the characteristics of shared memory parallel processing as
discussed in [3] such as the scalable improvement with multiple processors, Amdahl's effect,
and the effect of memory contention in a shared memory environment when a large number of
processors are incorporated.

4.0 Load Balancing and Loop Scheduling in Triangular Matrix Problem

In a triangular matrix problem, Loop Slicing scheme generates imbalance loads for all
processes. Assuming that no other overheads are present, Figure 9 illustrates that the speedup
achievable with multiple processers is solely dependent on the process which acquires the

heaviest load, resulting in a much degraded estimated speedup S, , of

2
(nproc)
slice = 2(nproc -2)+3

where nproc refers to the number of processors. This estimation is supported by the curves of

sisal.sis and § , shown in Figures 5 and 6.

4/3=1.33 9/5=1.80 16/7=2.29

Figure 9: Estimation of speedup S; ., from Loop Slicing for a triangular matrix problem.

lice

Page 10



A good solution recommended to this problem, which is vital to parallel programming in
SISAL, is by implementing Loop Splitting in the job scheduling scheme in OSC. Using this
scheme, the job of a Joop such as

for (i=0; i<M; i++)
{ for (j=0; j<M-3i; J++}
c...ete.. ..

1

i=M-1

I

=M1
M points
& g

FigurelO: Estimation of speedup .S;pm from Loop Splitting for a triangular matrix problem.

can be distributed more evenly to all processes, as shown in Figure 10, if it is splitted along i as

for {(i=1d; i<M: i+=nproc)
{ for (3=0; j<M=-i; j++)
c...etoLL ..

}

where id the processes’ i.d. numbers ranging from 0 to nproc-1. In this case, the total number
of points dealt with is

% MAM+1)
P or e

2
p=1

And the longest chain {(the most number of points given to a particular process) is
b i penproc
p=M
which is equivalent, in C, to

sum=0;
for (p=M; p»=1; p-=nproc}
sumt=p;

The estimated speedup 'S»'VP“I , assuming no parallelisation overhead, is then

Page 11



M(M+1)
2

split = 7 1
Z D » Po=nproc
=M

which almost coincides with the ideal speedup for nproc ranging from 1 to 16. As a result, as
has been shown in earlier sections and in Figures 4, 8 and 10, the explicit C implementations
which adopted Loop Splitting exhibit much better speedup performance than the present SISAL
implementation.

Conclusions

In this application study in explicit and implicit parallel computing, a simplified
electrical transmission line model has been analysed, in a triangular structure, to evaluate
the potential distribution in the model. A numerical algorithm to Laplace Equation, which
solves this problem, has been investigated. A traditional (sequential) formulation and a
parallel formulation of the algorithm have been described. These formulations have been
implemented serially, and the parallel formulation has also been implemented in parallel.
The codes have been executed on an IBM RS6000/530 workstation, and a 4 XPC processor based,
as well as a 20 APC processor based, Encore Multimax multiprocessor. The results of the
complete runs show that the formulation for paralle]l implementation is competitive with the
sequential traditional formulation. The benchmarks on the two Multimax environments show
scalable, and close to ideal, speedup performance for the explicit implementation in C, with low
parallelisation overhead, thus indicating that the explicit parallelisation attempt has been
successful. The speedup performance of the SISAL implementation of the parallel formulation
ig, however, poor in this application (which is modelled by triangular matrices) because the
loop slicing scheme implemented in OSC fails to distribute the decomposed loops more equally.
This scheme, and a solution to this load balancing problem by way of loop splitting, have been
critically analysed and their results discussed. The analysis has concluded that loop splitting
is a better general solution than loop slicing to gain good code performance and parallel
processing support in shared memory multiprocessor environments similar to that of Encore
Multimax.

Acknowledgements

I would like to thank the Department of Communication and Electrical Engineering at
RMIT for kindly providing access to its 20 APC processor based Encore Multimax, and
Professor Greg Egan of LCCS for his contribution to discussions on the issue of loop slicing and
the general aspects of parallel processing.

References

[11 McGraw J. et al., "SISAL: Streams and lteration in a Single Assignment Language,
Language Reference Manual Version 1.2", Memo 146, Lawrence Livermore National
Laboratory, March 1985,

[2]1 Cann D., "Compilation Techniques for High Performance Applicative Computation”,
Technical Report CS-89-108, Colorado State University, May 1989.

[3]1 P.S. Chang, "Implementation of 2 Numerical Weather Prediction Model in SISAL",
Master's Thesis, RMIT Victoria University of Technology, 1990; also Technical Report
31-017, Laboratory for Concurrent Computing Systems, Swinburne Institute of Technology,
June 1990,

Page 12



Appedix (i} tradmat.c

#include <stdio.h>
#include <math.h>

#define M 1000
#define X 6
#define Y 10
#define RFAC 0.9

typedef float GRID[M-+6][M=6];
typedef float (*RP)[M+6;

float LAPLACE(North,West,South,East,Centre)
float North,West,South,East,Centre;
{ return (North+West+South+East - 4.0%Centre) * RFAC/4.0 + Centre;

j

mt compute(V, incomplete)
GRID V;
mt  incomplete;
{int i3
float 0ldV, LAPLACE();

for (i=0; i<M; i++)
{ for (j=0; i+j<M; j++)
{ oldV=VEI(j;
if(==0 & 1>Y) VIi]i0]=LAPLACE( V[i+1}{0], V[iJ[1]}, V[i-1]{0], V[D{1], VIil[0O] )

else if (i==0 & j>X) VIEl=LAPLACE( V[i+1}il VIil[j-1], VE+11{3} VI, VIAG %
else if (=Y | 1>X) V{il[jl=LAPLACE( V[i+1}{], VIilj-11, VIi-11f1, VIil{3+1], VEGE);
if { fabs(V[i}[j]-0ldV) >= 0.0001 ) incomplete=1;

}

return{incomplete);

}

void initialise(V)

GRIDV;

{imt ij

float Vcore=1.0, Vour=0.0, Vgap=(Vcore+Vout)/2.0;
for (1=0; i<=M; i++)
for (3=0; i+j<=M; j++)
{ if (i+j>=M) V{i}[j]=Vout;
else if (1<=Y & j<=X) V[i]{jl=Vcore;
elise V[il({l=Vgap;
}

}

main()
{ GRIDYV;
RP rowV;
int compute(), repeat, 1, j, iter;

rowv=Y,
initialise{rowV);
iter=1;

repeats=1;

/* use ‘repeat’ for a complete run */
*while (repeat>0)*/
while(iter<=1)
{ iter++;
repeat=0;
repeat=compute(row V, repeat);

}
printf("iter=%dwn", iter-1);
}



Appendix (ii) tradpeint.c

#include <stdio.h>
#include <math.h>

#define M 1000
#define X 6
#define Y 10
#define RFAC 0.9

typedef float GRID[M-+6]{M+6};
typedef float (*RP)[M+6};

void initialise(rowV)
RP rowV;
{ imt 53
float Veore=1.0, Vout=0.0, Vgap=(Vcore+Vout)/2.0;
for (i=0; i<=M; 1++)

{ for (j=0; i+j<=M; j++)
if (i+j>=M) (*rowV)i]=Yout;
else if (ix=Y & j<=X) (*rowV)[jil=Vcore;
else CrowVj1=Vgap;
row V-i+;
}
J

float LAPLACE(North, West,South,East,Centre)fioat North, West,South,East,Centre;
{ remm (North+West+South+East - 4.0%*Centre) * RFAC/4.0 + Centre;

}

int cempute(rowV,incomplete)
RP rowV;
int incomplete;
{int ij
float 01dV, LAPLACE();
for (=0; 1<M; i++)
[ for (j=0; i+j<M; j++)
{ oldV=({*rowV){il;
if (=0 & >Y) (trowV)[0i=LAPLACE{ (*@owV¥+1)){0], (FrowV)[iL,
(*{rowV-1))[0], (*rowV)[1], CrowV)[0] );
else if (i=0 & j»X) (*rowV)[jI=LAPLACE{ (*(rowV+1)){j], (*rowV)[j-1],
(rowV+DYj], CrowV)[j+1], (FrowV)[il »;
else if (>Y | X)) CrrowV)[jJ=LAPLACE( (*(rowV+1)){i], (*rowV)[j-11,
(*owV-D){jl. (rowV){i+1], (*rowV){j]
if { fabs((*rowV){jl-01dV} >= 0.0001 } incomplete=1;

rowVY-++;

return{incomplete);

}

main{)
{ int i, j, repeat, iter, compute();
GRID V;
RP  rowV;
rowV=VY;
initialise{rowV);
repeat=1l;
iter=1;
/* use 'repeat’ for a complete run */
[Fwhile(repeat>0)*/
while(iter<=1)
{ repeat=0,;
iter++;
repeat=compute(rowV repeat); }
printf("iter = %d\n”,iter-1);
}



Appendix (i) seqmat.c

#include <stdio h>
#include <math h>

#define M 1000
#define X 6
#define Y 10
#define RFAC 0.9

typedef float GRID[M-+6]{M+6];
typedef float (*RP){M+6];

float LAPLACE(North,West,South,East,Centre)
float North,West,South,East,Centre;
{ return (North+West+South+East - 4.0*Centre} ¥ RFAC/4.0 + Centre;

}

int  compute(V, newV, incomplete)
GRID V, newV,;
int incomplete;
fmt i3
float LAPLACE();
for (i=0; i<M; i++)
for (i=0; i+{<M; j++)

{

if (=0 & >Y) newV[i){0]=LAPLACE( V[i+1]{0], V[i}(1], V[i-11[0], V{i}{1], VEi]i0] 3

else if (i==0 & j>X) new V[il{j}=LAPLACE( V{+1]{j]l, Vl[j-1] VE+1E] VIIG+A) VG »
else if (i>Y | j>X) new V[il{j]=LAPLACE( V{i+1}{jl. VIil{j-1}. V[i-11(i]. VRl{j+1], VI )
if { fabsmewV[i][j]-V{i}[j]) >= 0.0001 ) incomplete=1;

return(incomplete);

}

void initialise(V, newV)
GRID V, newV;
{ Imt &L
float Veore=1.0, Vout=0.0, Vgap=(Vcore+Vout)/2.0;
for (i=0; i<=M; i++)
for (j=0; i+j<=M; j++)
{if (i+j>=M) { VIilijl=Vouy; newV}i]{j}=Vout; }

else if (i<=Y & j<=X) { V]il[jl=Vcore; newVlil[jl=Vcore; }
} else { VIil[il=Vgap; newVI[il[jl=Vgap; 1
}
main{)
{ GRID V, newV;

RP rowV, rownew, tem;
int compute(), repeat, 1, j, iter;

rowV=V,;
rownew=newV;
initialise(rowV, rownew);
iter=1;
repeat=]1;
[* use repeat’ for a complete run */
*while (repeac>0y*/
while(iter<=1)
iter4-+;
repeat=0;
fem=rownew;
ownew=rowv,
rowV=tem;
repeat=compute{row vV, rownew,repeat); }
printf("iter=%d\n", iter);

}



Appendix (iv) seqpoint.c

#include <stdio.h>
#include <math.h>

#define M 1000
#idefine X 6
#idefine Y 10
#define RFAC 0.9

typedef float GRID[M+6][M+6];
typedef float (*RP)M+6];

void initialise(rowV, rownew)
RP rowV, rownew;
fint %3
float Veores==1.0, Vout=0.0, Vgap={(Vcore+Vout)/2.0;

for (i=0; i<=M; i++)}
for (j=0; i+j<=M; j++)

{ if(ti>=M) { (FrowV)[il=Vout; (*rownew)[j]=Yout; }
else if (ie=Y & je=X} [ (FrowV)){jl=Vcore; (*rownew)[jl=VYcore; }
else [ rowV)|il=Vgap; (*rownew)[jl=Vgap; )
}

TOWNEW-+;

FowWV-+;

]
j

float LAPLACE(North,West,South,East,Centre)
flioat North,West,South,East,Centre;
{ return (North+West+South+East - 4.0*Centre) * RFAC/4.0 + Centre;

)

int compute(rowV rownew,incomplete}
RP rowV, rownew;

int incomplete;

Cint ij;

float EAPLACE();

for (i=0; i<M; i++)
{ for {i=0; i+i<M; j++)
{

if (=0 & i>Y) (*rownew)[0}=LAPLACE( (*(row V+1 1[0}, (Frow V1],
(FrowV-1))0], (*rowV)[1], (*rowV)[O] )
else if (;I==0 & >X) (*rownew)[jl=LAPLACE( (*(rowV+1){i], (*rowV){j-1},
(lrowV+INLL GrowV)[j+1], (rowV){i] )
else if (i>Y 1 j>X) (*rownew)[jiI=LAPLACE( (*(rowV+1))[j], (FrowV)[j-11,
CxrowV-1)[il, (FrowV){j+1], CrowV[j] )
if { fabs((*rownew )[i]-(*rowV)[i]) >= 0.0001 ) incomplete=1;
}
TowV-+;
TOWNewW++;

]

return{incomplete);



main{)

{
int i, j, repeat, iter, compute();
GRID V, newV:;
RP  tem, rowV, rownew,

rowV=V;

TowWnew=newV;
initialise(rowV rownew);
repeat=1;

iter=1;

/* use repeat’ for a complete run */
Fwhile(repear>0)*/
while(iter<=1)
iter++;
tem=rowV;
rowVY=rowrnew;
TowWnew=tem;
repeat=0;

repeat=compuie{rowV,rownew,repeat);

}
printf("iter = Jod\n",iter-1);
}



Appendix (v) Part of the code of parmat.c

void initialise{V,newV,nproc,id}
GRID V, newV;
int nproc, id;
{ int ij
float Veore=1.0, Vout=0.0, Vgzap=(Vcore+Vout)/2.0;
for (i=id; i<=M; i+=nproc)
for (j=0; i+j<=M; j++)

{  if (i+=M) [ V[il;l=Vout; newVi{i]ijl=Vouy; }
else if (i<=Y & j<=X)  { V[i]jl=Vcore; mnewViil{jl=Vcore; }
else { VIilj=Vgap: newVliliil=Vgap; }

]

)

void compute(V, newV, nproc, id, incomplete, RFAC)
GRID V, newV;
int  nproc, id, *incomplete;
float RFAC;
{int i,j;
float LAPLACE();
for (i=id; i<M; i+=nproc)

for (j=0; i+i<M; j++)

{if (j==0 & DY) newVIi]{0]=LAPLACE( RFAC, V[i+1]{0], V[i][1], V{i-1][0], VLi][1], V][O );
else if (i==0 & »>X)  newV{ij[jl=LAPLACE( RFAC, V{i+1]{j], V[1{3-1], VE+1]({], VEIG+11 V] X
else if (>Y 1 >X) newV{il[jl=LAPLACE( RFAC, V[i+11[j], V[il[j-1}, V{i-11f5}, VEj+1], VIEIE] )

if {fabs(newVTi]{j]-V[il[j1} >= 0.0601) *incomplete=1;

}

main{)

{ RP tern, TowV, rownew;
int i, §, *iter, *repeat, size, id, nproc;
float RFAC=0.9;
BARRIER *bar;

scanf("%d", &nproc);

createshate(size,rowV¥, rownew, repeat,iter,bar),
*repeat=1;

*iter=1;

id=spawn{nproc};
initialise{rowV,rownew,nproc,id);

barrier(bar);

/% use ‘repeat’ for a complete run */
*while(*repeat>0)*/
while(*iter<=1)
barrier(bar), /* This BARRIER is vital to avoid the effect of race condition */

if (3d==0) { *repeat=0;
(*iter)++; ]

barrier(bar);

tem=rowV;

rowV=rownew;

rownews=term;

compute(rowV, rownew,nproc,id,repeat, RFACY,
barrier(bar);

}

barrier{bar);
join{nproc,id};
printf("iter=%d\1", *iter);

}



Appendix (vi) Part of the code of parpoint.c

void initialise{rowV,rownew,nproc,id)
RP rowV, rownew;
int nproc, id;
{ int i
float Veore=1.0, Vout=0.0, Vgap=(Vcore+Vout)/2.0;
rowV+=id; rownew+=id;
for (i=id; i<=M; i+=nproc)
{
for (=0; i+j<=M; j++)

{ if (+j>=M) { (rowV)[jl=Vout; (*rownew)|jl=Vout; }
else if (i<=Y & j<=X) { (*rowV)jl=Vcore; (*rownew){jl=Vcore; }
else { (rrowV)[}]1=Vgap; (*rownew)[i]=Vgap, }

)

rowV+=nprog; rownew-+=nproc;

j
}

void compute(rowV, rownew, nproc, id, incomplete, RFAC)
RP rowV, rownew:;
int  nproc, id, *incomplete;
float RFAC;
{imt Lf
float LAPLACE();
rowV+=id; rownew-=id;
for (i=id; i<M; i+=nproc)
f for (3=0; i+j<M; j++)
[ if G==0& >Y) (*rownew){01=LAPLACE( RFAC, (*(rowV+1))[0], (*rowV)[1],
(HrowV-1)[0], *rowV)[1], (*rowV)[0] };
else if (i==0 & j>X) (*rownew){j]=LAPLACE( RFAC, {*(rowV+1){jl, (*rowV){3-1],
(rowV+1)Mjl, (.rowV)[j+11, (rowV)[3] )
elseif (i>Y [j»>X)  (*rownew)[jl=LAPLACE( RFAC, (*(rowV+1))[i], (*rowV}[j-1].
(*owV-1)[jl, CrowV){j+1], (*rowV)ij] );
if ( fabs((*rownew){j]-(*rowV}[j]) >= 0.0001 } *incomplete=1;

o WV+=HPTOC; TOWREW+H=TIProc;
)

main()
{ RP tem, rowV, rownew;
int i, J, Fiter, *repeat, size, id, nproc;
float RFAC=0.9;
BARRIER *bar;
scanf("%d", &nproc);
createshate(size,rowV, rownew, repeat,iter,bar);
*repeat=1;
*iter=1;
id=gpawn{nproc);
barrier(bar);
initialise(towV,rownew,nproc,id);
barrier(bar);
J* use 'repeat’ for a complete nn ¥/
Fwhile(*repeat>0)*/
while(*iter<=1)
{ barrier(bar);
if (id==0) { (*iter)++;
*repeat=0); )
barrier(bar);
tem=rowV;
rowV=rownew;
TOWIEW=tem;
compute(row V,rownew,nproc,id,repeat, RFAC):
barrier(bar); 1
barrier(bar);
join{nproc,id);
printf("iter=%d\n", *iter);

}



Appendix (vii) sisal.sis
define main
type GRID=ARRAY[ARRAY[REAL]J};

function LAPLACE(RF,North,West,South,East, Centre: real returns real)
(North + West + South + East - 4.0 * Centre) * RFA4.0 + Centre
end function

function main(M: integer returns integer, GRID)
let X, Y:=6, 10;
RFEAC:=09; Veore:=1.0; Vouti=0.0; Vgap:=(Veore+Vout)/2.0;

in for initial
iter:=1;
complete:=0;
V= foriin O, M
returns array of
for jin 0, M-i
returns array of if (i+j>=M) then Vout
elseif (i<=Y & j<=X) then Vcore
else Vgap
end if
end for
end for;

% use 'complete’ for a complete run
%owhile complete=() repeat
while iter<=1 repeat
iter:= old Her + I,
V., complete:=
foriin O, M
Vij,complete:=
forjin 0, M-i
Vn:= if (i+j>=M) then Vout
elseif (=0 & i>Y) then LAPLACE(RFAC, old V[i+1,0], old V[i1],
. old V[i-1,0], old V[i,1], old V{i,0}])
elseif (i=0 & j>X) then LAPLACE(RFAC, old V[i+l,j], old V{ij-1],
old V{i+1,], old V[ij+1], old V{iiH
elseif (i>Y | j>X) then LAPLACE(RFAC, old V[i+1,i], old V[i,j-1],
old V[i-1,j], old V{ij+1}, old V[i,j]}
else Vcore
end if;
complete:=if ABS(Vn-old V[i,j)>0.0001 then 0 else I end if
returns array of Vo
value of product complete
end for
returns array of Vij
value of product complete

end for;
returns value of iter
value of V
end for

end let
end function



