LABORATORY FOR |
CONCURRENT COMPUTING SYSTEMS

COMPUTER SYSTEMS ENGINEERING
School of Electrical Engineering

Swinburne Institute of Technology

John Street, Hawthom 3122, Victoria, Australia.

A Comparison of
Structure Accessing Techniques in
IdA and SISAL on the
CSIRAC II Dataflow Multiprocessor

Technical Report 31-024

P.G. Whiting¥
G.K. Egani

tDivision of Information Technology
Commonwealth Scientific and Industrial Research Organisation
723 Swanston Street, Carlton, 3053

tLaboratory for Concurrent Computing Systems

Swinburne Institute of Technology
John Street, Hawthorn 3122

To be presented at the Third IEEE Symposium on Parallel and Distributed Processing,
Dallas, Texas, December 1991.

Version 1.0 October 1991

Abstract:

The paper describes the implementation of the functional language IdA on the CSIRAC II
dataflow multiprocessor. IdA is a derivative of MIT's ID Nouveau language and CSIRAC I
is a dataflow architecture which combines the features of static queued and dynamic dataflow
architectures and as such is outside the generally accepted taxonomy. The non-strict
implementation of structures in IdA exploits the overlap in the production and consumption
of structures. This eliminates the unnecessary serialisation of the computation evidenced in
the implementation of another functional language SISAL. To illustrate this, results for the
model numerical weather prediction code, Shallow, are presented for both IdA and SISAL
formulations. These results show that for similar instruction counts a 39% reduction in
runtime is obtained for the IdA implementation over the SISAL implementation in a

representative scientific application.

A

Comparison of IdA and SISAL Struciure Accessing Techniques on CSIRACII 2

1 Introduction

The Joint Parallel Systems Architecture Project officially commenced in May 1986 as a
collabarative project between the Royal Melbourne Institute of Technology (RMIT) and the
Commonwealth Scientific and Industrial Research Organisation (CSIRO). Given the human
and financial resources, the project was studying a hybrid dataflow computer - CSIRAC1I -
and conducting research into programming languages for this high-speed computer. This work
is now continuing in the Laboratory for Concurrent Computing at Swinburne Institute of
Technology.

(Conventional) (Manchester dfm)

Figure 1 - experimental environment

The experimental environment into which the IdA study fits is shown in Figure 1.
Compilers have been developed for IdA [23], Pascal {21] and GHC [25][17]. The IdA and
Pascal compilers produce IF1 code [19] although, as will be described in this paper, IF1 has
been augmented to support the I-structures required by IdA. The IF1 code is translated by the
CSIRAC 11 IF1 backend [22] to the i2 block structured assembly language [9]. Both IdA and
Pascal can take advantage of the competent IF1 optimisers now available to support SISAL
[15]. GHC makes extensive use of tag manipulation primitives in the architecture and targets
directly to i2.

2 IdA and CSIRAC II
2.1 IdA

IdA [23] is a derivative of the ID Nouveau language developed at MIT [16]. IdA includes
features not found in ID Nouveau including explicit typing of variables and input /output. The
feature of IdA, and the various ID dialects, which is of interest here, is the non-strict
implementation of arrays.

SISAL is a functional language which has been targeted at a wide variety of systems
including current generation multiprocessors such as the Encore Multimax and research
dataflow machines [14]{11]. The multi-targeting feature is accomplished by compiling SISAL
to an intermediate language IF1 [19}[4}[22] The IF1 representation is then compiled to the
appropriate target instruction set. The optimising SISAL compiler (OSC) from Colorado State
Umversny yields performance competitive with FORTRAN [5][6]. Most of the optimisations
in OSC are performed as IF1 to IF1 transformations.

2.2 CSIRAC 1I

The architecture of the CSIRAC II dataflow multiprocessor [8] is based on early work by
one of the authors at Manchester [7] and encompasses both the static queued and the dynamic
or unravelling dataflow schemes [2]{14] and exhibits the advantages of both. The particular
features of the architecture which are of interest to the IdA implementation are:

Comparison of IdA and SISAL Structure Accessing Techniques on CSIRACII 3

. generic node functions with implicit type coercion;

+ sequence functions for tag and structure index generation;

. variable length strongly typed tokens including compound tokens containing
heterogeneous data and vectors;

J deferred and non-deferred structures;

. random static allocation of nodes to processors at compile time qualified by colour at

run time (double hashing scheme).

3 Implementation
3.1 1IF1

IF1 was developed as an intermediate directed graph representation for SISAL compilers
and as such it incorporates the strictness assumptions of SISAL extending most importantly to
structures. Machine dependent analysis such as memory management Or partitioning a graph
over multiple processors is done using supersets of IF1. It is based on acyclic graphs and there
are four components to a graph:

¢ nodes which denote operations such as add and subtract,

. edges which represent values that are passed from node to node,
. types attached to each edge or function for identification, and

. graph boundaries which surround groups of nodes and edges.

Arrays and records are the two main structures available in IF1 and there exists seventeen
nodes for the manipulation of arrays and seven for the manipulation of records. We are
primarily concerned with arrays in this paper. Any of the structure primitives which modifies
elements of an array does so by creating a new array, placing the new values in the relevant
elements and then copying the rest. The problem associated with copying structures in such a
manner are well known, and the work of Cann [5][6] has virtually eliminated this from many
SISAL programs.

define main
type OneDim = arrayfinteger];

function init(n:integer; returns COnelim)
for k in i,n
returns array of
k*k
end for
end function init

function main{returns OneDim}
init (10}
end function

Figure 2a - example SISAL program producing an array

Figure 2a shows a small SISAL program which creates an array filled with the squares of
the numbers in the range one through to ten. Figure 2b represents function init which
contains the parallel Forall loop responsible for the creation of the array. At the top of the
graph, the argument n enters the Generator subgraph for the Forall loop which produces the
sequence of numbers from 1 to nn. For each number in the sequence, there exists a Body
subgraph where the loop body calculation takes place. Finally, in the Returns subgraph, the

Comparison of IdA and SISAL Structure Accessing Technigues on CSIRAC 1T 4

values produced by each instance of the Body subgraphs are collected together in their correct
order by the AGathers node to produce an array of length n.

Body
SubGraph

Returns
SubGraph

Figure 2b - simplified IF1 graph for the SISAL function init.

3.2 I-structures

Having just looked at a small SISAL program and its translation into IF1, let us now
consider the same program written in IdA (Figure 3a). The source code is very similar except
that in the IdA version there are more declarations and the value is explicitly assigned to its
element in the array. MIT's Id Nouveau provides the programmer with a traditional strict array
and a non-strict I-structure[3]. I-structures overcome the rigid semantics on computations
responsible for filling in components of data-structures and make the language non-functional,
yet they still allow Id to remain determinate. For various reasons discussed in [24] all array
operations in IdA have been replaced with I-structure operations.

The semantics of [-structures made them difficult to implement in IF1. The existing IF1
nodes were not suitable as they were strict and would not allow the non-strict I-structures 1o be
gradually defined across a number of functions. The defining of an element of an I-structure is
considered to be a side-effect in Id and this was not allowed in IF1. Even when a scheme was
designed to reflect this by not connecting the output of the node responsible for the definition
of an element of the array, the optimisers and other tools available would assume it was dead-
code and roll-up the graph eliminating the loop Body subgraph. A variety of schemes for their

Comparison of IdA and SISAL Structure Accessing Techniques on CSIRAC 11 5

implementation were considered before a suitable one was developed. The method makes use
of four procedures which are intrinsics of the CSIRAC I instruction set. These procedures are
treated as imported functions by the IF1 tool set whereby the IF1 translator allows the
definition of the procedure and assumes the actual body will be defined somewhere else.

The four procedures used are:

. Ialloc(argl} -> address
Allocates a block of contiguous memory in the object store to contain the I-structure.
The number of components in the I-structure is represented by argl and the function
returns the starting address of the I-structure in the object store.

* Iread{argl) -> value
Reads a value from a component of an I-structure. The address of the component is
represented by argl and is obtained by adding the address from Ialloc to the result
of the index calculation.

. Iwrite{argl arg2)} -> signal
Writes a value into a component of an I-structure. The address of the component is
argl and is calculated in the same way as the address for Iread, while the value is
represented by arg2. The signal is a dummy edge, carrying the address of the
component and is used to satisfy the semantics of IF1.

* Ikill{argl arg2) => signal
Gathers the outputs of the Twrite procedures. The arguments used are in general, the
signals from calls to Iwrite, while the result is either one of the inputs.

ceonst
n = 10;

type
OneDim = array(l..n) of integer;

def init
¥y : integer
returns OneDim =
let
var
k : number;
X : OneDim;
in
for k from 1 to y do
x[k] = k * k;
returns x;

init{n);

Figure 3a - IdA version of Figure 2a

To comply with the functional semantics of IF1, Jkill chains are generated to handle the
side-effects of I-structures. For every Iwrite procedure called, there's a redundant edge that
must be generated. This edge has no destination and becomes the argument to an Tkill
procedure. The shape of the resulting graph dealing with I-structure writes, resembles a chain.
It depends on the source program as to what actually happens to the output of the chain.

Comparison of IdA and SISAL Structure Accessing Techniques on CSIRACTI

o v
£8Z

o B

t%C

erM

A o

=0

.20

3.mc

. mmm

n 8RS

4 =Sk

= g BE%

i o)

En g3 HwEg

£ Q2 iy O
=3 =] el Y

g W2 nm “rd m..o

| C o

5] < e

b= d .m 8=

bt — - o

: s g
O = ..unW,.

Qo W RS

] C FOm

=3 = (=R =

G o Wy

VG O hSM

s = ® o o
- 22 B Ers
. a - BESR

; o BET

. b ED
3 SE5
= B

= - 0

B mas

. = A

¢.u“ . f
o % E0h

' gy S
o =8k

o L w0

» HoZ

" w5

~ &)

= B B

\w w = W nu"
v & “' 9
A et
. 2 =% 8
SR 5=
amwp%awm%am [0} mom;
2 S muubﬁue
%«w\w i mm.ww%a o o m &

SRS 3 5 .. it Kei
. . ER

; e 5 5 Sz

Comparison of A and SISAL Structure Accessing Techniques on CSIRAC I 7

allocated for I-structure x by the call to Talloc, which occurs inside the body of function
init but outside the Forall loop. The function of the Generator subgraph has been
discussed earlier. In the Body subgraph there are considerably more nodes, than in the SISAL
implementation. Node 1 is the call to Iwrite, nodes 2 through to 6 with the exception of
node 4 (calculation of k *k) is involved with the indexing calculation for I-structure x and node
7 is the call to Tkill to deal with the signal generated by node 1. In the Returns subgraph,
the FinalVvalue node is used in the implementation of IdA to signify when all the different
loop bodies have terminated.

It is important to note, that while the method used does provide a working implementation
of I-structures in IF1, it does not effectively reflect the side-effects occurring or how deferred
reads are handled. Deferred reads, and for that matter all I-structure operations, are handled by
special hardware on CSIRAC II called the Object Store. Banks of the Object Store are
associated with each processing element (PE) of the dataflow machine with the appropriate
bank being selected conventionally using the least significant bits of the I-structure elements
address. I-structures are accordingly spread over several or all of the PEs. Any attempt to
access an as yet uninstantiated I-structure element or object results in the request being queued
in a linked list associated with the object. When the object is instantiated all outstanding
requests are honoured. All objects in the object store have a tag field giving the current state of
the object. The tag field permits efficient determination and modification of the objects state
however a penalty of a full read modify-write is incurred on every object stoer access involving
I-structure write operations. The strict structure implementation of SISAL does not require this
as the state of the object is known by construction. The four I-structure procedures used at the
IF1 level are converted by the IF1 translator into a combination of six nodes at the hardware
level [8][22].

4 A Structure Accessing Example

Many numerical computations contain iterative computations involving array structures.
Within each iteration arrays are transformed into or used as arguments for the computation of
new arrays. In many cases the accessing pattern is similar with each transformation or use.
Numerical weather prediction codes exhibit this type of computation and are used here to
suggest the gains which may be made with a non-strict implementation of structures through
overlapping the production and use of structures.

The results were obtained using the CSIRAC 11 simulator. The simulator 18 event based
and models latency (10 network and processor pipeline stages) [12]. The simulator produces
various measures of system performance in six graphs:

. Unmatched and Transit Tokens shows the number of data tokens waiting for their
partners and the number of tokens in the communication network;

. Element Activity shows the number of processing-elements active;

. Performance Measures show miscellaneous measures (not important here);

. Individual Element Activity shows the workload distribution with a dark area indicating
a processing-element is active;

. Object Store Disposition shows the number of instantiated structure elements and the
number of outstanding deferred accesses to I-structures;

. Object Store Access Pattern shows the accessing pattern for structure cells with a dark

area indicating an access to a cell in that processing-element.

4.1 A Model Numerical Weather Prediction Code

The model numerical weather prediction code Shallow is described by Sadourny in {18].
The original FORTRAN implementation of the Shallow code is due to Swartztrauber [13] and
is believed to be representative, albeit greatly simplified, of full shallow water NWP codes and
NWP codes in general [1].

Comparison of IdA and SISAL Structure Accessing Techniques on CSIRAC I 8

In a description from Snelling, Shallow models a square single layer of fluid (Figure 4).
The model variables are the:
cartesian fluid velocities u and v,
pressure P,
field height H,
cartesian mass fluxes U and V, and
potential velocity Z.
The variables are related by the following equations:

. Su/dt - ZV + 8H/Sx =0
. Bv/ot + ZU + 8H/Sy =0
. BP/3t + 8U/6x + 8V/8y =0

* & o e @

N
w E@)
S(G)
The "adjacency” ﬁgurés indicate which

cells are involved in the computation

of P,u,v,U,V,Z and H. The boundaries
are mapped as shown to make the
mesh periodic.

Figure 4 - the Shallow Domain

Figure 4 shows how the boundaries 'wrap around' south to north and east to west
providing a periodic continuation of the mesh. Shallow has two input parameters, the size of
the mesh and the number of time steps.

4.2 Results for SISAL

The SISAL version of Shallow {Appendix A) described in [10] was used as the basis for
comparison with IdA's non-strict structure implementation. In the case of SISAL programs,
the IF1 intermediate form produced by OSC R1.8/V3.0 (sisal -old_loops -no_opt -no_offset;
iflopt -di -x -l -€) is translated to the CSIRAC Il instruction set [8] by the IF1 translator [22].

Figure 5 shows the workload distribution and processor activity for the SISAL version of
Shallow with a mesh size of 32 for one time step. The processor activity clearly shows the
sequential sections between the various functions where the number of active processors falls
dramatically. These boundaries are due largely to inter function synchronisation. Although the
IF1 structure accessing primitives used by SISAL are strict, the underlying implementation of
these primitives on CSIRAC 1I is not. This permits SISAL to take some advantage of the
deferred structure access mechanisms of CSIRAC II; the deferred reads can be seen in the
Object Store Disposition graph of Figure 5. If the implementation of these primitives enforced
strictness, then the sequental sections would be more evident than they are with consequent
substantial increase in runtime. The work on tradeoffs between strict and non-strict SISAL
implementations is continuing and will be reported elsewhere [22].

Compatison of IdA and SISAL Structure Accessing Techniques on CSIRAC II

Tokens

Tokens

Unstatched and Tranait Tokens ‘shallow sis’

Element Activity “shallow_sig’

4 andt
30060 120.8 ;15.’2:
Unmatohed il Min
===~ Tranait ; a =~ Max .
90000 - i
100.6 -} i
000 <
50000 - 80.8 4 ;
i
Elements g
50000 Act Lve 1
6¢.0 -
40000 -
30000 40.0°
/t“\
zo000 4 B
\\ 20.0
10000 - v
1
s Fun Pt S, Y
0 ¥ T iy T ¥ ¥ T T e.0 T T T
0.0 $.2 0.4 2.6 9.8 1.0 1.2 1.4 1.6 1.8 0.8 0.2 6.4 .6 0.8 1.0 1.2 1.4
Time {secs) x 14*-3 Time {(secs) x 103
Performance Measures ‘shallow sis’ Individual Element Activity ‘shallow_sia’
iz0
6000
100
5000 ~ i
!
H ‘ 80
4000 H A
i H ;l Elementy
: i 60
3000 - i it
P
A i
2000 - i a0
i A
I i
1000 - H ~ 4 2w
i a PP PR
SEE T A, M p T
¢ 1 T T T 3 3 T T Y &
4.0 0.2 0.4 0.6 0.8 1.0 1.2 I.4 1.6 1.8 ¢.0 9.2 0.4 0.6 0.2 1,0 1.2 1.4 :.& 1.8
Time {decs) = 104-3 Tima {aecal x 103
Object Stere Dispesiticn ‘shallow sis’ Ooject Store Access Pattern ‘shallow _gis’
1z000 - “EN
Defined 120 - .-,‘ |
—————— Deferred H
10000 -
100
8OO0 80 -
Rlemonts
£000 60 ~
1000 - 40 -
2000 - 25
L] 0 -
0.0 0,2 0.4 0.6 0.8 1.0 1.2 1.4 1.% 1.8 0.0 0.2 0.4 0.6 0.4 .0 1.2 1.4 l.58 1.8

Time (secs) x 14~-3

Pime (secs) X 104-3

Figure 5 - simulation results for SISAL

Comparison of IdA and SISAL Structure Accessing Techniques on CSIRACII

10

Elament Activity *shallow’

.
ot o
a

Unmatched and Transit Tokens ‘shallow’
126.0 "'“m ‘*‘"""F‘*‘e""’v i3
10000 - ' r i
abid
15
i1t
50000 - 100.0 - 15
&
50000 o g
B0.0 -
Elsments
Tokens 40000 - Activa
60,0 —
30000
40.0 -
20000 -
20.0 -
10000
r
% T 0.0 T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 1.2 a.0 0.2 0.4 a.¢ 0.8 1.0 1.2
Time {secz} x 10*-3 Tine {secs) x 10*-3
Performance Measures ‘ghallow’ Individual Element Activity ‘shaliow’
s pgagurel .r: 126 - .
measured 7
10080 4 measered i
s s BASUrOd !z
{ 166
8000 -
i 80
!
000 ~ :,' Elements
! 0
4000 - !
K 49 -
20086 - 20
L e T T T e, r‘
. ; _,,l___”ﬁ____.« JAGY o
q.0 G.2 0.4 0.8 0.8 t.0 1.2 0.0 0.2 ¢.4 0.6 0.8 t.o 1.2
Time {secs} = 1073 Time {secz} x 10°-1
Object Store Dilspesitien *shallow’ Cbhject Store A<cess Fattern ‘sha)low’
1y b
Defined 1o 120 -
————— Deferred ',-’ N
10000 -
100
8000
80
Takens - Elements
£000 —
60
i.
l”“
4500 w4
r-b ,. .,-,.
2000 - 24 A
[o -
0.0 0.2 0.4 0.6 ¢.8 1.4 i.2
Time (secs) x 107-1

e (secs) x 10%-3

Figure 6 - simulation results for IdA

Comparison of IdA and SISAL Structure Accessing Techniques on CSIRAC 1T

0000 -t

50000 =

Unmatched aznd Tranait Tokens ‘rhallow opt*

40000 - Elements
Tokens Active
30000
20050 -
10000 -
o T T ¥ T T
e.0 0.2 0.4 0.6 0.8 1.0
Time {(secs} x 10*-3
Performance Heasures ‘shallow opt*
Ea
14000 4 meanyrel ! "_‘
- maanurel : Y
- measurel i v
12800 ~ — e = e paured H ‘l
16000 -
000 - Elements
£000 -1
4000
2000 4
s —_
0.0
Time {secs) x 10~-3
Object Stare Dispos{tjon ‘shallow opt”
P
4 Y
14000 e fined I
wm—— - Deferred N 1
12000 -
16000
Tokens 8600 + Elements
ae00
4000 4
2900
°
6.0

Time (secs) x 10°-3

120.0

100.0 -

£0.0 -

40.0 -

20.0 A

11

Element Activity ‘shallew_opt*

et
» T, . A
ﬁ%w%u&k”"ﬁ::ﬁ A

120 4

40

20

100 -

80 -

Y T ¥ T T
0.4 0.6 0.8

Tine {sece} x 10°-3

Individual Element Activity ‘emhaliow ept’®

TS o2l
5

0.4

0.6 o.%

Tine {(reca) x 10°-3

Chject Store Access Pattern ‘shailow opt’

Time {(secs} x I0*-1

Figure 7 - simulation results for optimised IdA

Comparison of IdA and SISAL Structure Accessing Techniques on CSIRACII 12

4.3 Results for IdA

The IdA version of Shallow (Appendix B) was produced by direct transliteration of the
SISAL version with no changes to the computational algorithm.

IdA is compiled to IF1 and then translated to the CSIRAC II instruction set. Figure 6
shows the simulation results for the IdA version at the same model resolution as was used for
SISAL.

The processor activity profile is markedly different from that for SISAL (Figure 5). This is
due almost entirely to the non-strict arrays referred to as I-structures [3] in IdA. Array
elements for which values have been computed may be used immediately by functions or other
computations for which they are arguments. As expected this permits substantial computational
overlap of functions and the almost total elimination of sequential segments.

It is also of interest to compare the Object Store access patterns of SISAL and IdA. SISAL
exhibits systematic diagonal striping while there is no pattern evidenced by IdA. SISAL uses
indirection vectors of pointers to access multi-dimensional arrays; this is required to facilitate
the support variable sized structures at runtime. In IdA array element addresses are computed
directly from known array bounds.

In general the workload distribution for IdA is much more uniform than that for SISAL
which contributes to the improved runtime.
4.4 Removal of Strict Loop Synchronisation

Comparison of the instruction counts for the SISAL and the initial IdA implementation
showed that significantly more instructions were being executed for IdA (Table 1).

Instructions Run Time (mS.)
dA 466268 1.21
SISAL 386168 1.88
IdA (opt.) 444385 1.15

Table 1 - instruction counts for IdA, SISAL and optimised IdA
(one iteration on a 32x32 problem)

As previously discussed SISAL uses an array gather (AGather) primitive to assemble a
sequence of elements emitted from the loop body into an array. In the case of IdA, arrays are
assembled within the loop body but it is still necessary to anchor the loop with a loop
termination primitive. The only primitive available in the current IF] translator implementation
and supported by the IF1 optimisers was FinalValue. The graph required by IF1
translators and optimisers is shown in Figure 3b.

FinalValue consumes all elements of a structure or stream of values except the last
which is propagated to the successor function. This is an active process requiring the execution
of a significant number of instructions. For Shallow the values retumned from the computation
are the base addresses of the structures constructed within the loop body. One of these
addresses is selected as input to the FinalValue node to provide the required
synchronisation; the other addresses are passed directly to the successor function permitting
some overlap between production and use of these structures. It is possible to eliminate these
redundant computations by passing the base addresses of all structures to be constructed by the

Comparison of 1dA and SISAL Structure Accessing Techniques on CSIRAC I 13

loop body, directly to the successor function as shown in Figure 8 and grounding, or
terminating, the loop Body subgraph outputs.

&
o

£

e

\rv_.:,;\;;n;,
S
R

R

,,
.
.
\
R
,

Figure 8 - optimised graph for IdA function init

Elimination of this code resulted in the processor activity profile in Figure 7. It can be seen
that the remaining sequential sections have been eliminated. These sections were due to
FinalvValue in the closing stages of the computation. The runtime for this optimisation is
shown in italics in Table 1 and is 39% less than that for SISAL.

5 Conclusions

An environment has been established which permits comparison between a number of
languages targeted on the standard intermediate form (IF1). We have successfully integrated
the non-strict I-structure mechanism into the strict framework of IF1 permitting the use of the
sophisticated optimisation techniques developed by SISAL researchers.

In this paper, we have presented some initial comparisons between IdA and SISAL
focusing in particular on strict and non-strict structure access mechanisms. The results show
that for similar instruction counts, the IdA implementation provides a dramatic improvement in
runtime compared with that for SISAL. This performance improvement is due to greater
overlap in the production and consumption of structures permitted by the I-structure
mechanism. These gains may be obtained on dataflow systems, or for that matter any other
parallel system having the required hardware to support non-strict structures.

Work is continuing on the development and optimisation of both the IdA and SISAL
programming environments for the CSIRAC 1l dataflow multiprocessor.

Comparison of IdA and SISAL Structure Accessing Techniques on CSIRAC I 14

Acknowledgements

The authors thank Dr. David Cann of Lawrence Livermore National Laboratory, and Neil
Webb for their contributions to this research. We would also like to thank the members of the
Parallel Systems Architecture Project and the Laboratory for Concurrent Computing Systems.

The Parallel Systems Architecture Project was jointly funded by the Royal Melbourne
Institute of Technology and the Commonwealth Scientific and Industrial Research
Organisation.

The Laboratory for Concurrent Computing Systems at the Swinburne Institute of
Technology is funded by the Australian Commonwealth Government under a special research
infra-structure grant for parallel processing research.

Comparison of IdA and $ISAL Structure Accessing Techniques on CSIRAC 1 15

References

[1] G.S. Almasi and A. Gottlieb, 'Highly Parallel Computing', Benjamin
Cummings Publishing Company Limited, 1989,

2] Arvind and Gostelow K.P., The U-Interpreter’, Computer, Vol. 15, No. 2,
Feb 1982.

{3} Arvind, Nikhil R.S. and Pingali, X.K., 'I-Structures: Data Structures for

Parallel Computing', ACM Transactions on Programming Languages and Systems, Vol 11,
#4, Oct. 1989.

[4] AP.W. (Wim) Bohm and J. Sargeant, Efficient Dataflow Code Generation fo
SISAL', Technical Report UMCS-85-10-2, Department of Computer Science, University of
Manchester, 1985.

[5] D.C. Cann and R.R. Oldehoeft, 'Compilation Techniques for High
Performance Applicative Computation', Technical Report CS-89-108, Colorado State
University, May 1989.

[6] D.C. Cann, ‘High Performance Parallel Applicative Computation', Technical
Report CS-89-104, Colorado State University, Feb.1989.

[7] G.K.Egan, Data-flow: Its Application to Decentralised Control', Ph.D. Thesis,
Department of Computer Science, University of Manchester, 1979,

[8] G.K. Egan, 'The CSIRAC II Data Flow Computer - Token and Node
Definitions', Technical Report 31-001, Laboratory for Concurrent Computing Systems,
School of Electrical Engineering, Swinburne Institute of Technology, 1990.

[9] G.K. Egan, Rawling M. and Webb N.J, 'i2: An Intermediate Language for
the RMIT Dataflow Computer, Technical Report 31-002, Laboratory for Concurrent
Computing Systems, School of Electrical Engineering, Swinburne Institute of Technology,
1990.

[10] G.K. Egan, 'Some Shallow Experiences’, Technical Report 31-004,
Laboratory for Concurrent Computing Systems, School of Electrical Engineering, Swinburne
Institute of Technology, 1990.

[11} G.K. Egan, N.J. Webb and A.P.W. (Wim) Bohm 'Some Architectural
Features of the CSIRAC 1II Dataflow Computer’, Technical Report 31-007, Laboratory for
Concurrent Computing Systems, School of Electrical Engineering, Swinburne Institute of
Technology, 1990.

[12] G.K. Egan, 'The CSIRAC II Simulation Suite', Technical Report 31-010,
Laboratory for Concurrent Computing Systems, School of Elecirical Engineering, Swinburne
Institute of Technology, in preparation, 1990.

[13] Geerd-R. Hoffman et al. eds. 'Aspects of Using Multiprocessors for
Meteorological Modelling', in Multiprocessing in Meteorological Models, Hoffman and
Snelling eds., Springer-Verlag, Berlin,1988.

[14] 1. Gurd and I. Watson, 'Data Driven Systems for High Speed Parallel
Computing - part 1: Hardware Design', Computer Design, June 1980, pp 91-100.

Comparison of IdA and SISAL Structure Accessing Techniques on CSIRAC 11 16

[15] McGraw et al, 'SISAL: Streams and Iteration in a Single Assignment
Language, Language Reference Manual', Lawrence Livermore National L.aboratories, M146.

[16] R.S. Nikhil, K. Pingali and Arvind, 'Id Nouveau', MIT-LCS Computation
Structures Group Memo 265, 1986.

[17] M. Rawling, 'GHC on the CSIRAC II Dataflow Computer', TR118090R,
Department of Communication and Electrical Engineering, Royal Melbourne Institute of
Technology, Oct. 1989.

{18] R. Sadourny, "The Dynamics of Finite-Difference Models of the Shallow Water
Equations', Journal of Atomospheric Sciences, Volume 32, Number 4, April 19735.

[19] S. Skedzielewski and J. Glauert, 'TF1 An Intermediate Form for Applicative
Languages', Lawrence Livermore National Laboratories, 1985.

[20] D.F. Snelling, ‘Experimental Guidelines for a Shallow Mapping Study’,
Technical Report Number 21, by David F. Snelling, Department of Computing Studies,
University of Leicester, 1989.

{21] S. Wail, Tmplementing an Imperative Language on a Dataflow Computer
Architecture’, Department of Communication and Electrical Engineering, Royal Melbourne
Institute of Technology, PhD thesis in preparation, 1990.

[22] N.J. Webb, Tmplementing an Applicative Language for the CSIRAC 1I
Dataflow Computer’, School of Electrical Engineering, Swinburne Institute of Technology,
Ph.D. Thesis in preparation, 1990.

[23] P.G. Whiting, 'TdA: A Dataflow Programming Langunage', TRI118075R,
Department of Communication and Electrical Engineering, Royal Melbourne Institute of
Technology, Oct. 1988.

[24] P.G. Whiting, 'Compilation of a Functional Programming Language for the
CSIRAC 11 Dataflow Computer', M.App.Sci. Thesis, Department of Computer Science, Royal
Melbourne Institute of Technology, Feb. 1990.

[25] K. Ueda, 'Guarded Horn Clauses', Doctor of Engineering Thesis, University '
of Tokyo, Graduate School, 1986.

Comparison of IdA and SISAL Structure Accessing Techniques on CSIRACII 17

Appendix A- SISAL Version of Shallow
% Shallow -~ G.K. Egan 1889-91
% Laboratory for Concurrent Computing Systems

% Swinburne ¥nstitute of Technology, Australia

define

Main,
SisalMain, % Main entry point to program
Initialises, % Define initial condition
Fluxes, % Compute the mass fluxes
Height, % Compute the field height
Potential, % Compute the total potential veloc;ty
TimeStep % Compute next time step
% convention used for cell neighbour indices is:
%
% j=~1 is in {north)
& i-1 is iw ({west) i,3 i+l is ie {east}
% j+1 is 3s (south)
% -~-- type specifications ---

type Gridvariables = arraylarrayi{realll:;

% ——- imported functions -—-
global sin (x: real returns real)
global cos (x: real returns real)

% ww-- initialize ---
function Initialize{M:integer; delta:real
returns Gridvariable, Gridvariables, Gridvariables)

let
P:GridVariables;
Psi:GridvVariables;
U:GridVariables;
V:Gridvariables;

Amp:real := 1.0E6; % Amplitude of waves in initial condition.
pie:real := 3.1459265359;

el:real := real (M)*delta;

pcfireal := pie * pie * Amp * Amp{el*el);

delta i : real := 2.0 * pie/real(M);

delta j : real := 2.0 * pie/real(M);

Psi := for J in O,M cress 1 in 0,M

returns array of
Rmp*sin{delta . i*{real (i+1)}-0.5)}*sin (delta j*(real(j+1) -0.5})
end for
in

for 3 in 0,M cross i in 0,M

returns array of

pof* {cos(2.0%delta i* (real (i)} +cos{2.0*delta i*real (3)))+50000.0

end for,

for j in O,M
returns array of
let
is := if =M then C else Jj+1 end if
in
for i in G,M
returns array of
-{Psi[js,i]l-psili,1i]}/delta

Comparison of IdA and SISAL Structure Accessing Techniques on CSIRAC I

end for
end let
end for,

for j in O,M
returns array of
for i in 0,M
returns array of
let ie := if i=M then 0 else i+l end if
in
{(Psif[d,iel-Psiij,i])/delta
end let
end for
end for
end let
end function

% ——- Fluxes ~--
function Fluxes{M:integer; P,U,V:GridVariables
returns gridvariables, GridVariables)
for 3 in 0, M
returns array of
for i in O,M
returns array of
let
iw := if i=0 then M else i-1 end if
in
0.5*(P[j,1]+P[J,iw])*U[],1]
end let
end for
end for,
for j in O, M
returns array of
for 1 in 0O, M
returnsg array of
let
jn := if i=0 then M else i-1 end if
in
0.5%(PIj,i1+P[Jn,1])*V[], 3]
end let
end for
end for
end function
% —--- Height ==-
function Height (M: integer; P,U,V: GridVariables returns GridvVariables)
for 3 in O,M
returns array of
let i
js := if 4=M then 0 else j+l end if
in
for 1 in 0O,M
returns array of
let
ie := if i=M then 0 else i+l end if
in
P{§,i]+0.25%(U[],1el*U(3,1el+Ui5,4]1*0(3, 11+
Vi{js,11*V{is, i1+V[Jj,i1*V[], 1]
end let
end for
end let
end for
end function

18

Comparison of IdA and SISAL Structure Accessing Techniques on CSIRAC IT

% === Potential ---
function Potential (M: integer; P,U,V: GridVariables; delta:real
returns Gridvariables)

let
fsdx: real := 4.0/delta;
fsdy: real := 4.0/delta;
in

for j in O,M
returns array of
let
in := if j=0 then M else 3-1 end if
in
for i in 0,M
returns array of
let
iw := if i=0 then M else i=-1 end if
in
(£sdx* (V[3,1]-V{3,iw]) ~fsdy* (U[§,41-Ul3n,11))/
(P{in,iw]+P[jn,i]+P[J,iwl+P[4,4i])
end let
end for
end let
end for
end let
end function

% ——- Time Step -——
function TimeStep(M: integer; deltat, delta: real;
Psmooth, Umsocoth, Vsmooth: GridvVariables;
Ufiux, VEfiux, H, PotVel: GridvVariables
returns Gridvariables, Gridvariables, GridVariables}
let

deltat 8 :real := deltat/8.0;

deltat_d :real := deltat/delta;
in
for § in 0O,M
returns array of
let
js := if j=M then 0 else i+l end if
in

for i in C,M
returns array of
let
ie := if i=M then 0 else i+l end if
in
Psmooth[], i]l~deltat d* (Uflux[j,iel~-Ufluxij,il)-
deltat_d*(Vflux[Js,i}-Vflux[j,i])
end let
end for
end let
end for,

for 3 in 0,M
returns array of

let
98 := if 3=0 then M else Jj-1 end if;
in := if 3=M then 0 else j+1 end if
in

for i in 0,M
returns array of
let
i = if i=0 then M else i-1 end if
if i=M then 0 else i+l end if

W
e

T

b

Comparison of IdA and SISAL Structure Accessing Techniques on CSIRACII 20

in
Usmooth[j,i}+deltatm8*(PotVel[j,ie}+PotVel{j,i])*
(VEiux[js, i14VElux!j, i) +{(VE ux i, iwl+VElux{is, iw]) -
deltat d* (H{j,L]-H[j,iw])

end let

end for
end let
end for,

for 3 in 0,M
returns array of
let

if j=0 then M else j~1 end if;
= if j=M then 0 else 3+1 end if

e we

jn
js
in
for 1 in 0,M
returns array of

let
iw := if i=0 then M else i-1 end if;
ie := if i=M then 0 else i+l end if
in

Vsmooth[j,i]l-deltat 8* (PotVel[]j,ie]l+PotVel{],i])*
(UGfiux{j,iel+Uflux{]y,i1+Uflux(jn, i1+0flux[in, ie]) ~
deltat a* (H{j,i]~E{jn,il)
end let
end for
end let
end for
end let
end function

% ——— Smooth --—-

function Smooth (M: integer:; X,¥Xsmooth, Xnext: GridvVariables
returns Gridvariables)

let
Blpha : real := 0.001; % Time filtering parameter.

in
for j in 9,M ¢ross 1 inr 0O,M
returns array of

X[3,i]+Alpha* (Xnext [J,1]1-2.0*X{j,i]+Xsmooth[3,1])

end for

end let

end function

% ==~ Main Program --—-

function SisalMain(Minput: integer; lastiter: integer
returns GridVariables, Gridvariables, GridVariables)

for initial
P: Gridvariables;

U: Gridvariables;
V: GridvVariables;

Pressure
Velocity in east/west directicn
Velocity in nerth/south direction

o of

o

Psmooth: GridVariables; % Time smocthed P
Usmooth: GridvVariables; % Time smoothed U
Vasmooth: GridvVariables; % Time smoothed V
M: integer; % Deminsionality of system

o\

Iteration count
Time step size in seconds
Grid spacing

iter: integer;
deltat: real;
delta: real;

o o

M := Minput;
iter := 0;

Comparison of {dA and SISAL Structure Accessing Techniques on CSIRACIE 21
deltat := 90.0;
delta := 1.0E5;
P,U,V := Initialize (M, delta);
Psmooth := P;
Usmooth := U;
Vsmooth := V
while {iter < lastiter) repeat
P, Psmooth, U, Usmooth, V, Vamooth :=
let
Uflux: GridvVariables; % Mass flux in east/west direction
Vflux: GridvVariables; % Mass flux in north/scuth direction
H: Gridvariables; % A value related to height of fluid
PotVel: Gridvariables; % Potential wvelocity
Prext: GridvVariables; % Intermediate results
Unext: Gridvariables; % Intermediate results
Vnext: Gridvariables; % Intermediate results
Uflux, Vfliux := Fluxes (M, old P, old U, old V);
H := Height (M, old P, old U, old V};
PotVel := Potential(M, old P, old U, old VvV, delta);
Pnext, Unext, Vnext := TimeStep (M, old deltat, delta,
old Psmooth, cld Usmooth, old Vsmooth,
Uflux, VElux, H, PotVel)
in
if {(0ld iter = 0} then
Pnext, old P, Unext, old U, Vnext, old V
else
Pnext, Smocth{M, old P, oid Psmooth, Pnext),
Unext, Smooth(M, old U, old Usmooth, Unext),
Vnext, Smooth (M, old V, old Vsmooth, Vnext)
end if
end let;
deltat := if {cld iter = 0} then
old deltat*2.0
else
old deitat
end if;
iter := oid iter + 1;
returns
value of P
valie of U
value of V
end for
end function
function main{returns Gridvariables, Gridvariables, GridVariables)

SisaiMain{32,1)
end function

Comparison of IdA and SISAL Structure Accessing Techniques on CSIRAC I

Appendix B- IdA Version of Shallow

% Shallow - G.K. Egan 1989-81
% Laboratory for Concurrent Computing Systems
% Swinburne Institute of Technology, Australia
const

M = 32;

LastIter = 1;

type
mesh = array (1..M, 1..M} of numbexr;

PUV_tuple = tuple{mesh; mesh; mesh);
UvV_tuple = tuple(mesh; mesh);

def Initialize
M:number
delta: number

returns
PV_tuple =

let
const
Amp
pie
var
Psi, P, U, V: mesh;
el, pcf, delta i, delta_ 3, i, Jj, ie, iw, jn, Js: numbex;
assign
el = M*delta;
pef = sgri{ple) * sqr(Amp) / sgr(el):
delta_1i = 2.0 * ple / M;
delta_j = delta_1i;

]

1.0E6;
3.14159265359;

in
for 3 from 0 to M do
= for i from 0 to M do
ds = 1f j = M then 0 else j+1;
je = 1f i = M then 0 else i+i;

Psi(]j, i] = Amp * sin (delta i*({(i+1)~0.5)) *
sin {delta j* ({(j+1)~-0.5)):

P{3, i) = pcf * (cos (2.0%*delta i*i) + cos (2.0%delta j*3)) +
5000C.0;

u{j, i] = —{(psiljs, il1-Psi[i, 1]) / delta:;

Vvi{j, i1 = (Psif{j, iel-Psi{j, 11) / delta

returns ()
returns (P,U,V);

def Fluxes
M:number
P:mesh
U:mesh
V: mesh
returns UV_tuple =
let
var
Newl], NewV: mesh;
i, 3, iw, jn: number;
in
for 3 frem 0 to M do
= for i from 0 to M do
iw if T = 0 then M else 1i-1;
4n = if jJ 0 then M else 1i-1;
NewlU[j, 1] = 0.5 * (pl3, i1 + P[], diwl} * U[3, 1i1:

i

22

Comparison of IdA and SISAL Structure Accessing Techniques on CSIRAC 1T

NewV[j, i] = 0.5 * (P[3, il + P{in, il) * V[j, i]
returns ()
returns (Newl, NewV);

def Height
M:number
P:mesh
U:mesh
V:mesh
returns mesh =
let
VAL
H: mesh;
i, 3, ie, js: number;
in
for j froem 0 to M do
= for i from 0 to M do
jg = if j = M then 0 else 7j+1;
ig = if i = M then 0 else i+1;
HEY, 41 = P[3, 1] + 0.25 * (sqr(U[]j, 1el} + sqr(U[3],
sqr(v(js, 11) + sgr{(Vv({3i, i1}
returns ()
returns {H)};

def Potential
M:number
P:mesh
U:mesh
V:mesh
delta: number
returns mesh =
let
var
PotVel: mesh;
fadx, fsdy, i, 3, iw, in: number;

assign
fsdx = 4.0 / deltas
fsdy = 4.9 / delta;
in

for j from 9 to M do
= for 1 from 0 to M do
in = if 3 0 then M else j3-1;
iw = if 1 = 0 then M else i-1;
PotVel[3, 1] =
(fsdx * (V[j,1] - v[i,iw]) -
fsdy * (U[j,i] ~ Uldn,i1)) /
{(Plin,iwl + P[jn,i] + P[3J,iw] + Pl3,11)
returns ()
returns (PotVel) ;

def TimeStep
M:number
deltat:number
delta:number
Psmooth:mesh
Usmooth:mesh
Vasmooth:mesh
Uflux:mesh
Vilux:mesh
H:mesh
PotVel: mesh

returns PUV_tuple =

ily+

23

Comparison of IdA and SISAL Structure Accessing Techniques on CSIRAC I

let
var
P, U, V: mesh;
i, 3, ie, iw, in, ijs, deltat 8§, delitat_d: number;
assign
deltat § = deltat / 8.0;
deltat_d = deltat / delta;

in
for 3 £from 0 to M do
= for i from ¢ to M do

o = if j = 0 then M else j-1;
ds = if § = M then 0 else 4+1;
ie = if i = M then 0 else i+l;
iw = if 1 = 0 then M else i-1;
P[jr i] =
Psmooth([]j, 1] - deltat 4 * (Uflux[j, ie] - Uflux[j, i])
deltat _d * (VElux[js, i] - Vvfluxlj, 13);

U[jr i] =

Usmeoth{j, i] + deltat 8 * (PotVelijs, 1] + PotVell]j, il) *
(VEilux([is, 1! + Vflux([js, iw]l + Vflux[j, iw] + VElux{i,

deltat d * (H{j, i] - H[J, iw});
v[ii, 1] =
Vsmooth{3j, i] - deltat 8 * (PotVel[j, ie] + PotVelld,

(Ufiux{3, ae} + Uflux[j, il +
Uflux[in, 1]+Uflux(in, iel) -
deltat d * (H[j, i] - H[jn, i])
returns ()
returns{¥,U,V);

def Smooth
M: number
¥:mesh
¥Xsmooth:mesh
Xnext: mesh
returns mesh =
let
const
Alpha = 0.001;
var
Smooth¥: mesh:;
i, J: number;
in
for j from 0 to M do
= for i from 0 to M do
SmoothX[j,1i] = X[j, i} + Alpha

* (Xnext[j, 1] - 2.0 * X[4, il+Xsmooth(],

returns ()
returns (Smooth¥) ;

def Shallow
M:numbexr
LastIter: number
returnsg number =
let
const
delta = 1.0E5;
var
P, -U, V, Psmooth, Usmooth, Vsmooth: mesh;

Uflux, Vflux, H, PotVel, Pnext, Unext, Vnext: mesh;

iter, deltat: number;
assign
iter = 0;

deltat 90.0;

24

Comparison of IdA and SISAL Structure Accessing Techniques on CSIRAC T 25

P, U, V = Initialize M delta;

Psmooth = P;
Usmooth = U;
Vsmooth = V;

3

in
while (iter < LastIter) do
Uflux, Vflux = Fluxes M P U V;
H = Height M P U V;

PotVel = Potential M P U V delta:;

Pnext, Unext, Vnext = TimeStep M deltat delta
Psmooth Usmooth Vsmooth
Uflux Vfiux H PotVel:;

new P, new Psmcoth,
new U, new Usmooth,

new V, new Vsmooth = if (iter = 0) then

Pnext,
Unext,
Vnext,
else
Pniext,
Unext,
Vnext,
new deltat = if iter = 0 then
deitat * 2.0
else
deltat;
new iter = iter + 1;
returns (P[0, 0});

Shallow M LastIter;

P,
U,
1

Smooth M P Psmooth Pnext,
Smooth M U Usmooth Unext,
Smooth M V Vsmooth Vnext;

