Comparative Performance of the
Burg Algorithm Implemented in
Parallel FORTRAN and the
Applicative Language SISAL

AL Cricenti
GK. Egan

Technical Report 31-026

Version 1.0 March 1991

Abstract

This paper describes the implementation of a signal processing algorithm, specifically the Burg
Algorithm, using both a high level parallel language SISAL and Encore Parallel FORTRAN. The
Burg Algorithm is an estimation technique for fitting an autoregressive model to a time series data
set. This algorithm contains a time shift / inner product operation which is used in a number of
other important signal processing algorithms such as convolution.

The Burg Algorithm in Parallel FORTRAN and SISAL Page- 1

COMPARATIVE PERFORMANCE OF THE BURG ALGORITHM
IMPLEMENTED IN PARALLEL FORTRAN AND THE
APPLICATIVE LANGUAGE SISAL

A.L. Cricenti and G.K. Egan

1. Introduction

Signal Processing Algorithms are widely used and of vital importance in areas such as biomedical
engineering, seismic data analysis, speech analysis and spectral estimation. The demand that signal
processing algorithms place on computing system performance is increasing as more complicated
algorithms are made to function inreal time. As the limitations of current uniprocessor systems are
being reached, many computer manufacturers are turning to multiprocessor configurations to
obtain increased performance. In addition to hardware limitations, current computer languages
must be evaluated for performance and ease of use with reference to their suitability for parallel
machines.

The purpose of this paper is to describe the implementation of a signal processing algorithm,
specifically the Burg Algorithm{1], using both a high level parallel language SISAL (Stream and
Tteration in a Single Assignment Language){2] and EPF (Encore Parallel FORTRAN). The Burg
Algorithm is an estimation technique for fitting an autoregressive model to a time series data set.
This algorithm contains a time shift / inner product operation which is used in a number of other
important signal processing algorithms such as Convolution.

The results obtained using an optimising SISAL compiler are compared to those obtained using the
EPF (parallel FORTRAN) annotator. The comparison is made both on a 4 XPC processor (4 Mips
per processor) based Encore Multimax Multiprocessor machine and a single processor IBM
RS6000/530 (30 Mips) system. The performance of the IBM processor is representative of
processors in next generation medium cost multiprocessors.

2. The Burg Algorithm

The Burg Algorithm is a method of generating an autoregressive model from a set of data samples,
that is it gives estimates for A(z) in:

1
A(z)

H(z) =

There are several ways of obtaining an AR model, the Burg algorithm is based on minimising the
forward and backward prediction errors, assuming a lattice filter structure as shown in figure 1.

AL. Cricenti is a member of Faculty in the School of Electrical Engineering and a Researcher in the Laboratory for
Concurrent Computing Systems at the Swinbume Institute of Technology, John Street, Hawthorn 3122, Australia,
Phone:+61 3 $19 8516, E-matl: alc@stan.xx.swin.oz.au.

G.K. Egan is Professor of Computer Systems Engineering and Director of the Laboratory for Concurrent Computing
Systems at the Swinburne Institute of Technology, John Street, Hawthorn 3122, Australia, Phone:+61 3 819 8516,
E-mail: gke@stan.xx.swin.oz.au.

The Burg Algorithm in Parallel FORTRAN and SISAL Page- 2

€L®
— -1
bn_l k) zZ
where
en(k)=e.1(k) +cp by.1(k-1) forward prediction error (1)

byk)=cp ep-1(k) +by-1(k-1) backward prediction error (2)
and ¢, are called the reflection coefficients.

Figure 1 lattice filter structure

The Burg Algorithm involves the choice of reflection coefficients such that the error energy is
minimised, when only a finite number of data samples is available.

The optimum value of the reflection coefficients, can be easily derived{7] and is given by:

M
2 en«l (k) * bn—l(kul)
Cp= — 22 (3)
M 2 2
2 e k) 4+ bn_l(k-l)
k=n

where
M is the number of data samples.

and the AR parameters can then be estimated from:
an =Cp)

an() = ap-1G) + cpan-1(n-j) for j = 1...n-1 (5)

A sequential implementation of the Burg algorithm is outlined in [1] and is reproduced in figure 2a
with individual tasks labelled Tip(1), Tn(1), Tin(2), Tun(2), Tin(3). Tasks Tin(1) are
computations of the inner products in both the numerator and denominator of (3) above. Tp(1) is
the calculation of the division needed to compute cy. This task cannot proceed in parallel, since it
depends on the results of task Tjp(1). Also reproduced in figure 2b is the maximally paralle] graph
for M=5 and MAX=3. Tjy(2) updates the autoregressive coefficients and task Tj,(3) updates the
forward and backward prediction errors.

The Burg Algorithm in Paraltel FORTRAN and SISAL Page- 3

) Tl Ty (1 Ty(1)

1 INALIZATION o] | 315_)J | a | Flél_gl) |
e(=x(0) :
b()=x() T: (1

2. THE MAIN LOOP
FOR n=1 TOMAXDO 1 i

I | i
51=0.0; s2=0.0 [T | ’Tzﬁé) l IT'HES)] [L:3) | |Ts1(l3) |

FOR i=n+1 TOM DO |

| - | 1
slzsl+e(iy*bli-n) Tin(1)
32=s2+e(il)**2+b(i-n)**2 | 1 T(D) | [To(D) | {Ts(D) |
c(n)=-2.0*s1/s2 Tn(i) i]]

IF n>1 THEN DO

FOR i=1 TO n-1 DO

! 3 I 1 1 |
Ki)= *a(nd) Tin2
o maemiaad @ T)] [Tp@) | [Te®] [Te®] [Tk
a{iy=al(l) Tan) =] - |
== nn t
;(g)RL;gu TOM DO) [Tl | [Tsf1) | -
temp=ef(i)+c(n)*b(i-n) Tin(3
b(i-n)=b(i-n)e(n) e
ezi;limmpn)c n)*e(i) Ti (1) |
| - - I I]
e | ey | [t] [me)] [6)]
Figure 2a sequential Burg Algorithm for Figure 2b maximally parallel graph for
m data points and max reflection =5 and max=3 from [1]
coefficients

3. Language Considerations
3.1 Encore Parallel FORTRAN

The Encore Parallel FORTRAN compiler (EPF) is the UMAX 77 implementation of FORTRAN
with enhancements which allow parts of a program to be executed in parallel. These statements are
PARALLEL, DO ALL, CRITICAL SECTION, BARRIER, LOCK WAIT, LOCK SEND, and
EVENT.

The EPF compiler consists of analysis and transformation tools, a parallelising compiler, parallel
runtime libraries, and a code generator. Whilst programs can be written directly in EPF, EPF can
also be used to convert a standard FORTRAN program into a source which is annotated with the
parallel statements outlined above. During compilation, EPF first detects possible concurrent parts
of the source programs, these are shown in a .LST file. The annotator then generates the EPF
program , .E file, by inserting the appropriate EPF statements.

The EPF annotator may require user intervention to produce the most efficient code for a particular
program; however, useful speedup can be achieved by relying on the annotator alone.

3.2 SISAL

SISAL is a functional language which has been targeted at a wide variety of systems including
current generation multiprocessors such as the Encore Multimax and research dataflow machines
[21(31[4]. The textual form of SISAL, in terms of cont;ol structures and array representations,

provides a relatively easy transition for those familiar with imperative languages. The optimising
SISAL compiler (OSC) from Colorado yields performance competitive with FORTRAN [5].

The Burg Algorithm in Parallet FORTRAN and SISAL Page- 4

4. Parallel Implementation

The simplest parallel implementation of the Burg algorithm is obtained by coding the sequential
algorithm in FORTRAN and then using the Encore Parallel FORTRAN compiler (EPF) to produce
the parallel code suitable for the Encore Multimax Maultiprocessor. This process requires that the
programmer to know very little about the underlying architecture of the machine, thus code may be
generated very easily. This method is also attractive since it allows existing software, written in
FORTRAN, to be implemented on parallel machines without any translation. The disadvantages of
this method are that: optimum speedup is usually not obtained; and that the annotated code
produced by the EPF compiler is machine dependent. Appendix 1 shows the EPF annotated
version of the Burg Algorithm. The annotator has identified that all loops except the outer loop can
be parallelised. Thus the annotator can successfully identify the parallel loops. The maximally
parallel graph suggests that tasks Tjp(2), Thn(2) and Tip(3) could be performed at the same time;

unfortunately EPF can only slice loops, and since the outer loop is sequential, due to task Ty(1),
EPF cannot make these tasks parallel.

The second implementation is to code the algorithm in SISAL. The disadvantage of a SISAL
implementation is that existing codes need to be rewritten in the SISAL language. The SISAL
implementation of the Burg Algorithm as presented in [1], was directly transliterated from the
FORTRAN version, excepting the loop which updates the autoregressive coefficients shown in
figure 3a, which was transformed into a parallel format to ease the coding.

A= Y%calculate auto regressive coefficient
forkin t,oldn
returns array of
if k = old n then
c
else
old alkj+c*old ajold n-k]

end if

end for;

Figure 3a implementation of the calculation of the autoregressive coefficients in SISAL.

‘The loop which which updates the forward and backward errors was also changed. The original
FORTRAN loop has been split into two loops. This was done so that the indexes of b change in
manner which is suitable for the parallel SISAL for' loop, refer fig 3b.

&=
for | in old n+1,m
returns array of
old effj+¢* old bil-old n]
end for;
b=
forjini,m-oldn
returns array of
old bffj+c*old e[j+old n]
end for;

Figure 3a implementation of the calculation of the autoregressive coefficients in SISAL.

The Burg Algorithm in Parallel FORTRAN and SISAL Page - 5

5. Results

The SISAL and FORTRAN versions of the program were run on both an Encore Multimax and
IBM RS6000/530 system using the standard £77 FORTRAN compiler, the EPF compiler and the
optimising SISAL compiler.

For comparison purposes the number of data points was set to m=10000 and the model size to
max=100.

The run times obtained for both the FORTRAN and SISAL implementations of the algorithm on
the Encore Multimax multiprocessor with four XPC processors are summarised in table 1.

Processors Real User System Speedup Efficiency
1 30 30.0 0.2 1.00 1.00
2 16 32.9 0.4 1.81 0.91
3 11 33.8 0.4 3 65 0.88
4 9 357 0.5 3.34 0.84
Encore Parallel FORTRAN
Processors Real User System Speedup | Efficiency
1 39.31 38.35 0.52 1.00 1.00
5 1943 18.92 0.47 2.02 1.00
3 14.51 14.06 0.36 2.71 0.90
4 11.94| 1155 0.8 3.29 0.82
SISAL

Note: Speedup=T 1 /Tn Efficiency = Speedup(n) /n
Table 1 times, speedup and efficiency for the Encore Multimax

As can be seen from the run times, speedup is achieved with the EPF compiler without significant
programming effort. The EPF compiler converts DO LOOPS to parallel code. However, the
annotator is fairly conservative, and further speedup may be obtained, in some instances, by
manually annotating programs.

The Burg Algorithm g, Parallel FORTRAN ang SISAL Page- 6

B SiSAL
*= FORTRAN

20

Run Time (s)

10

/% J

. B |
2 3 4 1 2 4

Processors
Processors

Figure 4a ryn tme vs Processors Figure 4b Speedup vs processors

As can be seen, from the results, the FORTRAN ang SISAL implcmcntatiops achieve similar
Speedup, but more importantly the FORTRAN Implementation has a lower run time,

globally in the current version of the SISAL, compiler there may be a risk of over parallelisation of

80

Processors

Figure 53 runtime vyg Processors (16 processors) Figure 5p Speedup vs processors

The Burg Algorithm in Parallel FORTRAN and SISAL Page- 7

The run times for a single processor are summarised in table 2. These times are for a model size of
m=10000 and max=100. The time for the SISAL implementation is comparable with the
FORTRAN (XLF) implementation.

User System

SISAL 0.92 0.0
FORTRAN 4.24 0.7
FORTRAN -O 0.42 0.5

Table 2 times for the IBM RS6000/530 (m=10000, max=100)

The results for the IBM RS6000/530 and Cray Y-MP are shown in table 3 for comparison with
the results from [1]. The parameters for this study were m=16384 data points and model size
max=10.

Machine | iPSC/2 MPP X-MP/48 Y-MP RS6000

Egcecution 0.24 0.05522 | 0.016887 | 0.009 (1p)i 0.19
Time (s)

Times from [1]

Table 3 comparison of Burg Algorithm execution time (m=16384, max=10)

6. Conclusions

The Burg filter was implemented both in FORTRAN and SISAL. Significant speedup is achieved
with the SISAL implementation, suggesting that SISAL may be a useful language for signal
processing algorithms. FORTRAN annotators such as the EPF annotator are useful in that speedup
is obtained for little effort, and existing FORTRAN implementations of algorithins need not be
recoded. Run times on modern single processor machines such as the IBM RS6000/530, are
comparable to some existing parallel architecture machines.

Acknowledgements

The authors thank and the members of the Laboratory for Concurrent Computing Systems at the
Swinburne Institute of Technology, in particular P.S. Chang, for their assistance in this research.

The Laboratory for Concurrent Computing Systems is funded under a special research
infrastructure grant for parallel processing research by the Australian Commonwealth Government.

The Burg Algorithm in Parallel FORTRAN and SISAL

Page. 8

Referenceg

[1]

(2]

(31

[4]

[5]

[6]

[71

NM. Sammur ang M.T. Hagan. "Mapping Signal Processing Algorithms on Paralle]
Architectures, Journal of Paralle] and Distributed Computing, Issue no.8 1990

pp180-185.

McGraw et al,, "SISAL: Streams and Iteration in a Single Assignmept Language.”
Language Reference Manual, M146, Lawrence Livermore National Laboratories.

APW, (Wim)} Bohm and J, Sargeant, "Efficient Dataflow Code Gcneragion (_)f SISAL™,
Technical Report UMCS-85-10-2, Department of Computer Science, University of
Manchester, 1985.

G.K. Egan, N.J. Webb and A.P.w. (Wim) Bohm, "Some Features of the CSIRAC I
Dataflow Machine Architecture”, in Advanced Topics in Data-Flow Computing,
90

D.C. Cannp, "High Performance Parallel Applicative Computation”, Technical Report
CS—89-104, Colorado State University, Feb.1989.

R.A. Roberts and C.T. Mullis, "Digital Signal Processing" Addison - Wesley 1987

The Burg Algorithm in Paraliel FORTRAN and SISAL Page- 9

Appendix A

The following listing shows the EPF annotated version of the FORTRAN implementation of the
Burg Algorithm.

1 program burg
o] G.K. Egan)
4 double precision x(10000), e{10000),
D{10000),c(10000)
5 double precision al{10000),a(10000)
[double precision sl,s2,temp
7 integer m,n,max
10 m=10000
11 max=100
iz c
C Fr———————— 13 do 100 i=l,m
* 14 x(iy=float (1)
* 15 100 continue
16 (o]
17 c main code
18 fad
fos s 19 do 200 i=l,m
* 20 e{iy=x{i)
* 21 b(i}y=x{i)
* 22 200 continue
23 ol
NC e 24 do 300 n=1,max
! 25 sl=0,
! 26 s2=0.
c e 21 do 400 i=(n+l),m
C t* 28 sl=sl+e(iy*b (i-n)
C 1 29 s2=g2+({e{i)*e{l))+(b{i~n)*b(i-n))
1% 30 400 continue
! 31 ciny==2,%s1/82
1 32 c
i 33 if {(n.gt.l) then
C Tfmm e 34 do 500 i=1, (n-1})
Lk 35 alti)=a({i}+c(n})*a(n-1)
| 36 500 continue
C Lo e 37 do 600 i=1, (n-1}
tx 38 af{i)=al (i}
L 39 &00 continue
! 40 endif
! 41 c
! 42 a(n) =c{n)
C T fmmm e e 43 do 700 i=(n+l),m
1% 44 temp=e (1) +c{n} *b{i-n}
t* 45 b{i~p)=b{i~n)+c{n} *e (i)
& 46 e(i}=temp
1 47 700 continue
NC ! 48
! 49 c
! 50 300 continue
NC 51 do 1000 i=1,nmax
NC d 52 write(6,*} a(i)
i 53 1600 continue
54 stop
55 end

Abbreviations Used
NC non-cencurrent—stmt C concurrentize
8 loops total
1 loops left as DO loop
1 preferred scalar mode
6 loops concurrentized

The Burg Algorithm in Parallel FORTRAN and SISAL

Appendix B
The following listing shows the SISAL. version of the Burg Algorithm.

% A.L. Cricenti 1990.
“%Burg algorithm, procedure to fit an auvtoregressive model to a time seties data set,
define main

type wvector = array [double_real};

function burg{m, max:integer returns vector)
for initial
a,b,e: vecior;
ab,e=foriini, m
fiz==double_real(i)
returns array of ii

array of i
array of ii
end for;
n=t;
while (n <= max) repeat
81,82 = %calculate sums s1,52

foriinold n+i,m
returns value of sum old e[il*old bli-old n]
value of sum old efi]"old e[i}+old bii-old n}*old bfi-old n]
end for;
ci= -2.0d0%s1/52; %calculate reflection coefficient
a= %calculate auto regressive coefficient
forkin1,oldn
returns array of
if k = old n then
c
else
old afk]+c*old alold n-k}
end if
end for;
= %calculate forward prediction error
fortin old n+1,m
returns array of
oid efl]+c* old b{l-old n]
end for;
bi= %calculate backward prediction error
forjint,m-cldn
returns array of
old bijl+c"old efj+old n}
end for;
n:=old n +1
returns value of a
end for
end function
function main{returns vector)

let

m:=10000; %Number of data sample

max:=100; %Number of coefficients (mode| size)
in

burg{m, max)
end let

end function % main;

Page- 10

