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Abstract: In an Artificial Neural Network (ANN), associative memory
corresponds to the synaptic weighting which modulates the efficacy of each ANN
element input and has simple (normally perfect) retention characteristics. This paper
details the development and operation of a new multistage memory system, referred
to as the Neural Multiprocess Memory Model (NMMM). The NMMM supports
spontaneous regression and recovery, U-shaped memory retention, and
incorporates a new adaptive associability mechanism capable of supporting both
negatively accelerated and sigmoidal acquisition curves, latent inhibition, learned
irrelevance, the Partial Reinforcement Effect (PRE), and accelerated learning
following alternating acquisition/extinction training sessions.

The Learning, Evolution, Adaptation, and Development (LEAD} Artificial Intelligence (Al) Project.
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INTRODUCTION

Learning and memory tend to be regarded as conceptually discrete processes,
with learning pertaining to the acquisition of knowledge, and memory
responsible for the retention of knowledge. However, since memory is a
necessary component of learning it cannot avoid contributing to the nature of
learning. More specifically, the retention and transfer characteristics of the
memory employed may have a large impact upon the characteristics of learning

and the temporal characteristics of transfer from acquisition to deployment.

Perhaps the most pervasive artificial form of memory is that utilised in digital
computers, which is typically characterised by very fast rates of storage and
recall {typically requiring only nanoseconds to microseconds), perfect transfer
of digital data, and perfect retention for practically unlimited intervals of
time. Having separately identified and categorised the phenomenon of memory
in digital computers, criteria have evolved for its operation which are
absolutely separate from its potential applications. No information processing
other than strictly memory processes such as storage and retrieval of data is
permitted, so that each "memory module"” makes virtually no nonmemory

contribution to the mechanisms which alter memory conients.

While this methodology has been particularly effective at producing general
purpose computer memory which is application nonspecific, it may have
engendered an overly narrow concept of the possible role of memory in
biological neural network systems, particularly among the ANN research
community. In biological systems, memory appears to be distributed among
many adaptive synapses between neurons in a fine-grained manner (Eccles
and McIntyre, 1953; Eecles, 1964; Ungar, 1970; John, 1972), and so the
mechanisms of acquisition, retention, and deployment may well be more tightly
integrated. In such a case it may not be appropriate io separately idealise the
characteristics of memory. In fact, it will be discussed below how the "non-
ideal” information processing and integration characteristics of biological
memory may actually complement and enhance the learning and deployment

processes.
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The Greek philosopher Plato (428-347 BC) likened the nature of human memory
to impressions made in soft wax, in which successive traces progressively
obliterate preceding ones. Aristotle (384-322 BC), a pupil of Plato, later
extended this concept to include associations among these traces in order to
facilitate recsll. As neurological knowledge grew, neural pathways were
considered to correspond to associations, and the plastic efficacy of these
pathways with memory. The phenomenon of retrograde amnesia, in which a
traumatic event can prevent memory of immediately preceding events, led
Muller and Pilzecker (1800} to suggest in their "consolidation theory" that
neural pathways must temporarily remain active after associations are initially

formed in order for them to consolidate and become permanent.

As research progressed further, it became apparent that animal memory
included a wide variety of phenomena, for which a single simple memory model
was unlikely to account. Researchers abandoned unified models of memory in
favor of more specialised models of specific aspects and types of memory. This
led to the emergence of multiprocess theories of human memory such as the
highly influential Atkinson and Shiffrin (1971, 1877) multiprocess memory
model, depicted in Figure 1. Atkinson and Shiffrin attempted to integrate very
gshort term sensory memory, a general purpose working short term memory,
and a long term memory into which information was transferred from short

term memory.
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FIGURE 1. The Atkinson and Shiffrin (1871, 1977) multiprocess model of human
MEemory.
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in the Atkinson and Shiffrin {1971, 1877} multiprocess memory model, sensory
memory is a characteristic of sensory transducers or other neural hardware
associated with sensory analysis. All sensory activation is temporarily retained
before it passively decays away. A simple example of sensory memory is visual
persistence. The Short Term Memory (STM) depicted in Figure 1 also passively
decays, but at a slower rate. Also its capacity is very much more limited, and
control structures are posited which enable both selective transfer of
information into STM, and extended retention of this information by rehearsal,
A considerable degree of processing is required to support STM operation,
most of which is inadequately understood and specified from a mechanistic
viewpoint. STM contents are regarded as abstracted "chunks" of information,
such as words or numbers. Although STM capacity is somewhat disputed, early
empirical tests with humans indicated an STM capacity of between five and
nine chunks (Miller, 1956). STM contents are automatically transferred into
Long Term Memory (LTM), with effectiveness of transfer increasing with
strength and duration of STM activity. In this model LTM was assumed ito be

permanent, and so free of passive decay.

As a generalised model of human memory the Atkinson and Shiffrin (1971,
1977) model is easy to relate to, but it provides wvirtually none of the
mechanistic detail of interest to ANN researchers. However, memory also
appears to be a multiphasic process in more humble vertebrates and
invertebrates (e.g., Chen, Aranda, and Luco, 1970; McGaugh, 1966, 1969; Menzel,
1984; Menzel, Erber, and Masuhr, 1874; Messenger, 1871; Riege and Cherkin,
1971; Young, 1970; Sanders and Barlow, 1971) in which & mechanistic
exploration is facilitated by the reduced complexity of these creatures.
Furthermore, in the case of the marine mollusc Aplysia learning and memory
appears to be supported by .a highly localised and relatively complicated
synaptic mechanism (Carew, Hawking, Abrams, and EKandel, 1984; Carew,
Hawking, and Kandel, 1983; Carew, Pinsker, and Kandel, 1872; Carew, Walters,
and Kandel, 1881; Hawkins, 1981; Hawkins, Abrams, Carew, and Xandel, 1983;
‘Hawking, Castellucci, and HKandel, 1981; Kandel and Schwartz, 188%2; Pinsker,
Kupfermann, Castellucei, and Kandel, 1970; Walters and Byrne, 1983),
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As the cellular mechanisms of learning and memory in Aplysia slowly yield to
experimental analysis, a picture is beginning to emerge in which basic
intracellular mechanisms seem to be combined to produce progressively more
sophisticated learning behavior (e.g., Hawkins and Kandel, 1984). While the
mechanistic detail is still insufficient to permit the development of a fully
functioning model of learning and memory in Aplysia, the demonstration of
bagic classical conditioning behavior (e.g., Hawkins, Abrams, Carew, and
Kandel, 1983} has encouraged the development of several relatively
sophisticated artificial neuronal models of classical conditioning, with varying
degrees of correspondence to the known mechanisms in Aplysia (e.g., Sutton
and Barto, 1981; Klopf, 1987; Gluck and Thompson, 1987; Desmond and Moore,
1988; Card and Moore, 1990; Rogers, 1991). A similar approach is taken here,
except that an emphasis is placed upon memory processes rather than learning
in general, for which relatively little functional detail is known. Consequently,
a combination of empirical results from behavioral animal experiments using
various species, and qualitative theoretical argument was used to direct this

work.

An exploration of the functional relationship between memory and learning is
documented herein which has yielded a new nonlinear system of interacting
‘CS-specific {or synaptic) memory types, collectively referred to here as the
‘Neural Multiprocess Memory Model (NMMM)., The NMMM is progressively
developed from the standard ANN adaptive synaptic weighting, initially
producing spontaneous regression and recovery behavior, then U-shaped
memory retention, and finally comprehensive adaptive associability behavior.
The adaptive associability mechanism supports both negatively accelerated and
sigmoidal acquisition curves, latent inhibition, learned irrelevance, the Partial
Reinforcement Effect (PRE), and accelerated Ilearning following alternating
acquigition/extinction training sessions. The NMMM is designed as a general
purpose module for implementation within biologically relevant ANN elements
which also incorporate learning mechanisms, temporal eligibility traces, and
CS-nongpecific nodal activity equations (e.g., Sutton and Barto, 1981; Gluck
and Thompson, 1987; Grossberg and Schmajuk, 1988; Rogers, 1881).
Consequently, computer simulation results illustrating the NMMM’s full

capabilities can only be provided when the NMMM is functioning within a
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complete ANN element. While such results are available (Rogers, 1991), this
paper focusses upon the characteristics of the NMMM that are independent of
the ANN element in which it is integrated. A largely gqualitative explanation of
the NMMM is therefore provided, though this is supplemented by computer
simulation results illustrating the NMMM's spontaneous memory retention

characteristics, as these are able to be simulated with the NMMM in isolation.

ASSOCIATIVE ARTIFICIAL NEURAL NETWORK MEMORY

In the context of ANNs, asscociative memory is often restricted to the adaptive
weighting of connections (Figure 2). The connection weighting memory is
usually long term in nature, exhibiting indefinite perfect retention. This LTM
reacts immediately to local conditions via some form of learning rules, usually
at a limited rate of change to reduce the impact of recent events, and
facilitate the integration of experience over many trials. In the context of
classical conditioning, the Conditioned Siimulus (CS) output in Figure 2 leads
to generation of the Conditioned Response (CR), and LTM determines the
strength of the CR.
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Figure 2. The standard configuration of synaptic memory for ANNse. The
operator immediately below LTM is analog multiplication. Individual CS8 output
signals are typically summed at each ANN element. The CS input and CS
output signals may be considered to correspond to synaptic input and
gynaptic output signals respectively.

When S8TM is considered in an ANN it is usually implemented by temporarily
sustaining the activation of the element so that it slowly passively decays
after active inputs terminate. This is sometimes supplemented by reentrant

positive feedback connections from the element’s output to its inputs (e.g.,
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Grossberg, 1988}, Such element-based CS-nonspecific STM can help support
cooperative-competitive interelement interactions to process parallel streams of
input activation. However, this type of STM only siores nonassociative
information. Furthermore, since the element activity itself forms the essence of
this type of 8TM, it becomes a complex problem for the network to
differentiate between stored memory contents, and retrieved memory contents
in the process of being applied. In other words, it becomes a nontrivial
attentional problem to set aside most STM contents briefly while selectively

attending to particular STM contents.

The approach adopted here is to develop a multiprocess memory saystem,
incorporating both STM and LTM (and later medium term and adaptive
associability memory) to temporally modulate synaptic efficacy. STM and LTM
are then distinctly separate to element output or element input activation.
This type of synaptic memory system does not appear tc have been seriously
investigated by other ANN researchers. A combined STM and LTM synaptic
memory system is not only appealing for its potential to separate real time
performance from STM contents, it can also provide a simple account for the

experimental phenomena of spontaneous regression and spontaneous recovery.

SPONTANEOUS REGRESSION AND SPONTANEOUS RECOVERY

Spontaneous regression describes a post-acquisition training partial decline in
learned performance {Figure 3). This is differentiated from simple passive
decay by a relatively rapid decline to an intermediate level of responding,
rather than a typically slower decline towards zero responding. Spontaneous
recovery describes a post-extinction training partial restoration of learned

performance.

Spontaneocus recovery has been observed within both classical (e.g., Paviov,
1927, p. 58) and operant (e.g., Ellson, 19838} conditioning experiments. Although
given less attention, and tending to be much less pronounced than
spontaneous recovery, spontaneous regression has also been observed in
classical (e.g., Konorski, 1948, p. 83) and operant (e.g., Mote and Finger, 1943;

Spear, Hill, and O'Sullivan, 1965) conditioning experiments.
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Figure 3. A qualitative illusfration of spontaneous regression and spontaneous
recovery behavior.

Spontaneous regression and spontaneous recovery behavior have received
very little attention from AXNN researchers, perhaps because they may seem to
be of little behavioral utility. However, when viewed in the context of a
combined synaptic STM and LTM system, a nontrivial behavioral advantage
emerges. Consider the following fundamental problem: When only synaptic LTM
is used, as is usually the case in ANNs, at what rate should LTM learning
proceed? A fast rate of learning will enable a system to rapidly adjust its
behavior to suit new or changing environmentally imposed contingencies when
they are of a consgistent nature. This has obvious advantages in situations in
which system well-being is threatened. However, if the experienced
contingencies are of a statistical nature, as may be commonly experienced by
individual elements of a highly distributed neural network system operating in
a complex environment, then a slower learning rate is required to capture the

mean long term contingencies from many individual trials.
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Spontaneocus regression and recovery behavior may temporally combine the
advantages of both slow and fast learning rates. On the time scale of
individual trials, learning is able to proceed at a rate faster than that which
is optimal for integration of Iong term experience, so that temporarily
contiguous performance can more rapidly adjust to recent contingencies. But
as time proceeds, long term experience is permitted to partially reassert itself,
with the net steady-state result (reached sometime after tk_le last trial) being a

blend between short and long term experience.
ASSOCIATIVE STM AND LTM

Since Pavlov (1927, p. 58) first observed spontaneous recovery behavior, the
pursuit of a theoretical explanation for it has gained the attention of many
notable researchers {Paviov, 1927, p. 60; Hull, 1943, pp. 285-286; Skinner, 1938,
1950; Estes, 1955). A new Neural Multiprocess Memory Model (NMMM)
integrating associative 8TM and LTM will now be proposed, which is intended
to account for not only spontanecus recovery, buil also spontaneous
regression. That both spontaneous regression and recovery may resull from
the operation of a common mechanism was suggested some time ago by Estes
{1955). However, the NMMM provides a new and relatively simple account for
these spontaneous phenomena, and does so in the form of a functioning model
rather than just a theoretical construct. It will be shown later that this new
memory system is also easily extended to support other important memory

related phenomena of substantial behavioral utility.

Figure 4 illustrates how associative STM and LTM are arranged within the
proposed NMMM. A synaptic (CS-specific) form of STM displaces the synaptic
LTM normally used to modulate the efficacy of interelement pathways (Figure
2), while LTM is relegated to a background role in which it is not directly
accessible, The impact of LTM upon performance is now only indirectly
apparent via its influence upon STM. In turn, LTM value is only indirectly
affected by experience via STM. The effect of experience upon STM, through
whatever system learning rules are employed, is simulated here by altering
the initial value of STM. Since only the spontaneous memory retention and

transfer characteristice of the NMMM are able to be simulated with it in



The Neural Multiprocess Memory Model 10

isolation, and experience-induced changes in STM occur at much faster rates,

this technique approximately reproduces the response of the NMMM to recent

gxperience.
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FIGURE 4. The NMMM, integrating associative STM and LTM. STM and LTM may
attain positive (excitatory) or negative (inhibitory) values, and all signals are
bipolar except for the synaptic input, which is restricted to non-negative
values., +/- indicates that the effect of the signal matches its polarity, while -
/+ indicates a converse relationship. The operator immediately below STM is
analog multiplication, while that immediately above STM is analog summation.

The above NMMM is defined by the following difference eguations:

STMIT+1] = STM{T] + STMchg. (LTM[T} - STM[TD f1]
LTMIT+1] = LTMIT] + LTMacc.pos{STM[TI-LTM[T})

-~ LTMdep.pos{LTM[T]-STM[T]) f21
Where: STM[T} = synaptic Short Term Memory at time state T.

STM[T+1] = synaptic Short Term Memory at time state T+l.
STMchg = rate of change of STM,

LTM[T] = synapiic Long Term Memory at time state T.
LTM[T+1] = synaptic Long Term Memory at time state T+1.
LTMacc = LTM accumulation rate.

LTMdep = LTM depletion rate.

pos{x) = x, if x >= 0, and pos{x) = 0, if x < O,

Time between successive time states is 10ms.
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STM{T} is a variable which refers to the level of synaptic Short Term Memory
at the current time state T, and STM[T+4+1] to the level at the next time state
T+1. Similarly, LTM[T] and LTM[T+1] are variables which refer to the levels of
synaptic Long Term Memory at the current and next time state respectively.
Equations [1] and [2] therefore describe how the levels of synaptic STM and
LTM for the next time state are derived from their current levels. Synaptic
STM and LTM may be regarded as cumulative guantities which take a finite

time to change value.

Equations [1] and [2] relate directly to the NMMM schematic diagram (Figure
4), with the addition that a constant is associated with every signal which
affects the wvalue of a cumulative quantity. STMchg is a constant which
determines the rate at which STM changes, c¢ontrolling rates of both
accumulatibn {when LTM[T] > STMI[T]) and depletion (when LTM[T} < STM[TD.
LTMacc determines the rate at which LTM accumulates, and LTMdep the rate at
which LTM depletes.

This type of nomenclature is standard throughout this paper, with three or
four upper case characters mnemonically denoting system variables. Symbols
for constants are formed by appending three lower case characters to the end
of the upper case mnemonic symbol of the wvariable with which the constant is
associated. The standard suffixes "acc", "dep", and "chg" denote that the
constant affects the accumulation, depletion, and change ({(both accumulation

and depletion) rates of the associated variable respectively.

- The eselection of an interval between successive time states of 10ms is

somewhat arbiirary, the main consideration being that it be brief enough to
prevent time quantisation effects from becoming apparent. A value much larger
than 10ms could have been used to simulate the relatively slow spontaneous
interaction between memories in the NMMM, and counsiderably reduced the
number of time states in which the equations needed fo be computed. However,
as the interval between time states also affects the absolute values of the
constants in Equations [1] and [2}, and since the NMMM is designed to

function as a component of a complete ANN element, the interval between time
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states should also be brief enough to support the more rapid internal changes
within an ANN element. The wvalue of 10msg is used in the ANN models of
clagsical conditioning of Desmond and Moore {(1988) and Rogers (1991), and so

wag also used here.

The NMMM illustrated in Figure 4 behaves as follows: After STM is disturbed
by a recent experience, STM and LTM interact in a manner which gradually
makes them attain the same value, being somewhere in between each of their
initial wvalues. The relative rate of change of each memory determines the
extent to which each influences the final value. In addition, if different rates
of accumulation and depletion are employed (as in Equation [2] for LTM), an
increase in 8STM can lead to a greater or lesser change in final value than a
‘decrease, This is clearly illustrated by the computer simulation results
presented in Figure 5, in which the accumulation rate of LTM is twice that of
its depletion rate, resulting in spontaneous regression of 33%, but a more

- complete spontaneous recovery of 50%.

The way in which STM and LTM are organised within the NMMM is
superficially similar to that within the multiprocess memory model of Atkinson
and Shiffrin (1971, 1977} (Figure 1). In particular, the background role of LTM
and the exclusive use of STM in actual performance is common to both,
“However, further similarities are difficult to find, as the NMMM is relevant to
very distributed and fine-grained operation, the mechanism of interaction
between LTM and STM is specifically defined and different in nature, and the
STM is as widespread as LTM, with each having the same capacity. In other
words, the two memory models operate at distinctly different levels, with the
Atkinson and Shiffrin (1971, 1977) multiprocess model being essentially high
level, and the NMMM being very much low level

Also, a substantial interval of time (in the order of minutes) is required to
enable transfer of information from STM to LTM, or in other words for
“consolidation” to occur. This relates well to Muller and Pilzecker’s (1900)
consolidation theory, and its a’;tempt to explain the phenomenon of retrograde

" amnesia,
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FIGURE 5. Memory retention behavior exhibited by the NMMM, incorporating
STM and LTM only. {(a) Spontaneous regression behavior. Initially 8TM = 1.0
and LTM = 0.0, {o simulate a relatively rapid experience-induced increase in
" 8TM from 0.0. (b) Spontanecus recovery behavior. Initially 8TM = 0.0 and LTM
1.0, to simulate a rapid experience-induced decline in STM from 1.0. STMchg
0.0001, LT™acc = 0.0002, and LTMdep = 0.0001, from Equations {1] and [2].

]

]
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ASSOCIATIVE MTM

The NMMM may be considerably enhanced by incorporating a new adaptive
associability mechanism, which is described later below. This new mechanism
requires appropriate controlling signals from a form of associative Medium
Term Memory (MTM), and it is primarily for this reason that MTM will now be
considered. However, addition of MTM to the NMMM in itself also improves the
extent to which the NMMM’s memory retention behavior correlates with several
additional types of empirical results, as discussed below. Figure 6 illustrates
how MTM is integrated within the NMMM.
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FIGURE 6. MTM-enhanced NMMM, in which changes in LTM are now mediated
by changes in MTM.

MTM~enhanced NMMM difference equations:

STM[T+1] = STM[T] + STMchg. {LTM[T] - STM[T1) £3]
MTMI[T+1] = MTM[T] + MTMacc.pos{STM{T]-LTM[TI-MTM[T})

- MTMdep.pos{(MTM{T]+LTM[TI-STM{TI) (4]
LTM[T+1] = LTMIT] + LTMacc.pos(MTM[T]) - LTMdep.pos(~-MTM[T]) [5]

As shown above, the difference between STM and LTM wvalue which used 1o

directly modify LTM, now modifies MTM instead, which in turn drives changes
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in LTM. While the basic role of STM and LTM remains unaltered, MTM now
requires time to accumulate towards the difference between STM and LTM
before LTM can begin to appreciably change. The rate of change of MTM is
comparable to that of LTM, so that the effect of relatively rapid learning-rule
induced changes in 8TM upon LTM is delayed.

MTM only plays an active role during the transfer of information between STM
and LTM. Unlike both STM and LTM, MTM has a steady-state value of zero.
Figure 7 illustrates how an experience?induced change in STM value produces
a smoothly changing inverted U-shaped deviation in the magnitude of MTM,
while STM and LTM attempt to attain the same intermediate value. Since MTM
is capable of neither the indefinite retention of LTM, nor the rapid learning-
rule induced changes in STM, referring to it as "Medium Term Memory" seems
appropriate - even though all three memories have comparable rates of

spontaneous change.

Addition of MTM to the NMMM can also significantly alter the course and
extent of STM spontaneous regression and recovery, and provide a further
opportunity to accentuate the asymmetrical response of the NMMM to changes
in STM value by making MTMacc > MTMdep. The existence of such an
asymmetry is suggested by the tendency for spontaneous recovery to be much

more pronounced than spontaneous regression (Mackintosh, 1974, p. 471).

Figure 7a illustrates how spontaneous regression of STM contents now exhibits
a pronounced U-shaped response, and ultimately regresses only 10% (compared
to 33% without MTM in Figure 5a). In contrast, the spontaneous recovery
illustrated in Figure 7b exhibits only a slight inverted U-shaped response
more closely resembling the shape of its counterpart without MTM (Figure 5b},

and recovers 62% (compared to 50%).
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FIGURE 7. Memory retention behavior exhibited by the MTM-enhanced NMMM,
incorporating 8TM, MTM, and LTM. (a) U-shaped STM spontaneocus regression.
Initially STM = 1.0 and LTM = 0.0, to simulate a rapid increase in STM. (b)
STM spontaneous recovery. Initially 8TM = 0.0 and LTM = 1.0, to simulate a
rapid decline in STM. STMchg = 0.0001, MTMacc = 0.0001, MTMdep = 0.00005,
LTMacc = 0.0002, and LTMdep = 0.0001, from Equations {3], [4], and [5].
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The U-shaped STM retention of Figure 7a results from the following sequence
of events: Immediately after the induced increase in STM from zero to one,
LTM is still at its original level of zero. Similarly, MTM has not had sufficient
time to react to the difference between STM and LTM, and therefore remains
close to its steady state value of zero. STM then starts to gradually decline
towards the value of LTM, creating the left half of the U-shaped S8STM
response. However, MTM and LTM also begin to accumulate in this period, so
that after approximately 2 minutes, LTM and S8TM values cross. This
corresponds to the point in time at the bottom of the U, and with LTM = STM,
would constitute their new steady state wvalues, were it not for the fact that
MTM has not had time to deplete back to zero. This causes LTM wvalue to
continue to increase and overshoot STM wvalue, which then also increases,
forming the start of the right half of the U. The LTM and STM wvalues cross
again as a result of the slow rate of change of MTM, producing the damped

oscillatory STM and LTM behavior depicted in Figure Ta.

The U-shaped STM behavior of Figure T7a compares very favourably with
empirical results (Mercer and Menzel, 1982; Menzel, 1984} depicting the
retention in honeybees of excitatory conditioning of color and odor using food
reinforcement (Figure 8). As previously described, STM level in the NMMM
directly determines the current associative strength of a CS, and therefore
current response performance. With due caution in comparing response
measurements of a different type, comparison between Figure Ta and Figure 8
indicates that the STM behavior correlates with Menzel’s data in the following
respects: (a) the position of the bottom.of the U, both in time and magnitude;
(b} the maximum amplitude attained in the right half of the U; and ({(c} the
apparent presence of damped oscillations in the right half of the U. The very
gradual loss of retention in honeybees which is almost total after 10 days may
reflect a separate active extinction process, since free-flying bees produced
this resuli. Alternatively, a gradual passive decay of LTM contents may be
reaponsible, which could easily be added to the NMMM as a slow exponential

decay term in Equation [5].
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FIGURE 8. Retention of excitatory conditioning of free-flying bees trained to a
color (long dashes and closed circles}) and fixed bees conditioned to an odor
(short dashes and open circles, from Mercer and Menzel, 1982). Note the log
scale time axis. The outer ordinate is the percentage of correct choices for
free~flying bees, the inner ordinate the responses (proboscis extension) of
fized bees after one conditioning trial. Reprinted from Menzel {1984},

Another specific empirical example of U-shaped retention can be found in the
avoidance regsponding of rats (Kamin, 1957). Kamin trained rats over 2 sessions
of 25 trials, and found that as the interval between sessions was increased
from ¢ minutes to 19 days, the number of avoidance responses made in the
second session exhibited a proncunced deficit at an interval of 1 hour ~ a
result known as the Kamin effeci. Although the time scale of this result is
approximately 30 times greater, its general shape alsc closely resembles that
obtained from the MTM-enhanced NMMM (Figure 7a). The difference in time
scale for these results may merely result from the different types of response

systems being measured.

Addition of MTM intc the NMMM may also produce new characteristics which
accord with empirical results that were not initially intentionally designed for.
The minor STM overshoot depicted in Figure 7a for a single excitatory

acquisition trial may be substantially accentuated by massing many excitatory
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acquisition trials (i.e. by using a short Inter-Trial Interval (ITI)) to produce a
significant overshoot. This type of overshoot has been observed when massed
trials are used and rapid acquisition occurs {e.g., Lubow, Markman, and Allan,
1968). Furthermore, when MTM is used to drive changes in associability (as
described below), this overshoot may also be responsible for the overiraining
reversal effect (Mackintosh, 1874, pp. 602-607). The extent of these effecis
depends upon both the particular values of constants employed in the NMMM
equations, and the specific nature of the learning rules which are determined

by the ANN element in which the NMMM is deployed.

Menzel (1984, p. 265) also notes how such U-shaped retention resembles the
"so-called primacy and recency effects in human verbal learning, where it is
found that items encountered first and last are better recalled than middle
items (Weiskrantz 1970)." The possibility exists that such U-shaped retention
may be more than Jjust a curiogity, and may in itself contribute to

advantageous adaptive behavior.
ASSOCIABILITY

"Associability" is a standard concept proposed to account for empirically
observed experience-dependent variations in the ease with which the effect of
a CS may be altered by training. The basic idea is that an organism not only
learns how to respond to a CS, it also learns how fast it should learn how to
respond. It is shown below how the behavior of the NMMM can be further
extended to include useful adaptive associability behavior that also correlates

well with a wide body of empirical data.

Changes in the associability of a CS have been inferred from the results of
latent inhibition and learned irrelevance procedures (Mackintosh, 1983, pp.
222-236). It is also claimed here that the Partial Reinforcement Effect (PRE),
and the increased effectiveness with which subjects adjust to alternate
sessions of fully reinforced and then fully nonreinforced massed {rials
{Mackintosh, 1974, p. 441), are also able to be mediated by a single adaptive
associability mechanism. Furthermore, t;his same mechanism can produce both

sigmoidal (or "S" shaped) and negatively accelerating acquisition curves,
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depending upon the associability value at the beginning of acquisition
training. Computer simulation results to support the above claims are provided
in Rogers (1991), when the NMMM is functioning as an integral part of
Associative Conditioning Element (ACE). The emphasis here will be upon the
development and basic operation of an adaptive associability mechanism

capable of producing behavior of directly apparent utility.

In order to actually implement an adaptive associability memory mechanism, the
temporal characteristics of retention of the level of associability, the precise
manner in which associability regulates learning, the conditions controlling its
modification, and (if necessary) any additional types of memory required, need

to be determined. These issues will now be considered in turn.

Temporal Characteristics of Associability Retention

The long retention capability of altered associability levels exhibited in all of
the above mentioned empirical behavior is indicative of LTM storage. In the
absence of relevant data, it would seem that dedicated associability STM
buffering or interaction is not required. Therefore a single Associability Long
Term Memory (ALTM) should suffice to retain the current level of associability
between a CS and a US. Note that like synaptic STM, this type of associability

is also associative in nature, being specific to every individual CS input.

Effecting Changing Associability

A point of control capable of supporting adaptive associability within the
NMMM is the link which enables learning rules to modify STM contents (Figure
9}, Using ALTM to directly modulate modification of STM in this way produces
a literal implementation of the apparent nature of associability, whereby the

ease with which associations are modified is directly controlled.
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FIGURE 9. The NMMM, now incorporating adaptive associability levels, which
are retained in a dedicated Associability Long Term Memory (ALTM). ALTM
controls the associability of the C8 input by modulating the effect of STM
learning rules upon STM contents.

This type of adaptive associability may be thought of as an adaptive
supplement to the combined fast and slow learning behavior already supported
by the NMMM. The temporal combination of learning rates supported by the
interaction between STM and LTM is now able to be varied over a range by
changing the value of ALTM. Since ALTM is to be aitered by experience, the
potential exists for ongoing automatic selection of the most appropriate STM
learning rate for the particular environmental contingencies previously
experienced. Without such an adaptive associability mechanism, only one 8TM

learning rate could be preset.

Associative MGM

It remains to develop an associability Iearning mechanism which produces
changes in associability that are both behaviorally appropriate, and consistent
with empirical results. The inverted U-shaped behavior of MTM (Figure 7)
provides a potentially suitable controlling signal for an adaptive associability
mechanism that meets the above requirements. As will be discussed below,
what is required is a gquantity which reflects the type (reinforced or
nonreinforced) of trial{s) recently experienced, with the virtual exception of

the trial currently being experienced. The slow rate of change of MTM ensures
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that it is not substantially affected by the currently experienced trial, thus
satisfying the latter requirement. The intermediary role MTM already plays in
transferring STM changes to LTM make it almost, but not quite, suitable for

retaining a history of recently experienced trials.

As indicated in Figure 7a, a record of a previous increment in STM is only
retained in MTM for a few minutes, during which MTM actually goes
temporarily negative. What is required is some means of sustaining and
stabilising MTM contents, but without substantially affecting LTM or STM
behavior. This can be achieved by gating changes in MTM value with a new
guantity which is increased by CS input activity, and then passively decays
so that MTM cannot rapidly deplete back towards zero. This new guantity is
called Memory-Gating Short Term Memory, which is hereafter abbreviated to

MGM. Figure 10 illustrates how MGM is integrated into the NMMM.
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FIGURE 10. The NMMM, now also incorporating Memory-Gating Short Term
Memory (MGM) to modify MTM behavior in preparation for its use to produce
appropriate changes in ALTM.

Note that in order to counter the effect upon LTM of sustaining MTM contents,
it is also necessary to gate changes in LTM using MGM. This prevents
sustained non-zeroc MTM wvalues from producing excessgively large changes in

LTM wvalue. Also, to prevent MTM from remaining permanently at a non-zero
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value as a result of the previous trial, a simple passive decay mechanism is
also implemented (Equation {7]) to enable residual MTM levels to gradually

dissipate. The rate of MTM decay is determined by the constant MTMchg.

Difference Equations [6], [7], [8], and [9], describe the spontaneous interaction
between the NMMM'’s internal memories, with change in MTM and LTM now
gated by MGM. Note that Equation [9] is incomplete in that it does not specify
how the CS input increases MGM contents. (A specific example of one suitable
technique is provided in Rogers (1891).) It is sufficient for current purposes
to assume that CS input activation initially increases MGM contents from zero
to one, so that modification of MTM and LTM is enabled {or gated} following
CS input activity.

STM{T+1] = STMIT] + STMchg (LTM[T] - STM[T}) [6]
MTM[T+1] = MTM[T] + MTMacc.pos(STM{T]-LTM{TI-MTM[T1).MGM[T]

- MTMdep.pos(MTMITHLTM{T]-STM[T]}.MGMIT]

-~ MTMchg .MTMI[T] (71
LTM[T+1] = LTM[T] + LTMacc.pos{MTM[T]1).MGMIT]

- LTMdep.pos{~MTM[T1}.MGM[T] [8]
MGM{T+1] = MGMI[T] - MGMdep.MGM[T] [9]

As shown in Figure 1la, this new memory configuration is still able to produce
memory retention behavior which compares favourably with that of honeybees
(Figure 8), when the constants MTMacc and MTMdep are doubled to offset the
effect of the decaying MGM wvalue. However, MTM behavior has now been
modified so that it consistently maintains a trace of prior reinforcement
{Figure 1la) or nonreinforcement (Figure 11b) that is available for hours after
the last trial. Also shown in Figure 11 are the MGM iraces, which after
simulated initial energisation by the CS input, rapidly decay leaving MTM at a

significant nonzero value of correct polarity.
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FIGURE 11. Memory retention behavior exhibited by the MTM-enhanced NMMM,
with change in MTM and LTM now gated by MGM. {(a) Spontanecous regression
behavior. (b} Spontaneous recovery behavior. STMchg = 0.0001, MTMacc =

0.0002, MTMdep = 0.0001, LTMacc = 0.0002, LTMdep = 0.0001, and MGMdep =
0.00005, from Equations [61, {71, [8], and [9].
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Although MGM was introduced to make MTM a more suitable source with which
to drive changes in adaptive associability, its introduction also has the
important effect of isolating STM from both MTM and LTM when the CS input
has not been sactivated recently, which is normally most of the time. This
makes STM available for use as a temporally sensitive register of ongoing US
availability., The advantageous behavior able to be supported as a result of

this STM isolation is discussed in chapter 7 of Rogers (1891).
Implementing an Adaptive Associability Mechanism

A new adaptive associability mechanism will now be implemented by combining
the long term memory used to retain associability levels (ALTM), the means by
which ALTM modulates the rate of learning, and the new stabilised behavior of

MTM resulting from the introduction of MGM.

The NMMM, with the basic elements of this adaptive assooiability mechanism
now integrated within it, is depicted in Figure 12. As computier simulation
results demonstrating the NMMM’s operation are only able to be provided when
it is functioning within a complete ANN element, all remaining explanation will
be restricted to a gqualitative discussion. The basic operation and behavioral
characteristics of the NMMM’s adaptive associability mechanism may be
revealed by considering in turn two types of reinforcement schedules that
require the acquisition of extreme associability values for optimum learning

behavior.
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FIGURE 12. The NMMM now utilising MTM to produce behaviorally appropriate
adaptation of ALTM. The bipolar STM learning rule signal is now separated
into two non-negative signals, with only that which increases STM
(corresponding to the effect of reinforcement) gating changes in ALTM. The
two new operators towards the upper right corner seplit the bipolar MTM
gignal into two separate non-negative signals. Icons in the form of miniature
input/output graphs indicate that the lower left-most operator passes only
non-negative input values, while the upper right one passes only non-positive
values which are then converted into non-negative output values of the same
magnitude. The effect of positive MTM values upon ALTM is further regulated
to limit the maximum attainable ALTM value.

Consider first the particular case of a schedule in which reinforcement is
consistently provided on a variable number of successive trials, and then
consistently omitted on a wvariable number of successive trials, with th_e
guccession of reinforced and nonreinforced trials occasionally alternating. An
example of such a schedule is provided below, where R denotes a Reinforced

trial and N denotes a Nonreinforced trial.

RRRRRRRRRERRNNNNNNNNRRRRRRRRERRRRNDNNN ..

Under these circumstances, the current type of trial (N or R} indicates with

high reliability that the next trial will be of the same type, and the most
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appropriate learning rate would be a relatively fast one. A subject would then
rapidly adjust to each change in trial type, quickly producing a strong CR
when R trials are experienced, and quickly extinguishing to produce no CR

when N trials are experienced.

During the acquisition phase produced by each succession of R trials, MTM
contents tend to attain large positive wvalues, by the same mechanism that
increases MTM following a single R trial (the effects of which are simulated in
Figure 1la). Furthermore, as indicated in Figure 12, the reinforcing effect of
each R trial is required to enable changes in ALTM to occur. The large
positive MTM values then ensure that the ALTM level is increased by each

successive R trial, producing an appropriately high level of associability.

During the extinction phase produced by each succession of N trials, MTM
contents are made to decrease and attain large negative values, by the same
mechanism which results in negative MTM values from a single N trial (the
effects of which are simulated in Figure 11b). In contrast to the acquisition
phase, the lack of reinforcement in the extinction phase ensures that the
negative MTM values are not able to reduce the value of ALTM. An exception
does exist at the commencement of each acquisition phase that is preceded by
an extinction phase, where negative MTM values are permitted to reduce ALTM
level. However, since MTM has a steady state value of zero, and its magnitude
follows an essentially inverted U-shaped profile after STM contents are
disturbed by experience (Figure 11), this effect can be minimised by inserting
an additional delay between transitions from extinction to acquisition sessions.
In any case, even if no such additional delay is employed, this negative effect
upon ALTM level will be insufficient to defeat the positive effect of the
acquisition phases because of the relatively large number of consecutive R
trials. Consequently, a large net increase in associability resulis from this

alternating acquisition-extinction series.

If subjects are given training which consists of alternating fully reinforced
acquisition sessions and extinction sessions of massed trials, it is well
established that the rate of both reacquisition and reextinction does indeed

progressively increase (Mackintosh, 1974; pp. 441-442). It is suggested here
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that such training produces an increase in associability, which as explained
above, is responsible for the increased efficiency of adaptation that has been
observed in empirical results (e.g., Bullock and Smith, 1953; Gonzalez, Holmes,

and Bitterman, 1967; Davenport, 1969).

Furthermore, it has been shown that the learning rate (as measured by the
rate of extinction during extinction sessions} increases with increasing
difference between the intertrial interval within each session, and the interval
between extinction and acquisition sessions {(Capaldi, Leonard, and Ksir, 1968).
Thig is also consistent with the above mentioned ALTM negation effect
produced when an acquisition session commences shortly after an extinction
session - since both this effect, and that of the acquisition session (which
increases ALTM) are more effective at shorter ITIs because of the medium

term retention characteristics of MTM.

If positive MTM wvalues were simply gated by reinforcement %o produce
increases in ALTM, then ALTM wvalue would increase during each acquisition
session of every acquisition~extinction pair of sessions without ever reaching
a maximum lmit., Moreover, increases in ALTM enable larger increases in STM,
which produce larger MTM values, and which in turn enable progressively
larger increases in ALTM. Consequently, a special effort needs tc be made to
control the positive feedback relationship that exists between increases in

ALTM, and increases in STM.

As illustrated above in Figure 12, a special negative feedback loop reduces
the extent of the increase in ALTM as the reinforcement signal (which is
modulated by ALTM) becomes increasingly larger, when MTM wvalue is positive.
While it is simpler to directly use the ALTM value to limit its own growth, the
observation that a stronger US increases resistance to extinction (i.e.,
decreases ALTM) of conditioned suppression after all subjects have reached
asymptotic levels of suppression in acquisition {(Annau and Kamin, 1961)

suggests that the reinforcement signal should be used instead.

When the reinforcement signal is of unity amplitude, no additional increase in

ALTM 1is possible. If the reinforcement signal exceeds wunity amplitude, a
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negative increase (i.e, a decrease) in ALTM actually resulis, because the signal
which normally acts to increase ALTM now attains a negative value. That this
condition is permitted is indicated in Figure 12 by the "+/-" label on the
gignal as it impacts upon ALTM. This additional capacity to decrease ALTM
level back down to a new lower maximum asymptotic level permits the
maintenance of appropriate maximum ALTM levels, even if arbitrary changes in
the effectiveness of reinforcement occur. Furthermore, the fact thai this can
occur when only positive MTM values are present, which for example is the
case during acquisition, ensures that appropriate adjustment of the maximum
ALTM level will cccur even during conditions which normally increase ALTM

level.

Now consider a randomly sequenced schedule of partial reinforcement in which
the probability of any irial being reinforced is, for example, 50%, and the iype
of the current trial in no way predicts the type of the next trial. A sequence

of such trials might look something like this:

RNRNNRNERENRRRERNNNRNNERNRERERNNERRNRRRNE ..

The most appropriate learning rate for this type of random schedule would be
a very slow one, because it would enable the subject to integrate the
outcomes of many trials and produce a consistent CR, with a strength and/or
probability being some monotonically increasing function of the probability of

reinforcement.

With changes in ALTM enabled by the reinforcing effects of every R trial, and
the direction and extent of ALTM change determined by those trials preceding
each R trial {and in particular the previous trial), the adaptive associability
mechanism depicted in Figure 12 will produce a much lower ALTM wvalue for
~this type of random schedule than for the systematic one previously
discussed. The extent of the difference in ALTM wvalues resulting from this
random, and the previous systematic, reinforcement schedule is dependent
upon MTM levels being essentially independent of each currently ekperienced
R trial, so that an N-R sequence iends fo result in a strong decrease in

ALTM, while an R~R sequence tends to produce a strong increase.
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The random reinforcement schedule is commonly referred to as a Partial
Reinforcement (PR} schedule, because only some of the acquisition trials are
reinforced. It is well established that a PR schedule will reduce the rate of
subsequent extinction training {to a rate substantially slower than that
subsequent to continuously reinforced acquisition (Mackintosh, 1974, pp. 434-
467). This effect is known as the Partial Reinforcement Effect (PRE}, and will
also result from operation of the above adaptive associability mechanism
because the reduced associability level affects both extinction and acquisition
learning rates. The more specific observation that for relatively short
intertrial intervals (< 20 minutes) N trials only increase resistance to
extinction when they are followed by an R trial (Grosslight and Radlow, 1856,
1957; Spivey and Hess, 1968; Mackintosh and Little, 1970; Capaldi and
Kassover, 1970) is also supportive of the specific adaptive associability

mechanism employed here.

Psychologists interested in the construction of formal models of conditioning
sometimes examine the course of acquisition in the expectation that its shape
will provide some clue as to its underlying mechanisms. Researchers often
attempt to model either a negatively accelerated acquisition curve shape {e.g.,
Rescorla and Wagner, 1972; Barto and Sutton, 1985}, or a sigmoidal curve, with
an initial acceleration phase followed by deceleration to an asymptotic maximum
level of performance (e.g., Klopf, 1987). However, it is not uncommon for some
individual subjects within the same experimental procedure to exhibit sigmoidal
acquisition while other individuals do not {Spence, 1856, p. 60). Furthermore,
Kremer (1971) found that while a nonpreexposed control group exhibited a
negatively accelerated acquisition curve, a CS-alone preexposed (i.e. latent
inhibition) group exhibited an initial phase of positive acceleration. Kremer’s
results suggest that previous experience is capable of determining the nature
of subsequent acquisition, and not just its extent or rate of change. While
these aspects are beginning to be addressed by computational models (e.g.,
Kehoe, 1988) the NMMM addresses them in a new and relatively comprehensive

way.
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It was discussed above how ALTM may be progressively increased by
successive reinforced trials during an acquisition session. If the NMMM is
used in combination with learning rules which by themselves normally produce
a negatively accelerated acquisition curve (e.g., those based upon the
Rescorla-Wagner model (Rescorla and Wagner, 1972)) then the increase in ALTM
can be sufficient to produce an initial positive phase of accelerated
acquisition, when the initial ALTM level is' low {(Rogers, 1891). If ALTM is
already at its maximum attainable level at the beginning of acquisition, then
acquisition proceeds at a fast rate from the very first trial, and the normally
expected negatively accelerated acquisition curve is produced. Hence, the new
adaptive associability mechanism within the NMMM is also capable of
supporting the production of either sigmoidal or negatively accelerated

acquisition curves, depending upon the initial associability value.

If a CS is presented to a subject without reinforcement prior to excitatory
acquisition training, then the subsequent rate of conditioning to the CS will
be retarded compared to that of a nonpreexposed CS. The effect was called
"latent inhibition" by Lubow and Moore {1959}, because they reasoned that the
preexposed CS acquired inhibitory properties which retarded subsequent
excitatory conditioning, since inhibition opposes excitation. However, it was
later demonstrated that a preexposed CS does not become inhibitory, and that
subsequent inhibitory conditioning can also be significantly retarded by such
CS-alone preexposure (Rescorla, 1971; Halgren, 1974; Baker and Mackintosh,

1977}, Nevertheless, this effect is still usually referred to as latent inhibition.

Latent inhibition has been demonstrated in several different response systems
in other animal species, establishing it as a general phenomenon (Lubow,
Markman and Allen, 1968; Cariton and Vogel, 1967, Anderson, O’Farrell, Formica
and Caponigri, 1969; Lubow and Siebert, 1969; Siegel, 196%9a, b; Kremer, 1871,
Chacto and Lubow, 1867), Latent inhibition is increasingly effeclive with
increases in the number of nonreinforced presentations of the CS (Lubow,
1965; May, Tolman, and Schoenfeldt, 1967; Siegel, 1969a), and appears to have
the greatest impact during the initial training stages (Chacto and Lubow, 1867,
Lubow, Markman, and Allen, 1968; Siegel, 196%b; James, 1971).
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If it is assumed that a naive CS may initially produce some excitatory output,
as a result of a mildly excitatory initial STM wvalue, then repeated presentation
of the CS will result in extinction of its weak excitatory strength. This will
reduce its STM level towards zero, and make its MTM wvalue significantly
negative., Figure 11b indicates that such induced negative values in MTM may
be sustained for hours. While this in itself produces no change in ALTM level,
the reinforcing US presentations in subsequent excitatory acquigition training
will enable the negative non-zero levels of MTM to decrease ALTM, and so
reduce associability level. This process is virtually identical to that occurring
at the transition between acquisition and extinction sessions in alternate
acquisition-extinction training, except that the extent of the decrease in ALTM
is. smaller because of the weaker excitatory strength of the untrained CS.
Even though these reductions in ALTM may be small in absolute terms, their
effect can be considerable because changes in ALTM are modulated by the
current ALTM level. In other words, subsequent rates of increase in ALTM are

also reduced by a decrease in ALTM level.

The extent of the latent inhibition effect produced by this process will
increase with the number of CS-alone presentations, at least until extinction is
almost complete. The spontaneous recovery also supported by the NMMM will
mean that many CS-alone presentations are required to approach complete
extinction. Since the ALTM level controls the rate of both increases and
decreases in STM, the latent inhibition effect supported by ACE will retard
both subsequent excitatory and inhibitory acquisition. Although making a
naive S less excitatory will tend to facilitate subsegquent inhibitory
acquisition, this will be overshadowed by the enduring effect of a reduced
ALTM level., The ALTM level of a (€S remains fixed throughout inhibitory
acquisition for both Pavlovian and differential conditioned inhibition training
procedures because of the absence of temporally contiguous US presentations
{Rogers, 1991). Subsequent excitatory acquisition is retarded both by the
reduced ALTM level, and to a lesser extent the reduced STM level of the
preexposed CS. However, both of these quantities are increased dramatically as
excitatory acquisition proceeds, and so their retarding effect is restricted
primarily to the beginning of excitatory acquisition training. All of these

characteristics are consistent with the above mentioned empirical observations
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regarding latent inhibition. The inverted U behavior of ACE's MTM over the
medium term, may alsc help account for the confusing evidence regarding

short term latent inhibition effects (Mackintosh, 1983, p. 229).

A learned irrelevance procedure, in which US presentations are randomly
correlated with CS presentations, can be dramatically more effective at
retarding subsequent acquisition than latent inhibition (Gamzu and Williams,
1871; Kremer. 1971). Mackiniosh (1973} confirmed this result, and also showed
that learned irrelevance is specific to the reinforcer used. Mackintosh (1974,
p. 40) states that "animals may specifically learn that a particular CS and UCS
are uncorrelated (that the CS predicts no change in the probability of the
UCS), and that this learning interferes with the establishment of an

association between the two during subsequent conditioning".

Learned irrelevance may be supported by the NMMM in a very similar manner
to latent inhibition. The now interspersed US presentations provide an
occasional source of reinforcement, when they happen to occur shortly after a
CS presentation, which enables multiple decreases in ALTM prior to
subsequent acquisition. This additional process by which ALTM may be
reduced during the preexposure procedure accounts for the increased
effectiveness of learned irrelevance ito reduce associability compared to latent
inhibition. Also, the associative aspect of the learned irrelevance effect
supported by the NMMM, which results from the associative nature of ALTM, is
consistent with Mackintosh’s (1973, 1974) observations that the effect is
gpecific io both the CS and the US.

Finally, as suggested by the empirical results from XKremer (1971), latent
inhibition and learned irrelevance do not just alter the rate of subsequent
acquisition, they alsc alter the shape of ite course. It was discussed above
that as the initial ALTM value at the beginning of acquisition is reduced, the
shape of ACE’s resulting acguisition curve changes from negatively
accelerating only to sigmoidal, in accord with Eremer’s results. Thus, the
NMMM supports both the decline in rate, and the change in shape, of

acquisition subsequent to latent inhibition and learned irrelevance procedures.
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CONCLUSION

Researchers in the ANN community generally regard associative (or synaptic)
memory as merely a repository for the efficacy of each neural input that
makes no other active contribution to learning or performance. However, the
emerging picture of a complex system of chemical interactions functioning in
support of synaptic memory in relatively humble creatures (such as Aplysiay,
and the widespread occurrence of apparently nonideal memory phenomena such
as spontaneous recovery and regression in behavioral learning experiments,
suggested that a reevaluation of the potential role of associative memory might
‘be profitable. More specifically, the intention of the research documented
herein was to explore the extent to which a more sophisticated multistage
agsociative memory system could contribute to the appropriate modulation of
the impact experience has upon memory, and its subsequent transfer into
altered performance. The result is a computational model of associative
memory, referred to as the Neural Multiprocess Memory Model (NMMM)}. The
NMMM has been developed as a general purpose memory module for use in
complete ANN elements, where it may replace the standard associative LTM
normally employed, and contribute the following utilitarian behavior;
spontaneous regression and recovery, U-shaped memory retention, both
negatively accelerated and sigmoidal acquisition curves, latent inhibition,
learned irrelevance, the Partial Reinforcement Effect (PRE), and accelerated

learning following alternating acquisition/extinction tfraining sessions.

While this paper focussed upon the NMMM as an isolated module and provided
computer simulation results of its spontaneous wmemory retention behavior,
much of the NMMM’s more elaborate behavior could only be discussed here
because of its dependence upon the learning rules employed within its host
ANN element. However, computer simulation results in support of all of the
“above behavioral claims are available in Rogers (1991}, in which the NMMM is

deployed within the new Associative Conditioning Element.

The NMMM incorporates synaptic STM and LTM, which interact in a
complementary manner to provide rapid adjustment to new environmental

contingencies in the short term, and appropriate integration of recent events
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with all previous experience in the long term. This is claimed to be the utility
of spontaneous regression and recovery behavior, which is generated
primarily by the way in which these two memory types interact within the
NMMM. The separation between short and long term experience offered by STM
and LTM is further enhanced by the addition of MTM, which mediates change
in LTM. These three memories interact to make STM exhibit U and inveried U
shaped retention curves, and provide a mechanistic basis for a consolidation

theory of memory,.

When the inverted U-shaped behavior of MTM is slightly modified by MGM,
which is specially designed for this purpose, MTM becomes a highly suitable
controlling signal for the modification of adapfive associability, which is

retained in ALTM.

If a CS ig consistently correlated with reinforcement during massed excitatory
acquisition, then its associability is increased. If the CS is reliably associated
with reinforcement sometimes, and reliably associated with nonreinforcement at
others, as in alternate massed fully reinforced and nonreinforced acquisition
sessions, then its associability may increase even further. This enables it to
rapidly adapt to the prevailing contingency, and quickly produce the most

appropriate response.

If a CS is inconsistently reinforced then its associability becomes (or remains)
relatively low (producing the PRE) so that long term averages can be
integrated, and regponding can continue through intervals of
nonreinforcement. This is appropriate because previcus experience indicates

that some reinforcement may still be obtained, despite ils recent absence.

The new adaptive associability mechanism developed within the NMMM also
supports preconditioning procedures in which prior nonreinforced CS
presentations (in the case of latent inhibition) or noncontingent CS and US
presentations (in the case of learned irrelevance) retard subsequent
asgociative conditioning training between the CS and the US. Furthermore, the
specific behavioral characteristics of the reduced associability resulting from

these procedures also compares very favorably with empirical results.
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In conclusion, the NMMM is a psychological multiprocess model of associative
memory that unifies a considerable range of empirically observed memory
phenomena, and it is also a functioning computational system capable of

contributing this additional utilitarian behavior to the ANN element in which it

iz deployed.
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