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computation of the recursive Newton-Euler equations which is the fastest and the most efficient
of existing methods describing robot dynamic control.
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PARALLEL PROCESSOR IMPLEMENTATIONS OF
THE RECURSIVE NEWTON-EULER EQUATIONS
USED IN THE
DYNAMIC CONTROL OF ROBOTS

S.8. Zeng and G.K. Egan
1 Introduction

The dynamic control of robot involves the calculation of the desired force or motor torque
required which drive all of the joints appropriately so that it is possible for the robot follow the
desired trajectory. These calculations are based on the robot's dynamic equations and on feedback
information about the actual motion. Because of nonlinear characteristics of robot, however, the
computing load is usually very heavy. For this reason, an expensive minicomputer or even a super
minicomputer having high processing capabilities must be used if control computation for each
sampling period are to be performed in less than 1/60 seconds, with the upper limit determined by
the mechanical resonance. This technical report presents several software techniques and options
to develop parallel processing schemes for the compution of the recursive Newton-Euler equations
which is the fastest and the most efficient of existing methods describing robot dynamic control

[1].
2 The Recursive Newton-Euler Equations
There are a number of ways to formulate the dynamic equation of motion, two main
approaches are used by most of reseachers to systematically derive the dynamic model of the
manipulator, one of them is the Newton-Euler formulation [2].
The Newton-Euler equations are based on Newton's second law
Fj =mj aj

where:  Fjis the total force acting on link i;
m; is the mass of link i;

9 is the linear acceleration of the center of mass of link i,
and Euler's equation
Nj =L wy+w; x (I wy)

where: Nj is the total moment acting on link i;
I; is the inertia matrix of link i about its center of mass;
wj is the angular velocity of link 1;

wi is the angular acceleration of link i.
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Furthermore, recursive Newton-Euler equations are derived with nine equations for each link:

.“'1 0 .0 - - . o -
A?Wi - AII (Ai wi-1 + Zgqi) if link 1 is rotational
i-1, .0 e s .
or Ai (Ai— I Wi 1) if link i is translational
0. -1, 0 Cas 0 . et s .
Ai wi= Al {Ai-lwi'l + zp4; + (Ai—lwi”l) x (zgqy)] if link i is rotational
i-1, 0 - ety .
or Al (Ai—lwi”i) if link 1 is translational

0. 0« o * 0 0 0 * i-1,, 0 -
: Ai vi = (Ai wi) X (Aipi Y+ (Ai wi) X [(Aiwi) X (Aipi )I+Ai (Ai,1vi»1)
if link i is rotational
i-1, = - O 0- * 0 i-1 - 4] 0
or A (zgqj + Ay Vil + (Aywi) x (Ap; ) + 2(A; wix (A 20q5) + (A wy) x [(Aywy) x
0 * o o .
(Ap; )l if link i is translational
0. 0- 0~ 0 0 0~ O
Ai Vi o= (Ai wi) X (Ai 530+ (Ai Wi X [(Ai wi) X (Ai spl + Ai vi

0 01

0 0, i, ,0¢ 0 o i, ,0
ANG = (ATLA (A WD) + (AT wi) x [(A LA (A w))]

i+1, .0 0

0 i+1, .0 0 * 0 0 * 0a 0 G
o ., ., 1-1 - cogeq e .
L= (Ai n;) (Ai zg)+big; if link i is rotational

or (A?fi)‘(A;'_ ]zo) + bi;li if link i is translational

Figure 1

0« . . . . .
Where: Ajwy is the angular acceleration of link 1 with respect to its own coordinate;
A;vi s the linear acceleration of fink 1 with respect to its own coordinate;

0x . . . . L .
A vi s the linear acceleration of center of mass of link 1 with respect 1o its own
coordinale;
0 . : . . .
A Fi is the total external force exerted on link i with respect (o its own

coordinate;
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A? Nj is the total moment exerted on link 1 with respect to its own coordinate;
Ai f; is the force exerted on link 1 by hink i-1 with respect fo 1ts own coordinate;

Ajnj 1s the moment exerted on link 1 by link i-1 with respect to its own
coordinate;
t; is the input torque for link i (if it is rotational) or the input moment for link i

(if it is translational); , |
gi. Gi, §; is the position, velocity and acceleration of joint {,respectively;

b; is the viscous damping coefficient for joint i

m; is the total mass of liok i;

* .
p, 1s the origin of ith frame referred to (i-1)th frame;

L L . oL s .
ATiA G s the inertia matrix about the center of mass of link 1 with respect 10 its

own coordinate;

G~ : . . . .
Ai sj is the center of mass of link 1 referred to its own coordinate;

3 Language

In this study Pascal is augmented with the synchronization primitives from the parallel
programming library of Encore Multimax to implement the robot's dynamic control equations. The
primitives used were fork, spininit, spinlock, spinunlock, and the memory allocation directive
share [3]. Some additional procedures were constructed using these and they are described below:

Fork: Create a new process. The new process {the child) is an exact copy of
the calling process (the parent) except for the child process has a snique
process ID. The process ID of the parent process is 0.

Semaphorelnit:  unlock semaphorelock, initialise Semaphore-Count.

Spinlock: wait in a spin loop for the value of lock to become zero; When it does, it
is automaically set non-zero.

Spinunlock: unlock the lock by setting it to zero.

Fbarrier: synchronize a fixed a number of threads of control. A thread of control

requests 1o synchronize at a Fbarrier with the Fbarrier function. The
fbarrier function is guaranteed not to return until a prespecified number of
other threads have waited at the specified Fbarrier.

Fbarrier init: The fbarrier_init funtion initializes an existing Fbarrier.
There are two procedures constructed as Barriers -- InitialisationBarrier and ExitBarrier.

WaitlnitBarrier:  is used to wait for that all the processes which we desire have been created
before executing the parallel processing part.

WaitExitBarrier: causes processes to wait and allows them proceed only after a
predetermined number of processed arrive at the ExitBarrier. It is used to
ensure that one stage of a calculation has been finished before the
processed proceed to a next stage which requires the results of the
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previous stage.
4 Decomposition of Robot Dynamic Control Computing Load into Tasks

The decomposing of the computing load is the first and important step in the application of
parallel processing. That the work assigned to processors are unbalance will result in that some
processors keep busy all the time, the others are in idle state. The parallelism 1s not maximum. On
the other hand, if we split the computing load into too small grains, the data transfer activities
between the processors (hence the operating system overhead ) will increase. This effect will lead
up to the performance degradation of parallel processing.

As we know, the calculation for robot arm control is generally expressed by Newton-Euler
equations which involve many vectors and matrices calculation. In the beginning, we employ the
technique that Luh et al [1] used to break nine equations of robot dynamic control computation
down into nineteen tasks for each joint. For our five joint robot, there are totally ninety-five tasks.
If all of the tasks are assigned to one processor, we simply have a sequential processing. If we
assign the tasks to more than one processors, the parallelism is achieved. The nineteen tasks for a
link can be expressed as follow:

i-1_ 0 . e e .
(am A?Wi = A,: (A, Wi-1+ z0di) if link i is rotational
i-1, 0 . e .
or Al (Ai—lwi”l) if link 1 is translational
0 . AR .
{2y VECI = (Ai—lwi”l) x (zgqy) if link i 1s rotational
or 0 : if link 1 is transiational
. i-1 : “ e s .
(3/%) Aiowi = All [Aglwi—I + zgq; + VEC1 ] : if link 1 is rotational
-1, 0 - e s .
or Ai (Aiqwi-l) if link 1 1s translational
“h  VEC = ANl vip if fink i is rotational
-1, e 0- ey s .
or A (zgu; + Ai Vio1) if link 1 is transiational
0 0 * ey ;
(5/1) VEC3 = (Ai w;i) X (Ai p;) if Hink i is rotational
i-1 0 0 * oy g s .
or Z(Ai z0g;) + (Aiwi) X (Ai P; ) if Iink 1 1s translational
. 0. 6 *-
(6/1) VECS = <Ai wi) X (Ai P; )
. 0- ] -
{7/1) Asvi = (Ai wi) x VEC3+VECZ+VECH

0 0a
(81 VECS = (A?WE) X [(Ai Wil X (Ai s3]

Of)  VECE = (A?&fﬁ) x (A?é‘i)
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| ..
(10/) A?Fiz mi(VECS+VECG+A v )

_ . 0 i, . 0«
(11/)  VECT = (A ;A (A wi)

. 0 0, i, ,0
(12f)  VEC8 = (A w;) x [(A; TjAA]w))]

(13/)  A{Nj= VECT+VECS

. 0o _* 0

(I56)  VECO = (A, B ) x (A, (fie1)
i+1 0

(16f) VECIO = A} (A;, {nj41 + VECY)

0 *  0a 0
(17A)  VECLI=(A;p; + A 5p) x (A Fp)

(18/D) A?ni = VEC9 + VECI0 + VEC11+ AiONi
(194 = (A?ni)'(Aii“ §z0)+biéi _ if link i is rotational
or (Aiofi)'(Aii— lzo) + bi‘ii if link i is translational
Figure 2
subtask predecessor successor
(1/1) (1/i-1) (1/i+1),(2/i+1),(5/1),(8/1),(12/i)
(2/1) (14-1) (34
(34) (3/-1).(2h) (3/i+1), (6/1), (9/1), (11/3)
(411) (7/-1) (7h)
(51) (h) (7/1)
(6/1) (3h) (71h)
(7h) (4/1) (5/1), (6/1) 4/i+1), (10/1)
(8/1) (14) (1041
(9/1) (3/1) (104)
(10A) (7h), (8/1), (9/i) (14/1), (17/1)
(11/1) (3h) (13A4)
(12/1) (14) (13/1)
(13/1) (11/), (12/1) (18/1)
-(14/13 ________ A0A), (14A+1) (_ i_9_/1) (14/1 }) asfi-1) -
(15/) (14/i+1) (16/1)

(16/i) (15/1), (18/i+1) (18/1)
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(17/1) (10/1) (18/1)
(18/) (164), (17/1), (13/1y  (16/i-1), (19/1)
(19/i) (14/1), (18/1) null

We find that the time which spends on the scheduling and spinlock is not short enough
comparing with the execution time of each task , which means that overhead doesn't play an
unimportant role.

In order to reduce the overhead, We redecompose the computing load into 52 tasks as follows:

i-1..0 . cpyep e .
(1/1) A?Wi = A: (Ai Wil + Zoqp if link i is rotational
i-1,.90 e e .
or Ai (Ai— Iwi—l) if link i is translational
) 0 - iwl O . £ 0 * . . L oa .
/M0 Ai wi = Al [Ai—lwi“1 + zgQj + (Ai-lwi'l) x (zgqi)] if Iink 1 is rotational
i-1,.0 ¢ eyt e .
or A (Ai—iwi“l) if link i is translational

_ G- 0- 0 * 0 0 0 * i-1 0
Gy Alvi= (A wp) x (App + (A wp) x A wi) x (App)l+sy (A vi-D)

if link i is rotational

-1 v B 0- * 0 1-1 0
or Al (zgqy + Ai""i«l + (Ai wi) X (Aipi ) + 2(A, wi) X (Ai z0q;) + (Ai w3y
0 g * g s s .
% [(A}- wi )X (Ai P; M if Hink i is translational
. ¢ Q- ¢ 0 0 0~ 0-
@) AFp=mil(Awi) x (A]S] + (A)wi x (A wi) x (Apsp] + AVl

i . i G
i AN = AGAD AT + (A v x (& TAQ (A W)

0 i+1 0 0
. i+1_ 0 0 * 0
o * 0 0
(8/) VECI1=(A/p, + AS) x (A Fp)

0
©f) Alnj= VECI0 + VECIL + A;N;

(101) 4= (A?ni)‘(Ali— 130)+bidi if Iink 1 is rotational
o1 (_A?fi)'(Ali" lzo) + bi{qi if link i is translational
Figure 3

subtask predecessors SUCCESSOrs
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(1/1) (14-1) (1/i+1), 2/i+1), (3/D), (5/i)
(211) (14-1), (2/i+1) (2/i+1), (3/1), (5/i)

(3/1) (3A-1), (1D, @) (4/1), (3/i+]1)

(4/1) (3h) (6/1), (8/1)

(5/1) (14), (2/) (9)

(6/1) (411), (6/1+1) (6/i-1), (7/i-1)

(7/1) (6/i+1), (9fi+1) 94i-1)

(8/i) (4/1) (9/1)

(9/1) (51, (7/1), (8/1) 0/, (74-1)

(10/1) /) nult

5 Scheduling

Encore Multimax is a shared-memory multiprocessors system with four processors. In
program, using the syncronization primitives in the parallel programming library, we can command
the operating system to create a new process { child process ). The child process is a exact copy of
the calling process except for it has unique ID. When we decompose the computing load into
many tasks, every task may have predecessors and successors. A task can not start until all of its
predecessors are completed. There are two ways to schedule a task queue. One is dynamic
scheduling. Another one is static scheduling.

For dynamic scheduling, there is only one task queue, and it is scheduled at run-time, which
means that when all of predecessors of a task have been completed, this task is said to be ready.
and it is put into the queue. In the meantime, if a process has finished its job, it reads next ready
task in the queue, and implements this task. Since the queue is in the shared memory so that it can
be accessed by every process, it certainly needs a spinlock ( g-lock ) to protect that only one
process can read from and write into the queue.

For static scheduling, each process has its own task queue. The predetermined order need to
be made in which tasks are implemented on each process. At run-time, each process waits for data
to be available for next task in its own queue. There are two ways to make queues for static
scheduling. One way is preassigning tasks among the processes according the execution time of
each task. Atrun-time, when a process finishs a task, it puts each ready successor of the task into
corresponding process's queue. In another words, the queues are also arranged at the run-time
and in the shared memory, the spinlocks ( g-locks ) need for the same sake. In version 1.0 ,2.0
and 3.0, the static scheduling is belong to this kind of way. Another way is predetermining a
queue for each process, inputting the queues as data files. Each process checks the threshold of
the task in its own queue, when all of predecessors of this task have finished, the process
implements this task and starts to check the next task in the queue after finishing this task. The
queues are in the local memory. The spinlocks are not necessary. In version 4.0, the static
scheduling is following this way. Since it is hard to estimate the exact execution time of each task,
the simulant way is using write statement to trace the list of a queue when we run dynamic
scheduling program, and put it into the list of queue in static scheduling. It should approximate the
real static scheduling.

5.1 Scheduling in Version 1.0

In this version, We tried to calculate concurrently Newton-Euler equations within one link.
As we know from Figure 1, the equations above the dashed line can be decomposed into threeteen
tasks and are calculated repeatedly from link one to link five. The equations under the dashed line
can be decomposed into six tasks and are calculated repeatedly from link five to link one, and can't
be calculated until the tasks above the dashed line have been completed. The task graph for one
link can be expressed as figure 4.
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Figure 4

where task 0,14, 15 and 22 are dummy tasks.

The scheduling consists of several procedures. They are procedure Sched, Next, Threshold
and SchedSuccessors. In the program, a queue can be expressed in a following form:
g_rec =record
q_lock: lock;
entries, head,tail : integer;
t :array [sub_task] of sub_task;
sl :array [sub_task] of sub_link;

end;

Each task has a task semaphore which has the following form:

SemaphoreRec = record
SemaphoreLock: lock;
SemaphoreCount : semaphor

end;

Each task has a task descendant which can be described by
Task_Rec = record

NoOfPred: sub_pred;

NoOfSucc: sub_succ;

S: array [sub_succ] of record
Task: sub_task;
Proc: sub_proc;
Link: sub_link

end;
end;

and these variables should be in the shared_memory so that every process can address them,
shared

queue: array [ sub_proc] of q_rec;

task_sem: array [sub_task] of SemaphoreRec;
TaskDesc: array [sub_task] of Task_Rec;
task_lock: lock;

remaining_tasks: integer;

Procedure Sched puts the ready tasks into the queue of each process. For dynamic
scheduling, all of processes share a queue.
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The outline of this procedure could be;

Begin
#if DYNAMIC
with queue[1] do begin
# else DYNAMIC
with gfproc] do begin
#end if DYNAMIC
spinlock(q_lock);
entries:=succlentries);
tail:=(succ(tail) and max_task);
t[tail]:=task;
si[tail}:=link;
spinunlock(q_lock)
end;
End;

Procedure Next selects a task from the queue on principle of FIIFO and is going to execute it.

The outline of this procedure could be:

Begin
#if DYNAMIC
with queue[ 1] do begin
#else DYNAMIC
with g[proc] do begin
#end if DYNAMIC
spinlock(q_lock);
if entries<=0 then
task:=max_task;
else
begin
entries:=pred(entries);
head:=(succ(head) mod max_task),
task:=t{head];
link:=sl[head];
end;
spinunlock(qg_lock);
end;
End;

Procedure Threshold makes semaphoreCount of each task whose predeccessors have been
finished decrease by 1, if the semaphoreCount of a task is equal to zero,then starts to put it into the

queue and resets SemaphoreCount.

The outline of this procedure could be:
Begin
With TaskDescltask], task_semitask] do
begin
spinlock(SemaphoreLock);
SemaphoreCount:=pred(SemaphoreCount);
If SemaphoreCount:=o then begin
Sched(queuelproc], task, link);
SemaphoreCount:=NoOfPred;
end;
spinuniock(Semaphorel.ock);
end;
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End;

Procedure SchedSuccessors schedules the next task for a process when it finishs its job.
The outline of the procedure could be:
Begin
with TaskDesc[task] do begin
for 1:=1 to NoOfSucc do with S[i] do
Threshold(task,proc,link);
end;
End;

Procedure Dynamic_control computes nine equations of robot dynamic control for every link.

The outline of the procedure could be:
Begin
repeat
next (queuefproc],task,link);
if task<>max_task then

case task of
0: begin
SchedSuccessors(task);
end;
1:  begin
{task 2}
SchedSuccessors(task);
end;

14:  begin
if 13 tasks above of each link have finished then
Sched(queue[proc],15,5);
else go back to execute task 0 to 13
end;
15: begin
SchedSuccessors(task);
end;

22:  begin
SchedSuccessors(task);
end;
end;{case}
spinlock{(task_lock);
remaining_tasks:=pred(remain_task);
spinunlock(task_lock);
until remaining,_tasks<=0
End;

5.2 Scheduling in Version 2.0

In version 1.0, we can see that there are not many tasks which can be processed concurrently.
In order to overcome this drawback, We tried to calculate the N-E equations throught all of links.
The N-E equations for five links can be decomposed 95 tasks. Each task can be executed
whenever its predecessors are completed. The task graph for 95 tasks is shown as Figure 5.
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Where task 0 and 96 are dummy tasks. They are enter node and exit node respectively.

Since each link has the same calculation equations, we set a variable subtask, for link i, task
No. is from [1+(-1)*20] to {19+(-1)*20]. It can be translated to subtask No: subtask No = ftask
No. mod 20}]. In the program, we only need to list 19 calculation subtasks, and task 0 is a dummy
task for enter node, task 100 is a dummy task for exit node. As a result of doing above, we can
advoid to occupy too many memory and make the program concise. However, when we run the
program, we find that the scheduling takes longer time than that we expect so that we have to
reduce calculation in the scheduling as possible as we can. The update program directly uses
varible task to seach the respective task.

The scheduling of this version is similar to that of version 1.0. The outline of procedure
Dynamic_control is written as:
Begin
repeat
Next(queue[proc], task);
if task<>max_task then

case task of
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0: begin
SchedSuccessors(task);
end;
1: begin
{task 1};
SchedSuccessors(task);
end;

96: begin
remaining_tasks:=0;
end;
end;{case}
until remaining_tasks<=0
End;

Since task 96 is exit node, we can remove the task_lock and directly set remaining_tasks=0 in this
task.

53 Scheduling in Version 3.0

In version 3.0, the computing load is decomposed into 52 tasks. The task graph for 52 tasks
can be expressed by Figure 6.

Figure 6
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Where task 0 and 51 are dummy tasks.

The scheduling of this version is the same as that of version 2.0, and procedure
Dynamic_control is similar to that of version 2.0 as well except there are only 52 tasks.

54 Scheduling in Version 4.0

As we said before, the g_lock has been removed in this version since the queue of each
process is in a local memory. The scheduling has been made much conciser in order to cut down
overhead. The queue is defined as:

g_rec = record
NoOfSubtask: sub_task;
point : integer;
t: array [sub_task] of sub_task;
sl: array [sub_task] of sub_link;
end;
and the queue is located in the local memory:
var

quéue: array [sub_proc] of q_rec;

The scheduling only contains two procedures-- procedure Next and procedure
SchedSuccessors.

Procedure Next checks a task in the queue which is input as data file ready or not, if it is ready,
it is going to be executed. The procedure is given by

Begin
with queue[proc] do begin
task:=t[point];
with task_sem[task] do
if SemaphoreCount<>0 then
task:=max_task;
link:=sl[point];
end;
End;

Procedure SchedSuccessors sets point to next task in the queue when a process finishs its job,
resets SemaphoreCount for this job and makes the SemaphoreCount of all of this job's successors
decrease by 1.

The procedure is described by:

Begin
with queue[proc] do
if point >=NoQOfSubtask then point:=1
else point:=succ(point);
with TaskDesc[task] do begin
with task_sem[task] do
SemaphorCount:=NoOfPred,;
for i:=1 to NoOfSucc do with S[i} do
with TaskDesc[task], task_sem[task] do begin
spinlock(SemaphoreLock);
SemaphoreCount:=pred(SemaphoreCount);
spinunlock(Semaphorel.ock);
end;
end;
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End;
The body of procedure Dynamic_control can be given by:

Begin
repeat
Next{queue[proc], task,link);
if task<>max_task then
case task of
0: begin
SchedSuccessors(proc,task);
end;
1: begin
{task 1};
SchedSuccessors(proc,task);
end;

51: begin
remaining_tasks:=0;
task _sem[51].SemphoreCount:=6;
queue{proc].point:=1;
end;
end;{case}
until remaining_tasks<=0

End;

5.5  Scheduling in version 5.0

The schedulings in above versions have a common disadvantage since they can not guarantee
the tasks in critical path will be done first. The reason is that we can't estimate the exact execution
time of each task, and we only use write statement to trace the action of each task when we run the
dynamic scheduling program. There exists a problem: if two tasks are ready at same time while
only one process is available, which task should be done first ? Certainly is the one which is in the
critical path and has most immediate successors. However, the dynamic scheduling can not
guarantee this. In this version, we generated the queue list of each process by using static

CP/MISF (Critical Path Most Immediate Successors First) scheduling, The CP/MISF scheduling
has a rule that can be stated as: if several tasks are available at the same instant, then the task in
critical path should be done first, if they are all not in critical path, then the task having most
immedialte successors should be done first. We make a rule: if a task and its parent are in the same
process' queue list, it is not necessary to spend time on decreasing Threshold of the task and
checking the Threshold,and put all of tasks in critical path into the same process’ queue, and the
tasks which have a same parent and same children can be combinated together.

We try to using direct mapping method to avoid using procedure and record data structure as
well. The new version dynamic_control procedure can be described by:

shared :
Threshold_ILock: array fsub_task] of lock;
Threshold_Count: array [sub_task] of semaphore;

Procedure TaskThreshold(task: sub_task);
Begin
spinlock(Threshold_Lock[task]);
Threshold_Countftask]:=pred(Threshold_Count[task]);
spinunlock(Threshold_Lock[task]);
End;
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Procedure Dynamic_Control
Begin
repeat
with queue|proc] do begin
task:=t[point];
if Threshold_Counttask]<>0 then
task:=max_task;
end;
if task <> max_task then
case task of
0: Dbegin
queue[proc].point:=succ(queue[proc).point);
Threshold_Count{0}:=1;
TaskThreshold(1); TaskThreshold(2); TaskThreshold(47); TaskThreshold(52);
end;
I:  begin
{task 1};
queue[ proc].point:=succ(queune[proc].point);
Threshold_Count{1}:=1:
TaskThreshold(11); TaskThreshold(3); TaskThreshold(12);
end;

51: begin
remaining_tasks:=0;
Threshold_Count{51}:=6;
queue|proc].point:=1;
end;
end;{case}
until remaining_tasks<=0
End;

The new task level for four processes can be presented by:

Level No. Task No. Task No. Task No. Task No.
(process 1) (process 2) (process 3) (process 4)

0 0

1 52 1 2 47
2 53 11 12 3
3 54 21 22 13
4 53 31 32 23
5 56 41 42 33
6 24 34 45 43
7 25 35 44
8 28 38 46 48
9 14 36 49
10 15 50 26 37
11 18 4 16 39
12 5 40 27
13 8 29
14 6 30 17
15 20 19
16 7
17 9
18 10
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where, the task 3 is broken down to two tasks, task 3 and task 52, so do task 13 ,task
23,task 33 and task 43.

The task level for three processes is presented as:

Level No. Task No. Task No. Task No.
(process 1) {process 2) (process 3)

0 0

1 1 2 47
2 11 12 3
3 21 22 13
4 31 32 23
5 41 42 33
6 34 43 43
7 24 35 44
8 14 46 48
9 38 36 49
10 25 26 37
11 28 16 39
12 15 50 27
13 18 40 29
14 4 30 17
15 S 20 19
16 8 6 7
17 9
18 10
19 51

We also directly use primitives fbarrier_init and fbarrier from parallel programming library
in stead of using procedures InitialisationBarrier and ExitBarrier;

6 Paraliel Processing of Dynamic Control Equations Calculation

The flow chart of the sequential program of closed loop control of robot is shown in figure

The procedure Trajectory_Generation gives the desired position, orientation, velocity and
acceleration of robot's hand, from which the desired position of each joint can be worked out by
using inverse kinematics. The procedure Initialisation gets parameters of each link from data files
and initialises g, q' ¢". The procedure Dynamic_control calculates the recursive Newton-Eular
equations. The procedure Motor_Drive_Joint transmits the calculated motor torques to motors so
that motors drive joints to follow the desired trajectory , and the procedure Sample samples the g
and q'. The procedure Compute_Actual_Position & Orientation calculates the actual position and
orientation of robot's hand by using kinematcs. The Compute_FError computes the errors between
the desired position, orientation and the actual positin, orientation. If the errors are less than
predetermined errors, then the robot has arrived the desired the position and orientation, else the
procedure Compute_q" calculates q" of each joint and the program goes back the procedure
Dynamic_Control, calculates the new motor torques.

The flow chart of the parallel program of closed loop control of robot is represented in figure

The procedure Read_file reads the desired number of processes, the number of tasks, the
predecessors and successors of each task and the queue list of each process (for static scheduling).
The procedure Initial_Work unlocks the SemaphoreLock of each task and set SemaphoreCount of
each task equal to number of predecessors. The procedure Fork_Process creates a number of
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processes which we desire. The outline of this procedure could be:

Begin
proc:=l;
child:=0;

while (child=0) and (proc<=NoOfProces) do begin
child:=fork;
if child=0 then proc:=succ{proc)
end;
WaitInitialisationBarrier;
End;

The parent process's ID is 0, and the rest processes’ ID is 1, 2, ... NoOfProces - 1
respectively.

Comparing with the sequential program , we can see that there are extra work-- create the
number of processes, initialise queues and scheduling, etc in the parallel program.

7 The Results

Since the dynamic control part only occupies about 50 procent in the whole program, another
50 procent part is still kept in sequential form, and our focus is on parallel processing the dynamic
control part, what we do is letting dynamic control program run large loop number so that the
execution time spending on the part of program that is outside dynamic control part can be
neglected.

The graph and table below record the results of sequential and each parallel version.
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scheduling type

process number

execution time
(second)

sequential version

feary

97.7 + 0.4

dynamic

298.1 + 0.8

254.8 + 0.7

287.8 + 0.7

368.2 + 0.7

parallel version 1

static

297.1 + 0.7

255.8 + 0.7

268.5 + 0.9

3133+ 1.3

parallel version 2

dynamic

2745+ 0.6

1779 + 0.5

161.6 + 0.6

180.1 + 0.7

static

2526 + 1.7

180.0 + 0.7

156.5 + 0.7

155.9 + 0.5

dynamic

192.8 +0.4

1304 + 0.4

1154 + 0.4

122.7 + 0.3

parallel version 3

static

178.4 + 0.6

124.4 +0.6

106.4 +0.4

112.3 +0.5

dynamic

1833 + 0.5

125.9 + 0.5

1137 +0.4

118.0 + 0.3

parallel version 4

static

161.7 + 0.3

99.6 + 0.3

827 + 0.3

Slwipmi=lelwiol=mldlwliuimlejwin]=ls | WiNbwmlipnlwihs | Slwjo ]l o=

80.1+ 0.3

parallel version 5

static

123.7 + 0.2

839+ 0.2

55.7+ 0.2

Blur [t |-

504 +0.2
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8 Conclusions and Some Proposals

As we see from the results, the execution time of parallel program for robot dynamic control
running on one process is much slower than that of the sequential program, and we only get
moderate speedup when we run parallel program on three or four processes. There are several
factors that cause the performance degradation of parallel processing . One is that the spinfock is
too expensive.

In shared_memory multiprocessors system, each processors can directly access a data
structure located in shared memory which also can be accessed by all other processors. In order to
avoid this contest, some method is required for ensuring mutual exclusion The method we use
here is spinlock. However, the spinlock can degrade the performance of parallel processing since
it can slow down processors doing useful work. Some approaches have been represented in a few
of papers, one of them is queueing[5]. Unfortunately, queueing has a larger overhead than
spinlock when the number of processors is less than 7. For our computing load, the critical path
has determined the number of processors is not more than six, €.1., even we use more than six
processors, we could not achieve the shorter execution time than the critical path length. This is
why we didn't choose queueing to guarantee mutual exclusion.

Some proposals can be considered. They are using data flow model and message passing
model. Further discussions will be presented in another technical report.
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