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Abstract

Among the various approaches to optimal path planning, the Hypothesis and Test
Method, the Penalty Functions Method, and the Explicit Free Space Method are
believed to be the most influential. They are compared briefly in this report in order to
identify a preferable alternative in terms of execution and applicability. It is believed that
the Explicit Free Space Method has certain advantages over the others in this respect.
The algorithm presented here is derived from the Lozano-Perez Method, and consists of
three steps: Constructing the Cspace Obstacles, Representing the Free Space, and
Searching for a Collision-Free Path. In constructing two-dimensional workspace, we
use the Lozano-Perez algorithm: COA(B) = B-Ao. An "approximate algorithm" is
adopted as an alternative to facilitate the computation of three-dimensional werkspace.It
is based on the modelling of 3-D obstacles Bi as pyramids, and the moving object A as
any shape convex polyhedron. A " visibility graph " is used to establish a configuration
space that can be mapped intoa graph of vertices between which the object can move on
a straight line. The graph is traversed by way of Nilssion's Artificial Intelligence
Method.
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SOME APPROACHES TO PATH PLANNING
FOR AUTONOMOUS VEHICLES

W. Shang and G.K. Egan

1. Introduction

The use of the first and some of the second generation robots have posed enormous difficulty
because of the low level techniques available for programming them. Joint Level programming
involves teach-by-show methods, and Robot Level language is based on the use of textual
langnages. Neither of these methods is efficient or convenient since a very large number of robot
instructions have to be provided to the robot controller. This difficulty raises the need for higher
level languages which enable a robot to be programined in a more simplistic manner, Two higher
level programming systems that have been gaining momentum recently include Task Level and
Object Level methods. Task Level defines the objects with the help of design data, from which
together with knowledge of the robot, the system works out a plan to perform the task and
necessary information to enable the robot to carry out the task. Object Level results from
simplifying the programming process and aims to specify the desired task in terms of operations on
the objects instead of specifying the motion of the robot.

The world model, which contains the objects and robot, is partially within the knowledge of an
object level programming system. The sequence of tasks, may be, therefore, defined more easily,
and collision-free trajectories may also be computed by the system. The principal problems
involved at this level are related to world modelling, automatic grasping and collision free path
planning, The purpose of this paper is to discuss problems in collision-free path planning.

2. Path Planning

The aim of path planning is to determine a continuous collision-free path between the initial position
and the goal position given an initial position, a goal position and a set of obstacles in the
workspace. Extensive research has been taking place since the 1970's [Fu 85], with varying
degrees of success, but the planning of the optimal path remains to be explored. Methods used for
this purpose fall into three categories:

1. Hypothesis and Test Method;
2. Penalty Functions Method;
3. Explicit Free Space Method.

The Hypothesis and Test Method starts with a hypothetical path, and explores possibilities of
collision of the robot with other obstacles. The path is modified in case of collision until it becomes
collision-free. Simplicity is a chief advantage of this method, as most of the tools needed are
already available in the geometric modelling system. Its main disadvantage is the difficulty involved
in generating the correction, especially when the workspace is cluttered with obstacles.
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In the Penalty Function Method, penalty functions whose values derive from the proximity of the
obstacles need to be defined. The values of these functions increase as the robot moves closer to the
obstacles. This method makes it easy to deal with a larger number of obstacles and constraints, but
the penalty functions are usually difficult to specify.

The Explicit Free Space Method has proved to be the most popular one. A few algorithms [BES1]
have been proposed in this class; amongst them the most influential are the Brooks {BR&3] and
Lozano-Perez {LP81],[LP83] algorithms. Brooks' method represents the free space as overlapping
generalized cones and the volume swept by the moving object as a function of its orientation.
Conceptually, finding a collision-free path is equivalent to comparing the swept volume of the
object with the sweepable volume of the free space. See Fig.1. In a relatively uncluttered
workspace, Brooks' method is fast and efficient. Its major drawback is that paths can only follow
the spines of the generalized cones used to represent free space. It does not perform well in
cluttered environments, for there are not sufficient generalized cones to allow for a rich choice of
path. The applicability of this method has been compromised due to this major drawback.
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Fig.l Generalized Cones Generated by Two Obstacls and Workspace Boundary.

Lozano-Perez[LP 81][LP 83] represented the space in terms of the configuration space or Cspace,
as it is often called, which virtually means transforming the object into a point, and enlarging the
obstacles accordingly. In practical terms, a collision-free path is one that does not intersect with any
of the expanded obstacles. This method performs reasonable well so far as only translation is
concerned. When rotation is considered, however, configuration space has to be generated by
means of approximations, and the computation task is significantly larger.

3. Lozano-Perez Method

The algorithm discussed in this paper is based on the Lozano-Perez Method[LW
TOILWE1{1.WE3]. Cspace is obtained by shrinking moving object and expanding obstacles
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accordingly. A "visibility graph" is created to represent the free space by a graph of vertices
between which the object can move in a straight line. The nodes of the graph correspond to the
corners of the obstacles, and the arcs represent the link between adjacent nodes which can see each
other. The algorithm used in this paper consists of three steps:

1. Constructing the Cspace Obstacles;
2. Representing the Free Space; and
3. Searching for a Collision-Free Path.

3.1 Constructing the Cspace Obstacles

The basic problems in path planning are Findspace and Findpath problems. Findspace is to find
out where a moving object A can be placed within a certain range R so that the object A does not
intersect with any obstacles Bi already in the range R. Findpath is to find out how to move a
moving object A from one location (S) to another location (G) without causing collision with the
obstacles Bi. See Fig. 2. In the Findspace and Findpath Algorithm described here we use geometric
objects, called configuration space objects, that represent all the positions of object A that cause
collision with the Bi. Given these objects, the problems are equal to finding a single point (a space
of A) or a path (a sequence of position of A), outside of the configuration space obstacles. If the
point does not intersect with any of the expanded obstacles, it is certain that the moving object will
not collide with any obstacles, as is shown in Fig.3.[LW 81]

Fig.2 (a) Findspace for A within Range R Clutted with Obstacles Bi.
(b} Findpath for A from S to G within Range R Clutted with Obstacles Bi.
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Fig.3 {a) Initial: Moving Object A and Obstacles Bi.

(b) Shrunk Moving Object A and Expanded Obstacles COA(Bi)

Representing the position of objects requires specifying all their degrees of freedom, both
translation and orientation. We use configuration to denote the degree of freedom. The
configuration of a polyhedron is a set of independent parameters that characterize the position of
every point of the polyhedron. The space of configuration for a polyhedron A is called its
configuration space and is denoted CspaceA. In CspaceA, the set of configuration of A where A
overlaps obstacle B is denoted COA(B). COA(B) = [xeCspaceA | (A)x 2 B # 0}. We regard the
CspaceA obstacle due to B. COA(B) as an enlarged version of obstacle B, whereas the moving
object A can be represented by a point. Similarly those configurations of A where A is completly
inside B is denoted CIA(B). CIA(B) = {xCspaceA | (A)x€B}. As such finding a path in a range R
amounts to identifying a configuration of A or a connected set of A, which is a path outside
COA(B), but inside CIAR).

3.1.1 Two-Dimensional Cspace

In two-dimensional workspaceR , we use the Lozano-Perez's algorithm[LP 83}: COA(B) = B - Ao
to compute COA(B). Here Ao is A in its initial configuration.

3.1.2 Three-Dimensional Cspace

COA(B) in three-dimensional R is more complicated than the Lozana-Perez algorithm above can
tackle. Not only the edges of the obstacles but also the faces have to be increased significantly. An
"approximate algorithm” has been proposed as an alternative to facilitate the computation of three-
dimensional R. Although the Cspace obstacle worked out with this method is an approximation and
some free space may be ruled out, it performs reasonably well in computation, for it is dimension
independent and the number of faces does not need to be increased. The algorithm used is based on
the modelling of 3-D obstacles Bi as pyramids, and the moving object A as any shape convex
polyhedron.
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Comparing any two vertices of the object A, the distance between them can be determined. Let the
maximum distance be denoted d, and the middle point of these two vertices as the reference point.
COA(B:) is obtained by expanding every vertex of Bi d/2. Then, we have an expanded version of
Bi---- COA(Bi), which is equivalent to Bi in shape. In this way, the Cspace obstacles can be
constructed. See Fig. 4.

Fig.4 Moving Object A and COA(B) by Using Approximate Method.

3.2 Representing Free Space

Now that the Cspace obstacles COA(B) are constructed, the next step is to represent the free space
and obstacles. For this purpose it is useful to visualize the free space as a graph containing nodes
which correspond to certain states of space, and arcs that represent the relationships between states.
A problem state, or a state, is a particular problem situation or configuration {FU 87]. In the
Visibility Graph Algorithm, for instance, a node corresponds to a vertex of COA(Bi), start node S
or goal node G, and an arc links two nodes which can see each other. In the Cell Decomposition
Algorithm, however, a node stands for a free cell, while two adjacent cells are linked by an arc
when travel between them is possible. Here, we only discuss the Visibility Graph.

3.2.1 Visibility Graph (V-Graph)
The Visibility Graph is defined as: A node set N is V {S,G), where V is the set of all vertices of

obstacles COA(Bi). A link set is a set of links (ni,n;) such that a straight line connecting ni and nj
does not intersect any obstacles COA(Bi). Fig.5.

Fig.5 The Visibility Graph Based on the Obstacles for A Correspands to Fig.3(b).
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The data structure of a node in the terms of Pascal 15 as follows:

point = record
x,y,z:real;
cost:real;
visit:boolean;
end;

where (x,y,z) is the position of the node in Cardision Coordinate. An arc links node ni and node nj
provided that a true visibility function exists between them. Fig.6 is the search tree corrsoponding
to Fig.5.
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Fig.6 Search Tree Corrosponding to Fig.5,

Nodes 1, 2, 3, ..represent the vertices of COA(B). S, G represent start node and goal node. Arc
between node i and node j represents visibility function 1 (i,]) is true, that is, node 1 and node j can
see each other.

3.3 Searching for a Collision-Free Path

Free space having been represented by way of a graph, the next question is how to traverse the
graph generated above from a node containing start point to a node containing the goal point, and
finding the optimal path in terms of graph nodes and consequently a geometric representation of
this path. In the terms of V-Graph algorithm, the definition of the path finding problem is: Given a
node set N, find a sequence of node from node S to node G by way of an ordered set of
intermediate nodes n1,n2,...nk, so that the visibility function for each node pair :
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Li=1(S8Sn1);
Lz=1(nin2);

Li+1 =1 ( nk,G)

is true, The cost function C = Ci( ni,nj ) is minimized during the process.

Nilssion proposed an Artificial Intelligence Method, i.e., "applying operators to state descriptions
until an expression describing the goal state is obtained."” [INI 71]. The operator, when applied to a
state, transforms the state into another state. In the case under discussion, state description equals
node ni; start state and goal state are node S and node G; and the operator corresponds to visibility
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function. The operators are used to calculate the successors of node ni, and then check every

successors of ni to see if they are node G. The flow chart is:

put S on list_open
g(n) is minimal

remove the node from list_open,
whose g(n) is minimal, and put it
on list_close. denote that node asn

Isnequal goal G ?

using operator, expanding n's
successors mi(i), put them on the
list_open. computing every g{m).

Fig.7 Path Searching Flow Chart.

Fail!

success!

A path is obtained by tracing back list_close. If no collision-free path exists, exit with fail. Fig.6 is
a tree producted by path searching method above. The darker line in Fig.6 is obtained by using the
flow-chart above. All the nodes on darker line are put on list_close.
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The following is the data structure of list_open and list_close as represented in Pascal:

ptr_open = open;
open = record
spot:point;
next:ptr_open;
end;

ptr_close = # close;
close = record
id:ptr_open;
next:ptr_close;
end;

At every step of the algorithm, list_open is revised. For node n, for instance, list_open includes
node n and all its successors, mi. They are compared in order to find a node mxk, which has the
minimum cost estimate. Node mk then is placed on list_close and the visit is now true. If mk is not
the goal node, all successors of mk will be expanded and moved onto list_open. Then a node with
minimum cost can be found among those nodes by repeating the above process.

3.3.1 Expanding Successors

The operators with which to expand the successors are visibility function. The question now is
whether m is n's successor. A line function through m and n can be obtained by using m and n:

x(t) = m.x + ( n.X - m.x ¥t ...... (D)

y(t) = m.y + (n.y - my y*t ...... (2)
z(t) = m.z + ( n.z - m.z ¥t ....... 3

A plane function can be obtained by using three of the four vertices of a pyramid:
Ax+By+Cz=D ... 4

The variable of t emerges from(1), (2), (3), and (4). If (t> 1) or (t < 0), the point (x(1), y(t), z(t) }
is not within segment mn. If t <=1 and t >= 0, then point ( x(t), y{t}, z(t) ) is within the segment
mn. The point ( x(t), y(t), z{(t) ) is the intersection of segment mn and the plane. If ( x(t),y(t),z(t) )
is within face 1,2,3,4 then m is not a successor of n, i.e., m and n can not see each other. The flow
chart of the expanding successors is:
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segment m n

<

for obs[k], mn inter-
ect plane 1,2,347

o success!

fail!

Fig.8 Flow Chart for Expanding Successors

3.3.2 Cost Function

In the case of all obstacles, if m and n can see each other, then m is one of the successors of n.
Among all the successors, one with minimum cost function is chosen and put on list_close.We use
f(n) for the cost function of node n. As node n is related to node S and node G in terms of cost, f
(n) = g(n) + h(n), where g(n) indicates the cost from start node S to node n, and h(n), the cost from
node n to goal node G. The cost function can be tailored to the requirements of a certain problem
environment, such as the functions of distances in parameter space or functions of energy or both
of them.

Fig.9 and Fig.10 are the results of V-Graph. The cost functions are based on distance functions.
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4. Conclusions

We have discussed the process of path finding with V-Graph Algorithm. It is an explicit approach
that guarantees an optimal collision-free path to be found in two-dimensional workspace. In the
computation of three dimensional workspace, however, an optimal path around the vertices of the
obstacles cannot be guaranteed, especially for convex polyhedra of varied shapes, because an
optimal path may exist among faces of the polyhedra. An alternative is the Cell Decomposition
approach, which is free from the constraints of the shape of the obstacles. We will discuss this
approach in a later report.
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