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Abstract: There is an increasing demand for speeding up manipulator dynamic control
schemes. This control scheme involves the real time computation of the desired generalized
forces or motor torques required to drive all joints appropriately so that the manipulator follows
the intended trajectory. To achieve the convergence of the control algorithm, this real time
computation must be repeated at the sample rate of greater than 60 Hz that is determined by the
mechanical resonance. Given this and the nonlinearity of a manipulator, the computational load
on a controller substantial and has in the past required an expensive minicomputer or even a
super-minicomputer. One alternative approach is to decompose the computation load into
number of tasks which can be performed by inexpensive multiprocessor synchronously. This
paper presents a number of implementations of the control computation of manipulators on a
conventioanl shared memory and dataflow multiprocessor. The results show that ,with
considerable effort, a modest speedup may be achieved on a shared memory system while, with
comparatively litde effort, using Sisal a good speedup may be achieved on a dataflow system.
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Abstract: There is an increasing demand for speeding up manipulator dynamic control schemes.
This control scheme involves the real time computation of the desired generalized forces or motor
torques required to drive all joints appropriately so that the manipulator follows the intended
trajectory. To achieve the convergence of the control algorithm, this real time computation must be
repeated at the sample rate of greater than 60 Hz that is determined by the mechanical resonance.
Given this and the nonlinearity of a manipulator, the computational load on a controller substantial
and has in the past required an expensive minicomputer or even a super-minicomputer. One
alternative approach is to decompose the computation load into number of tasks which can be
performed by inexpensive multiprocessor synchronously. This paper presents a number of
implementations of the control computation of manipulators on a conventional shared memory and
dataflow multiprocessor. The results show that ,with considerable effort, a modest speedup may
be achieved on a shared memory system while, with comparatively little effort, using Sisal a good
speedup may be achieved on a dataflow system.

. Infroduction

Dynamic control of manipulators involves real-time calculation of the desired forces or motor
torques to allow manipulator to follow the required trajectory[1]. These calculations are normally
based on the manipulator dynamic equations and the feedback information about the actual motion
of manipulator. To achieve convergence of the control algorithm may require sampling rates
greater than 60 Hz, with the upper limit being determined by the mechanical resonance. Given this
and the high degree of nonlinear characteristics of manipulator the computation load on the
controller is substantial, and has in the past required an expensive minicomputer or even a
super-minicomputer.

An alternative approach is to decompose the computation load of manipulator dynamic
control into a number of tasks which will be performed by inexpensive multiprocessors
concurrently [2]{3].

Success of such an approach requires an optimal algorithm to assign tasks to respective
processors and an efficient configuration of multiprocessor system to support concuirent
computation,

This paper presents a number of implementations of the control computation of a manipulator
on multiprocessor cornputer systems. Qur research lies in exploring implicit parallel programming
schemes for real-time control and as such is a departure from the more usual explicit solution
techniques in the literature.
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II. The Recursive Newton-Euler Equations

There are a number of ways to formulate the dynamic equation of manipulator motion, two
main approaches that are widely used to systematically derive the dynamic model of a manipulator
are the Lagrange-Euler(LE) formulation and the Newton-Euler(NE) formulation [4].

The LE formulation generates a set of closed form differential equations to describe motion.
The computation method of the LE equations involves many matrix multiplication and is
computationally inefficient.

The NE formulation yields a computationally efficient set of forward and backward recursive
equations of motion. This algorithm is the fastest and the most efficient of existing algorithm for
dynamic control computation [4].

The Newton-Euler equations are based on Newton's second law

Fi = ma;
and Euler's equation

Ni = Ii‘;"i + Wi X (IiWi)

Furthermore, recursive Newton-Euler equations are derived with nine equations for each Iink [1].

A0, = AFNA%w+ 2009 if link i is rotational
or ATH(ATwp if link i is ranslational
A?‘;"i = Aii“"l [A?\;:iul + Zo{éi + (A?wi_l} X (Z(}L;ii)} if link i 1§ rotational
or Al I(A?x;fi ) if link i is transiational
A?\.fr-l = (A?\.vi) X (A?p;) + (A?wi) X {(A?wi) X (A?p;)] + Aif 1(A?_}VM) if tink 1 is rotational
or Aif I(Z{}qg +A?_1Vi_1 + (A?Wj) X (A?p;) + Z{A?vg'i) X (Aii_ lzgq) + (A?wi) X [(A?wi) x (A?p;)]
if link i is translational
A?\“;i = (A?w;) X (A?si) + (A?wi) X [(A?wi) X (A?Si)] + A?vi

AN = (A1AD AW + (AW x T(ATLALY(A M)

0 i+, 0 0
Alf, = ATALfD+ A

i+l

Adn = AFNAY g+ (ALp!) x (A6, 00 + (Afp; + Afs) x (ATF) + AN,
to= (A%l 4hg, if link i is rotational

or  (AJE) (AT'zp "*b;iii if link i is translational

where: Af""l and I; are 3x3 matrices, r';i, q ;. my; and b; are scalars, the rest are 3x1 vectors.

The manipulator configuration chosen is a popular ASEA IRb-6 robot arm which has five
degrees of freedom, so there are in total 45 equations.
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HI. Explicit Parallel Implementations on a Shared Memory Multiprocessor

In these implementations, the Pascal programs augmented explicitly with the synchronisation
primitives from the parallel programming library of Encore Multimax, a shared-memory
multiprocessor system with six processors, is used to implement the computation of manipulator
dynamic control equations.

The primitives used were fork, spinlock, spinunlock, fbarrier_init, fbarrier and the memory
allocation directive share[5], where fork is used to create a new process. The new process (the
child) is an exact copy of the calling process (the parent) except for the child process has an unique
process ID. In the program, one process runs on one physical processor. Spinlock and spinunlock
are used where necessary to provide exclusive access to the data structures located in a shared
memory. Fbarrier_init and fbarrier are used to synchronise the parallel processes on each iteration
of the control loop.

Decomposition of the computing load into tasks The decomposing of the computing
load is the first and important step in the application of parallel processing. If we split the
computing load into coarse grains, only a few tasks can be performed concurrently. On the other
hand, if the grains are too small, the data transfer activities between the processors (hence the
operating system overhead) will increase. This effect will lead to the performance degradation.

After a substantial number of experiments[15], we finally partitioned the recursive
Newton-Euler equations into 51 tasks. A task graph was sketched to represent the ordering
constraint arising from the data dependencies between the tasks and is shown in Figure 1, where
task ) and 52 are dummy tasks, representing enter node and exit node respectively.

€

Figure 1: Newton-Euler Task Graph and Dependencies
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In a task graph, there is a longest path called critical path whose path length is defined as
follow:

fop = Max Z 1

k jedy
where ¢, represents the kth path from the entry node to the exit node.

The critical path length play a principal role since once the critical path length is determined,
no matter what scheduling is used and how many processors will be employed, the execution time
will be not shorter than this critical path length.

Using UNIX -gprof, we can estimate the execution time of each task, furthermore, the
critical path length can be inferred:

the critical path: 0->2->12->22->32->42->44.>45->47->37->39->29->19-59->10->52
the critical path length = 48.354 (sec) (40,000 iterations)

A task can not start until all of its predecessors are completed. Threshold variables are used
to determine when a task is ready to be executed and that task is then scheduled. Two methods
have been employed to schedule tasks. One is dynamic scheduling and the other is static
scheduling.

Dynamic¢ scheduling For dynamic scheduling, all of the processors share a common task
queue which i3 located in a shared memory and the tasks are scheduled at run-time. If we denote:

T  be a set of tasks, i.e. T=(Ty, Ty, ooy Ty, ooy Ty, Tppy), where Ty and T, are dummy
tasks, representing the enter node and the exit node in a task graph, respectively.
P be a set of processors, ie. P=(Py,..., Pi, ..., P);
then the dynamic scheduling can be described as the following steps:

1. [Initially, Ty is put into the queue, and a shared variable remaining_tasks is set to equal to
NoOfTasks;

2. Pjchecks the variable remaining tasks: IF remaining_tasks=0, then go to step 4, ELSE
go to step 3;

3. P, reads a task T, from the queue, IF T;<>T,,, L.e.T; is not the exit node, then P,
performs 1;. After completing T, P; checks the thresholds of successors of T;and put
any task with threshold equal to its NoOfPred (No Of Predecessors) into the queue. go 1o
step 2; ELSE P; sets the variable remaining_tasks=0, and go to step 2;

4. stop.

Spinlock 1s used to guarantee that only one processor can access to the queue at each time.

The advantage of dynamic scheduling is that it is simple to programme, and avoids manual
work such as mapping tasks to specific processors. The drawback is that a processor spends quite
a long time on scheculing and spinlock/spinunlock.

Static scheduling For static scheduling, tasks are allocated to specific processors. The order
in which the tasks are executed on a given processor is predetermined. Tasks wait until the
predecessors have finished before executing. In this case, the task itself monitors the threshold
rather than being explicitly scheduled by a predecessor. In the program, we use DHLF/MISF
(Dynamic High Level First / Most Immediate Successive First) [16] method to generate a task
order for each processor and then directly map the tasks to specific processors. If a task and its
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predecessor are allocated to the same processor, then the No Of Predecessors of this task can be
reduced by 1.

The scheduling time for static scheduling has been greatly reduced, however, this method
involves substantial manual work to map tasks to specific processors.

The results in Table 1 are for the dynamic control routine. It can be see that for dynamic
scheduling, using one processor, the execution time is worse than that of the sequential scheme,
using more than two processors, only a slight speedup can be achieved. This is because that
processors spend a significant amount of time in locks. It also can see that for the static scheduling,
the moderate speedup has been achieved by using several processors.

Table 1: Times for Dynamic and Static Implementations
(40000 iterations)

schedufingd P | ey e

sequential 142.3
1 186.9

2 130.7 1.09

dynamic 3 104.2 1.37

4 87.2 1.63

5 80.8 1.76

parallel 1 1423 1.00

2 84.7 1.68

static 3 66.3 2.15

4 61.3 2.32

5 60.0 2.37

IV. Implicit Parallel Implementations in Sisal

Sisal is a functional language which has been targeted at a wide variety of systems including
current generation multiprocessors such as the Encore Multimax and research dataflow machines
[6i[7]. The mult-targeting feature is accomplished by compiling Sisal to an intermediate language
IF1. The IF1 representation is then compiled to the appropriate target instruction set. The textual
form of Sisal, in terms of control structures and array representations, provides a relatively easy
transition for those familiar with imperative languages. The optimising Sisal compiler (OSC) from
Colorado and Lawrence Livermore National Laboratories yields performance competitive with
FORTRAN.

g
In Sisal program, therg‘ktwo forms of Loop expression, one is of the form:

for initial
index:=lowest_index;
variable:=initial _value:
while index<=highest_index repeat
index;=o0ld index + 1;
variable:=functionl{cid index, old variable):
return array of variable
end For

Another form of Loop expression is:
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for index in lowes(_index, highest_index
variable:=function2(index);

return array of variable

end For

The first one performs sequential loop in which one iteration depends on the results of
previous iteration. The second form may be used when there are no data dependencies between
iterations, this makes it is possible to execute several loops in parallel.

Sisal on a Conventional Shared Memory Multiprocessor As we know, the dynamic
control of manipulator involves calculating nine equations for each link. The data dependencies
among nine equations and between two links are so strong that it is difficult to write the calculation
program in second form of parallel Sisal loop. The manipulator program expressed in Sisal is
presented below. It can be seen that there are no directives as to how the tasks should be
scheduled.

type vector =recordix,y,z:real],
type matrix = record{n,0,p:vector];

function VAV (a,b:vecior returns vector) Dovector + vector
let
c:=record vector[x:a.x+b.x;ya.v+byza.z+b.z]
inc
end let

end function

function dynamic_control(z:vector;,dq,ddq.m borarray{real];
po,s:array[vector]; Tm, Tm_1,Im:array{Matrix] returns
w.dw,v,dv,dcv Fe Ne,fo,ne,t)
let
wj,dwi,dvj,devi,Fej.Nej:=
for initial
link:=0;
wir=record vector[x:0.0;y:0.0;2:0.0];

while link<=4 repeat

link :=0ld link+1;

wi,dwi,dvi,devi,Fer Neii=

if motion{link]=1 then gurotation

let

Geompute angular velocity
zdq:=SMV (dg[link},z0);
valueG1:=VAV(old wizdq);
wl=MMV(Tm_1{link],valuc01);

Feompute external moment - Nel
inwldwl,dvl,devl FelNel
end let
else Ptranslation
fet
Feompute angular velocity
wl:=MMV(Tm_1[link],0ld wi};

%compute external moment - Nel
in wl,dwl,dvl,devl FelNel
end let
end if
returns array of wi
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array of Nei
end for;
w,dw,dv,dcv,Fe Nei=array__setl{w},0},

array_setl{Nej,()

in w,dw,dv,dcv,Fe,Ne fenet
end let
end et
end function

The Sisal compiler OSC (Optimising Sisal Compiler) exploits only the parallelism in for -
in loop for shared-memory machines. Procedural level concurrency of the type found in the
manipulator control program is not currently exploited as can be seen from the resuits in Table 2 (It
is hard to work out the execution time for the dynamic control routine alone since Sisal optimise
eliminates the routines as " dead code ' if their results are not used). It can be observed however
that the run times for Sisal on a conventional multiprocessor compare favourably with the Pascal
implementations. The execution time slightly increasing with additional processors is caused by
the operating system overhead.

Table 2: Times for Sisal on a Conventional Multiprocessor
(40000 iferations)

execution time (sec)
proce;seor whole outside dynamic |dynamic control
number | nrogram | control routine | routine (infer)
1 291.8 1753 116.5
2 308.5 189.3 119.2
3 312.5 190.9 121.6
4 3i6.1 196.4 119.7

Sisal on a Dataflow Multiprocessor The dataflow model has been introduced to exploit the
maximum parallelism inherent in algorithms since the early 1970s. Datafilow microprocessors are
commercially available and other microprocessors such as the Inmos transputers may be used as
datafiow processors{14]. Unlike the conventional control-flow model the course of a computation
is determined solely by the availability of data, therefore, the datafiow model can avoid most of
problem existing in the conventional multiprocessor system, such as memory conflict, side effects,
ete.

Dataflow programs are represented by a directed graph where the arcs denote paths over
which data travels and the node the computational function (instruction operation). A node 'fires’
as soon as all its operands arrive on all its input arcs. When the node fires, resalts are transmitted
to successor nodes in data packets called token and these nodes will cause further firings.
Potentially many nodes may be eligible to fire in parallel.

The hardware of the dataflow machine studied (CSIRAC II) consists of a homogeneous
array of processing-elements or processors interconnected by a modulo 4 multi-stage
interconnection network (MIN). The graph describing the computation to be performed is
partitioned and the partitions distributed to the processing elements [8][9]{10]. In CSIRACI], a
processing element consists of two main functional units (Figure 3). If the destination node is
monadic, the token can be directly passed to the evaluation unit; If the destination node is diadic,
then the matching unit retains the token and processes the next token; the retained token is retrieved
when its partner arrives. In the evaluation unit the node function is evaluated and the results are
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dispatched through the communication network to their destinations{11].

The CSIRAC II development environment provides a simulator for detailed language
studies. In the simulator, the discrete time increment, nominally 10 nsec, is used to calculate all
execute time. The transmission time of communication network is assumed as 100 nsec per 128 bit
word and the relevant communication path is modelled as being busy for the entire period of token
transmission. The default communication latency is 500 nsec although this may be varied.
Pipelining within processing elements is not modelled directly but approximated by commencing
the processing of tokens a time equal to half the transmission time after the token has been
dispatched. The rate for reading tokens from and written tokens to queues is assumed as 50 nsec
per word and the time for tokens to perform the matching operation is assumed as a very
conservative 500 nsec plus another 500 nsec for each further search or token storage. The basic
node evaluation time is 100 nsec with the more complex node evaluation time set to appropriately
long time [18]{19]. The execution time of a program running on the simulator is calculated based
on above assumption. The simulator also generates a number of graphics for performance analysis

[8].

Evaluation Unit 0 Y
Object Store 0 § ©

Processing Element 1 -
Communication

Processing Element 2 -t Network

(MIN)

4

Figure 3: CSIRAC 11 Organisation

Processing Element n

For CSIRAC II, Sisal programs are compiled by the front end of OSC into IF1(an
intermediate form). The IF1 is then translated into i2, an intermediate target language which
directly represents a data flow graph [9]{13].

The set of graphs in Figure 4 shows the machine activity during the simulation. Where graph
4-3 shows the number of unmatched tokens and transited tokens; Graph 4-b shows the
maximum, minimum and average number of active processing elements during each time step;
Graph 4-c shows the activity of processing elements accessing the object store; Graph 4-d shows
the work-load distribution, a dark spot indicates that processing element is active {8].
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Figure 4: Machine Activity During the Simulation

The following Table 3 indicates the execution time of whole simulation program for ten
iterations by using deferent number of processing element:

Table 3: Runtime for SISAL on dataflow (10 iterations)

processing element execution time (ms) speedup
number
1 ‘ 27.506
2 14.472 1.91
8 4.386 6.27
16 2.923 9,41
32 2.329 11.81
64 2.149 12.80
128 2.085 13.19
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V. Conclusion

We have investigated several computation models for the dynamic control of a manipulator.
As we know, program parallelism involves the partition of a computing load. In theory, if we
wish to speedup our program, we should cut down the critical path length, to do so, we should
produce a fine grained program to exploit low level parallelism in tasks, further reducing critical
path. However, if the grains are too small, there will be substantial overhead associated with
coordinate processes, the actual critical path length will increase. Therefore, the potential gain from
parallelism will be overwhelmed by this lengthening of the critical path. This can be seen from our
shared- memory schemes, where, each processors can directly access a data structure located in
shared memory which also can be accessed by all other processors. In order to avoid this contest,
some method is required for ensuring mutual exclusion The method we use here is spinlock.
However, the spinlock can degrade the performance of parallel processing since it can slow down
processors doing useful work. This is why we only exploit medium granularity for our
shared-memory schemes and only a slight speedup has been achieved by using dynamic scheduling
and a moderate speedup by using static scheduling. Although part of the software scheduling can
be replaced by hardware, a certain effects could be received, only a limited speed-up can be
achieved since a limited number of processors could be employed.

The dataflow model of computation deviates from the conventional control flow in that the
execution of an instruction is solely based upon the availability of its operands. The instructions in
the data flow model of computation do not impose any constraing on sequencing except the data
dependencies in the program. The advantage of the data flow approach over the conventional
control flow method stems from the inherent parallelism embedded at the instruction level. This
aliows efficient exploitation of the fine-grain parallelism in an application program and can make
the critical path Iength of the program minimum, which is suitable to parallelise the computation of
dynamic control of a manipulator. Sisal automatically partitions the program into very fine-grained
tasks (instruction Ievel) and their data dependencies. The CSIRAC I dataflow machine uses a .
dynamic scheduling policy very similar to the one used in the Pascal based scheme. The simulation
results demonstrate the potential and advantage of dataflow machine to resolve a complicated and
high performance real time control problem such as manipulator dynamic controls.
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