Mobile Robot Path Planning Using Parallel Computer System

W.Shang and G.K.Egan

Laboratory for Concurrent Computing Systems
Computer Systems Engineering
School of Electrical Engineering
Swinburne Institute of Technology

Abstract: This paper presents a fast, parallel method for
mobile robot path planning. The technique is applicable
to autonomous robots operating in an obstacie space
populated by other similar co-operating robots, such as
robot aircraft or large numbers of robots in an industrial
workspace. The technique is based on visibility-Graph
algorithm proposed by Lozano-Perez. It has been
extended and applied to multiple robots with particular
priorities. The paraliel algorithm takes advantage of the
MIMD shared memory machine, Each robot's path
planning can be executed simultaneously because each
processor can work independently. The results on
Encore-Multimax multiprocessor system show that the
computation time of the parallel algorithm is much less
than that of the sequential algorithm.

Introduction: This paper presents a path planning algorithm for
multiple robots which has been implemented on the multi-processor
system. The basic idea which makes this algorithm possible derives
from Lozano-Perez's Visibility-Graph (V-G) algorithm, where the
space is represented in terms of configuration space, the obstacles
are represented as Cspace obstacles while the robot is shrunk as a
point. The free space is visualized as a graph with nodes
corresponding to vertexes of Cspace obstacles and links which exist
only when two nodes in the graph can "see” each other. Among
these nodes and links a path is searched for from a start position to a
goal position without collision with any obstacles. We extended this
algorithm for multiple robots by giving priority to each robot. The
lower priority robot takes into account not only of these real
obstacles but also the paths generated by higher priority robots
when planning its own path. However, there is a disadvantage. For
a single robot, the computation time for Cspace obstacles and
searching time are very expensive if there are many obstacles in the
workspace, which necessitates too many nodes to be visited. For
multiple robots, the searching time increases N times that of a single
robot where N stands for the number of robots. In order to solve
this problem, we developed a parallel method which can take
advantage of the shared memory machine so that the whole
computation can be divided into a set of subcomputations and can be
done by different processors simultaneously.

The paper is organized as follows: Section 1 gives
background and overview; Section II describes a multiple robots
path planning algorithm; Section III covers the parallel
implementation on shared-memory machine and its results; and
Section IV presents our conclusion and outlines further work to be
carried out.

I. Background and Overview

Given a robot with an initial position, a goal position and a
set of obstacles located in a workspace, the path planning problem is
to find a continuous path for the robot from the initial position to the
goal position which avoids collision with obstacles along the way.

A few algorithms have been proposed in this class, amongst
which the most influential are the Brooks[2} and Lozano-
Perez[3][1] algorithms. Brooks' method represents the free space as
overlapping generalised cones and the volume swept by the robot as
a function of its orientation. Conceptually, finding a collision-free
path is equivalent to comparing the swept volume of the object with

the sweepable volume of the free space. In a relatively uncluttered
workspace, Brooks' method is fast and efficient. Its major
drawback is that paths can only follow the spines of the generalised
cones used to represent free space. It does not perform well in
cluttered environments, for there are not sufficient generalised cones
to allow for a rich choice of path. Lozano-Perez's V-G algorithm
represents the space in terms of configuration space or Cspace, as it
is often called, which virtually means transforming the robot into a
point and enlarging the obstacles accordingly. In practical terms, a
collision-free path is one that does not intersect with any of the
expanded obstacles. The method consists of three steps:

1. Constructing the Cspace Obstacles;
2. Representing the Free Space; and
3. Searching for a Collision-Free Path.

Constructing the Cspace Obstacles Configuration is used to
denote the degree of freedom. The configuration of a polyhedron is
a set of parameters that characterise the position of every point of the
polyhedron. The space of configuration for a polyhedron A is called
its configuration space and it is denoted Cspace A. In Cspace A, the
set of configuration of A where A overlaps obstacles B is denoted
COA(B).

COA(B) = { x€eCspace A | (A)B # 0 }.

COA(B) is regarded the Cspace A obstacles due to B. It is an
enlarged version of obstacle B, whereas the moving object A can be
represented by a point. Lozano-Perez's algorithm: COA(B) = B - Ao
works well in two-dimensional workspace, where Ao is A in its
initial configuration. But in three-dimensional workspace,
computation for COA(B) is more complicated. Not only the edges
of the obstacles but also the faces have to be increased significantly.
An "approximate algorithm" has been proposed as an altemmative to
facilitate the computation of three-dimensional workspace([6].
Although the Cspace obstacles worked out with this method is an
approximation and some free space may be ruled out, it works well
in computation, for it is dimension-independent and the number of
faces does not need to be increased. The enlarged obstacles can be
obtained by increasing the length of each vertexes from the centre.
See Fig.1.

Fig.1 Moving object A and COA(B) by using approximate Method

676

Representing the Free Space Once the Cspace obstacle
COA(B) has been constructed, the next step is to represent the free
space and obstacles. It is useful to visualise the free space as a graph
consisting nodes which correspond to certain states of space, and
arcs representing the relationships between states. In the V-G
algorithm, a node represents an enlarged obstacle’s vertex, an arc
exists if any two vertexes can see each other. See fig. 2.

(B4

Fig.2 (a) Moving object A and obstacles B1,B2
(b) Free space graph

Searching for a Collision-Free Path Free space having now
been represented by way of graph, A* algorithm[7] is used to
search the graph for an optimal path, from a node containing a start
position to a node containing a goal position. The cost function used
is the distance travelied through the space.

II. Path Planning for Muitiple Robots

Problem Formulation / Solutions For multiple robots path
planning, additional requirements should be considered to avoid
collision with other robots in a certain workspace. Not only
collision avoidance but also robots coordination need to be taken
into consideration simultaneously. The Visibility-Graph algorithm
can not guarantee to find collision-free paths for multiple robots. We
have developed a new algorithm on the basis of the V-G algorithm
to carry out path planning for multiple robots.

In general, the structure of multiple robot path planning in
terms of approaches can be classified into (1) centralized
configuration and (2) decentralized configuration with
prioritization[10]. Our method for multiple robot path planning is to
assign a priority to each robot and then plan the path for each robot
at a time. The main advantage of this approach is that it reduces the
large dimensional problem into a sequence of lower dimensional
subproblems. In our case, the priority of each robot depends on the
size of each robot.

Our method is based on the concept of configuration space.
Each robot has been shrunk into a point while the obstacles have
been expanded accordingly. Free spaces are represented as graphs.
Each robot has its own graph as they have different sizes. We
assume all the real obstacles to be pyramnds each having four
vertexes. By using the "approximate” method, we have Cspace
obstacles, COA(B), as pyramids too. If there are n obstacles in a
three-dimensional workspace, there are 4*n + 2 nodes in its graph
for each robot. We use S for start node and G for goal node. As the
highest priority robot only needs to consider the real obstacles as its

obstacles, the path planning algorithm for it is similar to that for a
single robot.

Searching algorithm for the highest priority robot:

begin
current = node[s];
repeat
count = 0;

fori=1 to 4*n+1 do
if current and node[i] can see each othcr then
begin
inc(count);
node_1[j] = nodeli];
end;
min_node = node_1{1};
fori=1tocountdo
if min_node > node_1[i] then
min_node = node_1[i);
current = min_node;
n::lmtil current = node{g] or all nodes have been visited;
end,
For lower priority mbots, path planning algorithm is slightly
different as we need to consider collision free not only from the real
obstacles but also from other robots.

Searching algorithm for lower priority robots:

begin
current = nodefs];
repeat
count = 0;
i=L

fori=1to4*n+1do
if current and node[i] can see each other then
begin
inc(count);
node_1{j1 = nodelil;
end;
found = false;
min_node = node_1{1};
while not found do

gin
fori= 1 to count do
if min_node > node_1[i] then
min_node = node_1{i];
if line(min_node, current) insect any path in
memory then
change min_node cost
else
found = true;
end;
current = min_node;
until current = node[g] or all nodes have been visited;
end;

By tracking back all these current nodes, a path is sure to be
obtained. A marked shortcoming is that computation requires
considerable time, which means the sum of each robot's
computation time, because we cannot start path planning for another
robot until that of a higher priority robot is completed. However, the
processing can be significantly speeded up with the help of the
added power of the parallel computer.

III. Parallel Implementation

Our implementation takes advantage of MIMD (Multiple
instruction stream Multiple datastream) shared memory machine
with n processors sharing the input/output subsystems and the
global memory. Sec Fig.3. A key featurc of sharcd-memory
machine is that the access time to a piece of data is independent of
the processor making the request.[8]

677

cpu
|
Gilobal Memory

cpu
L

Fig.3 Shared memory machine

As mentioned above, we assume each robot to have a
priority. The higher priority robots store their data which can be
used by lower priority robots into the global memory, and lower
robots have access to it when planning their own paths. The higher
priority robots can store their data at any time and these lower
priority robots can receive it at any time.

We rely on the programming language to describe how
parallelism is to be incorporated. There are two kinds of language
support: implicit as well as explicit. Parallelization is implicit when
the complier can recognize potentially concurrent portions of a
sequential program and generate parallel code. Implicit
parallelization requires extensive analyses of the dependencies
among data items and cannot guarantee an optimal solution.
Parallelization becomes explicit when the programmer must specify
the nature and extent of concurrent activities through language
constructs. Three mechanisms have been used to support parallel
capabilities[9]:

1. incorporating parallel features as integral parts of a
language's design;

2. adding parallel extension to an existing sequential language,
and

3. providing high-level interfaces to parallel routines stored in a

system library.

We chose the second mechanism, language extension, due to
the availability of compliers, familiarity of sequential langrage and
easing with sequential program. The extensions used in our case
are: fork / join, barrier, spinlock / spinunlock. Fork/ join is one of
the common ways to divide up the work in a shared-memory
machine. In this way, a process spawn subprocesses, fork, and
wait for them to finish, a join. The number of subprocesses varies
with applications.

In fork / join program, a restriction for accessing code is
needed. A program can contain two major sections. Critical section
contains code that gets executed by all processors one at a time.
Serial section is code to be executed by only one processor and
skipped by all others. It is usually used to initialize global data.

The program as discussed before, has been divided into a set
of its subprograms. Each subprogram is allocated in different
processes. For each robot, its work can be divided into a certain set
of subworks. Critical sections and serial sections are also involved
in each robot's subprogram. In some sections, these subworks need
to be carried out by different processes simultaneously. In this case,
synchronisation is needed. Barrier or fbarrier are used, for all
processes waiting for the last one to arrive. It influences speedup
because it may spend a long time waiting for a process and a
deadlock may arise. On the other hand, Spinlock-spinunlock is used
to protect the serial region, no other processes can execute the code
in the protect section. Fig 4. shows our parallel program structure
with three robots.

Fig.4 Paralle! program structure

678

common: is a common part which does the program initialization.
Global data generated by it is stored in A.

A.B,C: stand for different parts of global memory. The whole data
which can be read by every processor is stored in AB is
used for storing daia generated by robot[l]’s
subprogram, it can be read by 2 and 3. As above, C is
used 1o store data from 2. For 3, both B and C are needed
1o be considered when planning paths.

stands for each robot’s subprogram, which is individual
and independent. We assume 1 has the highest priority, 3
the lowest.

1,2.3:

Algorithm There are two ways to run parallel programs in fork /
Join style, SPMD and MPMD. With SPMD, each subprocess runs
the same program but executes different data depending on its
processor id, or data in shared memory. With MPMD, each
subprocess runs different programs and executes different data.

SPMD and MPMD are combined in our parallel program.
SPMD is preferred for the computation of Cspace obstacles as all
processors run the 'expanding procedure' but deal with different
obstacles. The program is as follows:

repeat
spinlock();
i =share_1;
share_1 = succ(share_1);
spinunlock();
if i <= no_obstacles then
expanding obstacle][i];
until i > no_obstacles;
fbarrier(barr);

program 1

SPMD also helps to check visibility between nodes. The program is
as follows:

repeat
spinlock();
i=share_1;
share_1 = succ (share_1);
spinunlock();
if i «=4*n +1 then
visible[i] = visit(current, node{i]);
untili>4*n+1;
fbarrier(barr{i]);

program 2

The number of subprocesses that we spawn is the multiple
of the number of robots. Each robot has the same number of
processes as each robot's path planning work is similar. The id
number for each robot's subprogram can be obtained from the
following;

subnprocs = (number of process) div (number of robots);

if subnprocs <= 1 then
id = (number of robots) mod (number of process)
else if subnprocs > 1 then
((id - (i-1)*subnprocs) >=0) and ((id - i*subnprocs) < 0);

If we have six processes and three robots,then robot[1] has
id = 0/ 1; robot[2] has id = 2/ 3; and robot[3] has id = 4 / 5.
Robot[1]'s subprogram is run by subprocesses whose id are 0 and
1. Robot[2])'s subprogram is run by subprocesses whose id are 2
and 3. Robot[3]'s subprogram is run by subprocesses whose id are
4 and 5. I f we have six robots, then roboti 1] has id = 0; robot[2]
has id = 1; ...; robot[6] has id = 5. If we have 12 robots, then
robot{1] and robot[7] use same process whose id = 0; robot[2] and
robot{8] use process whose id = 1; etc.

As critical and serial sections are involved in our program,

synchronisation is needed. The mechanism we used is fbarrier , all
processors wait for the last processor to arrive.

procedure fbarrier_init (var barr:bar; count: integer; var d integer);
procedure fbarrier (var barr:bar);

Count in procedure fbarrier_init indicates how many
processes sychronising at the barrier. In the whole program[see
program 1], it equals the number of subprocesses that we ‘fork’. d
can be used for id number. when program is running, it wait until d
decrease from (count -1) to 0.

For robot's subprogram[see program 2], count equals each
robot's subprocess. As id number need to be available from count_1
- 1to 0, we use a pseudo-id which is got from

id_ps[i] = id - (i-1)*subnprocs
So, fbarrier_init and fbarrier becomes:
foarrier_init (barr{i),count,id_psli]);
fbarrier(barr{i]);

Robots Coordination As robots are given different priorities,
robot[1], who is given the highest priority, starts its path planning
first. When robot[2] starts, robot{1]'s data should be taken into
account. When robot[3] starts, both robot{1] and robot[2]'s data
should be taken into account, etc.. Generally speaking, robot{i]
need to consider data from robot[1] to robot[i-1]'s if we assume the
priority is from 1 to i. However, the problem is that, as each robot
does its own work independently, we cannot guarantee that a higher
priority robot stores its data in the global memory before the lower
priority robot gains access to it. In order to solve this problem we
built up "switches" used to control the order of each robot's work.
By simply using while statement we reached our goal. Each
subprogram[i} has its "switch", which is initialized as zero. The
subprogram{i] does not start its program until start{i} becomes 1.

for robot[i]' subprogram: for robot[i+1]' subprogram:

while start[i] <> 1 do while start[i+1] <> 1 do

wait; wait;
subprogram(i}; subprogram[i+1];

begin begin
startfi+1] = ; start[i+2] = L;

end; cnd{

It is obvious that subprograms are nested control structure.
Higher priority robot's subprogram controls the start of a lower
priority robot's subprogram through the "switch” start[i} which is
inside higher priority robot's subprogram. They work in this order:

subprogram[3]

Results The table and graph below show the time and speedup for
different number of processor as run for three robots.

speedup = Ts/Tp;

where Ts stands for time required for the nonparallel
program execution and Tp for time required for parallel version

679

execution[5].
obots 3 6 12
nprocd\ | time Lpeedup time lspeedup time Lpeedup
1 24.6 1 36.6 1 66.9 1
2 15.3 1.61| 21.7f 1.69] 38.2] 1.75
3 10.9 2.20(16.1} 2.27| 27.0] 2.48
6 8.1 3.04| 10.3{ 3.55| 17.9} 3.74
Speedup vs # processors
6.0 ideal———— i
50% ideal=——-=— . /’
3 robots & v
5.0 6 robots & //
12 robots x Ve
4.0
speedup
3.0
2.0 Z
//.-’
1

number of processors

Fig.5 Speedup curves

V. Conclusion and Further Work

A technique for planning the paths for multiple co-operating
autonomous robots and its implementation on MIMD shared
memory multiprocessor have been described. It can be seen that this
is a simple, explicit approach that can guarantee an optimal collision-
free path to be found in two-dimensional workspace and a near
optimal collision-free path in three-dimensions. The technique can
be effectively implemented on the shared-memory multiprocessor
and the study has shown that it is possible to obtain a good
speedup, especially when an increased number of robots are
involved in the computation.

Further work inciudes using implicit programming language
to develop parallel methods and, their implementation on message-
passing multiprocessor.

Acknowledgments

We wish to thank all members of the Laboratory for
Concurrent Computing Systems at Swinburne Institute of
Technology for their support.

Reference
[1] Tomas Lozano-Perez, "Spatial Planning: A Configuration
Space Approach”, IEEE ransactions on Computing, Voi. C-
32, No.2, pp. 108-119, Feb 1983.

[2] Rodney A. Brooks, "Solving the Find-Path Probiem by Good
Representation of FreeSpace ", IEEE Transactions on System,
Man and Cybernetics, Vol.SMC-13, No.3,pp. 190-197,
March / April 1983.

[3] Tomas Lozano-Perez, "Automatic Planning of Manipulator

Transfer Movements", IEEE Transactions on System, Man
and Cybernetics, Vol. SMC-11, No.10, pp. 681- 698, Oct
1981.

{4]

(5]

(6]

(7]

(8]

9]

(10]

(11]

G.S. Almasi and A.Gottlieb, Highly parallel computing, The
Benjamin / Cummings Publishing Company, Inc., 1989.

S.Brawer, Iniroduction to Parallel Programming, Academic
Press, Inc., 1989. pp. 75.

K.S.Fu, R.C.Gouzalez and C.S.Lee, Robotics, Control,
Sensing, Vision and Intelligence, New York, McGraw-Hill
Book Company, 1987, pp. 400-450.

Nils. J. Nillsson, Problem-Solving Methods in Artificial
Intelligence, New York, McGraw-Hill Book Company, 1971,
pp- 43-79.

Alen H. Karp, "Programming for Parallelism”, IEEE
computer, pp. 43-57, May 1987.

Cherri Pancake, Donna Dergmark, "Do Parallel Languages
Respond to the Needs of Scientific Programmers?”, IEEE
Computer, pp. 13-23, Dec 1990.

Ching-Long Shih, J Peter.Sadler, William A.Cruver,
“Collision Avoidance for Two SCARA Robots",
Proceedings of the 1991 IEEE International Conference on
Robotics and Automation, Sacramento, California, April,
1991, pp. 674-679.

Hans Sima and Barbara Chapman, Supercompilers for
Parallel and Vector Computers, ACM press, 1990.

680

