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ABSTRACT

We compare five solutions to the zero-one knapsack problem: Di-
vide and Conquer, Depth First with Bound, Dynamic Programming,
Memo Functions, and Branch and Bound. Our programs are written
in Sisal and run on the CSIRAC II dataflow machine. Two of the al-
gorithms, Memo Functions and Branch and Bound, benelit from non
deterministic extensions of Sisal, put and get. We introduce these
extensions and compare the performance of the five algorithms using
knapsacks of 20 and 40 objects. We measure the performance of our
programs in Sy: the number of instructions executed, S.,: the criti-
cal path length, and = = |51/5.]: the average parallelism. It turns
out that the Branch and Bound algorithm performs best in terms of
51, especially for the harder test cases.



FIVE WAYS TO FILL YOUR KNAPSACK

Just blow up the stack Jack
Make a bad call Paul

Hit the wrong key Lee

Set your pointers free

Just mess up the bus Gus
Don’t need to recurse much
Just listen to me

Kind of by Paul Simon
Courtesy of the net

1 INTRODUCTION

The zero-one knapsack problem is defined as follows. Given n objects with positive weights W; and
positive profits P;, and a knapsack capacity M, determine a subset of the objects represented by a
bit vector X with elements X; to X,,, such that

T T
EXiW»i <M and ZX{P,- mazimal
=1 fu=]
We assume the objects to be sorted by profit weight ratio, as solutions are often close to the greedy
approzimation: grab objects with a maximal profit weight ratio until the knapsack cannot be filled
any further.

The knapsack problem gives rise to a search space of 2" combinations of objects, which can
be depicted as a binary tree, where the root represents an empty knapsack, and going from level;
in the tree to level;,; represents either picking object; (going left down) or not picking object;
(going right down). Given a partial soiution (a choice for objects 1 .. i), a lower bound for the best
total solution can be computed in linear time by adding objects with maximal profit weight ratio
(i.e. objects i+1, i+2, ...) until an object exceeds the knapsack capacity, while an upper bound
can be computed by adding part of the object that exceeded the knapsack capacity, such that the
knapsack is filled to capacity.

In this paper we compare five solutions to the zero-one knapsack problem: Divide and Con-
guer, Depth First with Bound, Dynamic Programming, Memo Functions, and Branch and Bound,
written in Sisal and run on the CSIRAC II dataflow machine. Two of these algorithms, Memo
Funetions and Branch and Bound, need non deterministic extensions of Sisal, put and get. We
introduce these extensions. We compare the performance of the five algorithms using knapsacks of
up to 40 objects. We measure the performance of cur programs in S3: the number of instructions
executed, So: the critical path length, and 7 = |S1/5.]: the average parallelism.



1.1 THE CSIRAC II DATAFLOW MACHINE

The CSIRAC II datafiow computer [1], used in this study, is characterised by random allocation of
workload at the node level as distinct from a code block or procedure level; generic node functions;
strongly typed, variable length tokens; loop unravelling as well as re-entrant code support using a
single undifferentiated colour tag combined with the ability to preserve temporal ordering of tokens
without tag manipulation overheads, tokens on any given arc with the same colour being maintained
in strict FIFO order; imbedded storage functions for local state information; heterogeneous streams;
integrated input/output and error mechanisms. More recent refinements to the architecture have
included the addition of vector and compound token types and extensions to matching functions
for streams.

2 THE ALGORITHMS

In the following programs W denotes the array of weights, P denotes the array of profits, M the
knapsack capacity, n the number of objects, 7 the level in the search tree, and ep the profit gathered
at a particular point in the search tree.

2.1 DIVIDE AND CONQUER

The Divide and Conquer solution to the knapsack problem is better seen as an executable specifi-
cation. Apart from checking whether the weight of an object exceeds the remaining capacity of the
knapsack, the Divide and Conquer algorithm does not prune the search space. As the left-down
and right-down searches are independent, this algorithm is highly parallel. But, as is often the case
when there is abundant parallelism, a lot of unnecessary work is performed.

function knapdc(¥,P: arraylinteger]; i,M,n: integer returns integer)
if M < WLi]l then

if i<n then knap(W,P,i+i,M,n) else 0 end if
else if i<n then

let 1 := knapdc(W,P,i+1,M-W[il,n)+P[i];

r := knapdc(W,P,i+1,M,n)

in if 1 > r then 1 else r end if

end let

else P[i] end if

end if

end function

The main function initializes W, P, M and n and calls knapde(W, P,1, M, n).



2.2 DEPTH FIRST WITH BOUND

The Depth First with Bound solution computes, in a eertain point of the search space, the upper
bound given the partial solution, and if this upper bound is less than the best solution found so
far, the sub-tree under the partial solution is not further explored. This avoids large amounts of
work, but causes the search to proceed depth first left to right, and consequently looses almost all
parallelism in the algorithm. It also forces the search to go down the “greedy” path, which may not
always be favourable. The Branch and Bound algorithm in section 2.6 deals with these problems.
Note that, when going left down (taking object;), the upperbound does not need to be recomputed
as it does not change.

forward function knaph(¥,P: arraylinteger]}; i,cp,M,n,best: integer; returns integer)

function knap{(W,P: arraylinteger]; i,cp,¥,n: integer; returns integer)
if (M<WEil) then

if i<n then knapb(W,P,i+l,cp,M,n,cp) else cp end if
else if i<n then

let 1 := knap(W,P,i+1,cp+P[i],¥-W[i],n);

r := knapb(W,P,i+l,cp,M,n,1)

in max(l,r)

end let

else cp+P[i]

end if

end if

end function

function knapb(W,P: arraylinteger]; i,c¢p,M,n,best: integer; returns integer)
let bound :=

for initial

b :=c¢cp; cm 1= M; j =1

b,cm,j =

if (old em >= Wlold j1)

then old b + Plold j1, old em - Wlold j], o1d j + 1
elge old b + (old cm * Plold j1)/Wlold jl,0,n+t
end if

until j > n

returns value of b

end for

in if bound <= best then best else knap(W,P,i,cp,M,n) end if
end let

end function

The main function initializes W, P, M and n and calls knap{W, P, 1,0, M, n).



2.3 DYNAMIC PROGRAMMING

The dynamic programming solution to the knapsack problem combines solutions of sub-problems
bottom-up, saving answers to sub-problems in a vector V;. At stage; in the computation, V; contains
solutions to problems with knapsack capacity 0 to M using objects 1 to i only. An element of V;
can be expressed in terms of elements of vector Vi..q:

Vilsl = maz(Vi_a[5], Pli] + Vi[5 — WIi))

The term V;_;[j] represents the choice of not taking object;, the term PJi]+4+V;_4{j — W|[i]} represents
the choice of picking object;.

function knapdp (W,P: array[integer]; M,n: Integer returns integer)
let FinalV :=

for initial

i=0; V := array_fill (0,M,0);

repeat

i = o0ld i + t; Pi := P[i}; Wi := W[il;

V := for vi in old V at j

ny = if j >= Wi

then let v2 := old V[j-Wil] + Pi in max{vi,v2) end let
else vi

end if

returns array of aov

end for

until i = n
returns value of V
end for

in Finalv{#]

end let

end function

The main function initializes W, P, M and n and calls knapdp(W, P, M, n). The algorithm
computes M *n values, each value takes constant time to compute, so knapdp has an 57 complexity
of O(M #n). Also, this is the only algorithm with potential for vectorization.

2.4 TAGGED MEMORY, LOCKS, and NON DETERMINISM

In a dataflow machine, asynchronous structure accessing is implemented using split-phase read and
write operations and storage cells augmented with two fag bits: a presence bit P and a defer bit D.



READ ( cell: storage-cell returns number):

if cell.P

then return cell.VAL

else cell.D := True;

enqueue the READ request using cell.VAL as a pointer
end if

WRITE ( cell: storage-cell, val: number):
if cell.P then ERROR

else if CELL.D

then honour ALL requests in the defer queue
end if;

cell.P := True;

cell. VAL := val

end if;

Until now we have been able to express our algorithms in standard Sisal. The implementa-
tions of the Memo Functions and Branch and Bound algorithms require non determinism and can
therefore not be expressed in pure Sisal. We will use the side effecting operations put and get for
this. The combination of put and get provides for light weight locks, using the presence and defer
bits of tagged memory. Get reads a value from a storage cell and resets the presence bit, in other
words, it reads and wipes ouf a value from storage. Put writes a value in a storage cell, in such
a way that only one get can “get” it. If there are no deferred accesses, put just performs a write.
H there are deferred accesses, put honours one request, leaves the cell empty and the rest of the
accesses deferred.

GET { cell: storage-cell returns numbexr):

if cell.P

then cell.P := False; return cell.VAL

else cell.D := True;

enqueue the GET request using cell.VAL as a pointer
end if;

PUT ( cell: storage-cell, val: number }:
if cell.P then ERROR

else if cell.D

then honour ONE request in the defer queue
else cell.P := True; cell.VAL := val

end if;

The get and put functions are supported directly by the structure-read-and-reset (srr) and the
structure store-write-read-once (srw) instructions of the CSIRAC II. These instructions have been
used for some time in the runtime resource management library for CSIRAC II [1]. The following
is the implementation of put and get in the intermediate code i2 [2} used in the Sisal to CSIRAC II
compiler.



define __get{index)->value;
begin

srr{index) -> value;

end;

define __put{index, value)->acknowledge;
begin

srw(value index) -> pip_gate;

pip(value pip_gate) -> acknowledge;

end;

where pip stands for “pass if present”.

2.5 MEMO FUNCTIONS

The memo function solution to knapsack combines the divide-and-conquer and dynamic program-
ming methods. A table is maintained containing all sub-solutions. The table elements are initial-
ized to -1 to indicate that computation of the solution to the particular sub-problem has not been
started.

function knapm(Pad,W,P: arraylintegerl; i,M,n: integer returns integer)
let Pos:=M#*n+i; PP := get(Pad,Pos};

BP := if 01dP "= -1 then PP

else if M < W[il then

if i<n then knapm{Pad,W,P,i+1,M,n) else O end if
else if i<n then

let 1 := knapm{Pad,VW,P,i+1,M-W[il,n)+P[i];

r := knapm{(Pad,W,P,i+1,M,n)

in max{(1l,r)

end let

else P[i]

end if

end if

end if

in put(Pad,Pos,BP)

end let

end function

The main function creates a table Pad containing (M + 1) # n elements initialized to -1. The
semantics of put and gef ensure that only one process at the time will get the value of a certain
table element. If it is —1 the process will compute the solution to the particular sub-problem and
put the solution back. If the element is not —1, it has been computed, so the process puts it back
in the table. Other processes needing this solution will be deferred until the solution is put back.
As in the dynamic programming algorithm, the total amount of work is O(M xn). O(M % n) table



elements are computed. As the number of non deferred processes going down from level; to level; 1y
is at most M, at most O(M * n) processes can get deferred.

2.6 BRANCH AND BOUND

The Branch and Bound algorithm exploits parallelism to implement branching, which means that
the state space is searched breadth first. This avoids the drawbacks of the depth first with bound
algorithm. Notice the absence of explicit queueing in the algorithm. Sub-trees are cut by estimating
the upperbound of a partial solution and comparing it to a shared varigble GLow containing the
current best lower bound, maintained with pufs and gets, ensuring that only one process can get
GLow, use it and write an updated value back,

function knapbb (GLow, W, P: Vector; i, cp, M, n: integer returns integer)
if 1 > n | M=0 then cp

else

Jet L, U =

for initial ¥ compute lower and upper bound
cl := ¢cp; cu = ¢p; cm =M; 3 =i
repeat

cl, cu, cm, } =

if old cm >= Wlold jl

then old ¢l + Plold j1, old cu + Plold jI,
old cm - Wlold j1, old j + %

else old ¢l, old cu + ({old em * Plold ji) / Wlold jl),
old cm, n+i

end if

until j > n

returns value of ¢l value of cu

end for;

GL := get(GLow,1);

GB := put(GLow,1,max(GL,L));

in

if U < GB

then O

else if M >= W[i]

then let 1 := knapbb(GLow, W, P, i+1, cp+P[{i]l, M-WLi], n);
r := knapbb(GLow, W, P, i+1, c¢p, M, n)

in if 1 > r then 1

else r end if

end let

else knap (GLow, W, P, i+i, cp, M, n)

end if

end if

end let

end if

end function

]



2.7 Make that six: FUNCTIONAL BRANCH AND BOUND

We can make the above Branch and Bound algorithm functional by going down the tree breadth
first, creating a set of “viable tasks” for the next level down, using the same lower and upperbound
computation, but comparing this not to a global shared variable, but to the best solution found in
the previous level. A task is represented by two integers: a current profit and a capacity left, and
a next level in the tree is therefore represented by two arrays of integers.

type Vector = array[integer];

function bstep( W, P, profits, capacities: Vector; i,n, best: integer
returns integer,vector,vector)

for pr in profits dot m in capacities

lvb, pris, caps :=

if i > n  then best, array vector [], array vector []

else let L, U :=

for initial % Greedy algorithm

cl = pr; cu :=pr; cm:=m; j =i

repeat c¢l, cu, cm, j :=

if old cm >= Wlold j]

then old ¢l + Plold j], old cu + Plold jl, old cm - Wlolid jl, old j + 1
else old cl, old cu + ({oid cm * Plold jl) / Wloid j1), old cm, n+i
end if

until j > n

returns value of ¢l value of cu

end for

in if U < best then best, array vector [1, array vector [J]

else if m >= W[i]

then L, array vector[1: pr+P[il,prl, array[i: m-w[i],m]

else L, array vector[l: pr], array[1: m]

end if end if

end let

end if

returns value of greatest lwb value of catenate prfs  value of catenate caps
end for

end function

function main (returns integer)

let n = ... ; M= ... ; W o:= array[1: ... J; P := arrayfi: ... ];

InitProfit := Array vector(1:0]; InitCap := Array vector[1:M];

in for initial profits := InitProfit; capacities := InitCap; i := 1 ; best := 0
while i <= n repeat

best, profits, capacities := bstep(¥W,P,0ld profits,old capacities,old i,n, old best);

i:=0ldi+ 1
returns value of best
end for

end let

end function ¥ main



= 20 31

Off | Var M BB FBB DP MF DF

20 20 | 499 36325 47703 | 188329 | 485926 15089

20 16 | 432 || 212014 | 278080 | 163284 | 417389 38286

20 12 | 407 || 178552 | 225455 | 153944 | 378371 21781

20 8 | 384 |: 142188 | 177388 § 145349 | 358291 | 10383/

20 4 1 344 113578 | 141805 | 130394 | 194516 48186

40 20 | 819 87822 | 107098 | 307929 | 651997 11731

44 16 | 752 28089 37673 | 273544 | 584245 10027

40 12 | 727 28161 38007 | 273544 | 493647 89553

40 8| T04 47822 64345 | 264949 | 384940 10858

440 4 64 55459 72243 | 264949 | 212993 10557

Table 1: 57 for n = 20

n == 20 Seo T
Off | Var M BB FBB DP | MF DF || BB | ¥8B | DP | MF | DF
20 20 | 499 || 3412 4805 | 4053 | 828 1585 10 10 ¢ 46 | 590 9
20 16 | 432 || 5458 | 15194 | 3517 | 819 5006 38 18 46 | 509 7
20 12 | 407 || 4123 | 16577 | 3328 | 819 2683 43 21 46 | 462 8
20 8§ | 384 4132 9675 | 3154 | 819 1 11884 34 18 46 | 437 8
20 4 | 344 || 3500 8294 | 2845 | 821 5715 29 17 45 | 236 8
440 20 | 819 |} 3521 5636 | 6528 | 815 992 25 19 47 | 800 12
40 16 | 752 || 3192 4117 | 6001 | 811 695 9 9 47 | 720 14
40 12 | 727 || 3320 4117 | 5800 | 811 470 8 9 47 | 609 20
40 8 | T04 || 3473 3317 | 5619 | &O7 635 14 12 47 | 477 16
40 4 64 || 3444 5377 | 8305 | 821 661 i 16 13 47 + 259 16

3 EVALUATION

The knapsack problem instances are created by a C program with the following input pa-

Table 2: S, and = for n = 20

rameters:
§ - number of candidate items
P -~ capacity of knapsack as percentage of total weights

Off - minimal weight and profit of an object

Var - variance in weight and profit of an object

0ff + Var is the maximal weight and profit of an object

S - random number seed

The arrays are sorted with highest profit to weight ratio first. The Off and Par parameters
allow to vary the discrepancy between the objects with the highest and lowest profit weight ratio.

10




n = 40 S1 Soo w

Off | Var M BB DF BB DF || BB i DF
40 20 1 1585 85658 25859 [} 10076 2009 9 18
40 16 § 1517 || 1086312 | 15705956 22142 ; 2505189 49 6
40 12 | 1440 987312 1221636 22561 223835 44 5
40 811391 1223943 435916 || 21814 80978 56 5
40 4t 1328 || 5528756 | 25377336 74800 | 3663355 74 7

Table 3: 5y, Se and 7 for n = 40

With a small Off parameter and a large Var parameter it is possible to have a knapsack with
“diamonds” and “bricks” at the same time.

We have run our programs for several knapsacks with 20 and 40 objects. The capacity of
the knapsacks is always 80% of the total weight of the objects. Even for n = 20, the divide and
conquer algorithm is unbearably inefficient, so we will not include its results in our tables. In the
tables BB stands for Branch and Bound, FBB for functional Branch and Bound, DP for Dynamic
Programming, MI" for Memo Functions, and DF for Depth First with Bound. The winning value in
a certain category is emphasized. For n = 20 we have used five knapsacks with an Off parameter of
20, and five with an Off parameter of 40 in table 1 and table 2, varying Var from 20 down to 4 with
steps of 4. FBB is less efficient than BB for two reasons: the bound in FBB is not as good as in
BB because it only takes points in the search space on a previous level into account, and FBB uses
an expensive reduction operator: value of catenate. The case of Off = 40 shows the dependence on
capacity in the case of the Dynamic Programming and Memo Functions algorithms.

Notice that, in the case of n = 20, the Depth First with Bound algorithm performs well in
terms of total work, and that the Memo Functions algorithm exposes the most parallelism. For n
= 40, the Functional Branch and Bound, Dynamic Programming and Memo Functions algorithms
execute too many instructions to finish in a reasonable amount of time. The only algorithms that
are efficient enough in terms of 57 are Branch and Bound and Depth First with Bound. Table 3
shows the results for n = 40.

The trend seems to be that the harder the problem becomes, the better the Branch and
Bound performs in terms of 57, even though it does not show too much parallelism.

4 CONCLUSION

We have studied a number of algorithms solving the zero-one knapsack problem. These algorithms
are written in Sisal and run on the CSIRAC II dataflow machine. Two of these algorithms use non
deterministic extensions put and get, which allow for locking and updating of storage cells. One of
these, the Branch and Bound algorithm, performs the best in terms of Sy, for a number of our test
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cases. Also, the most parallel algorithm, the divide and conquer algorithm performs the worst in
terms of 5.

References

[1] Egan, G.K., N.J. Webb and A.P.W. Bohm , ’Some Features of the CSIRAC II Dataflow Ma-
chine Architecture’, in Advanced Topics in Data-Flow Computing, Prentice-Hall 1991, pp143-
173.

[2] Egan, G.K., Rawling, M.J. and Webb, N.J., "i2: An Intermediate Language for the CSIRAC
[T Data Flow Computer’, Technical Report 31-002, Laboratory for Concurrent Computing
Systems, School of Electrical Engineering, Swinburne Institute of Technology,1990

12



