|

B
g

Laboratory for Concurrent Computing Systems
Technical Report 31-041

Version 1.0 February 1993

Remote Control of MS-DOS
hosted devices from UNIX

S Zeng
Swinburne University of Technology
Australia

Professor G. K. Egan
Swinburne University of Technology
Australia

A. Sekerciogiu
Swinburne University of Technology
Australia

LABORATORY FOR CONCURRENT COMPUTING SYSTEMS
COMPUTER SYSTEMS ENGINEERING
Schootl of Electrical Engineering
Swinburne University of Technology
John Street, Hawthorn 3122, Victoria, Aunstralia,

Remote Control of MS-DOS hosted devices from
UNIX

S. Zeng G. K. Egan A. Sekercioglu
February 1993

1 Introduction

Main objective of this project is to develop the Application layer software for setting up
the communication between an MS-DOS hosted device and a UNIX hosted controlling
program. For example, the device to be controiled can be a robot arm, or an autonomous
experimental vehicle. The main reasons for developing this package can be summarized as:

¢ A numerically intensive control algorithm can be executed on a networked host such
as Cray Y-MP-EL of the LCCS, and generated control commands can be sent via
network link to the device to be controlled.

s A user can perform the experiments anywhere in the network remotely.
e Several users can share the same controlled device for their experiments.

The NetComm package has two main modules: PCServer running on the M3-DOS
side and UNIXClient running on the UNIX side. The original PCServer, which is
developed by Luigi Rizzo (luigi@iet.unipi.iet), is an MS-DOS hosted transputer to network
interface program. It works with the IServer originally written by Inmos and modified by
Luigi Rizzo. The PCServer and UNIXClient are the modified versions of these programs
which are adapted to our specific application goals.

This Technical Report introduces the general structure of these programs and contains
the information related to the use of them.

2 PCServer

The flow chart of the simplified PCSERVER is indicated in Figure 1
Other two important functions in PCSERVER are described as below:

2 PCSERVER

(START]

Initialization

Listen to port

Test net errors

is net connected 7

y

Client connection

successful 7

uit from application 7

Close connection

Initialize the port

Listen to port

escape from peserver ?

[END]

Figure 1 Flow chart of PCSERVER

2 PCSERVER

2.1

2.2

2.3

NAME

write_to_net - write an string from a MSDOS machine to a network machine.
read_from_net - read a string from a network machine to an MSDOS machine.
ncsa_net_init - initialize the port.

listen_port - listen to the port.

test_net_error - test the network error.

client_connect - wait for a connection from a network machine.

close_net - close the connection between an MSDOS machine and a network
machine.

SYNOPSIS

\#include<tcp>
\#include'glob.h"

int write_to_net(buf)
char buf{I0OBUFSIZE]

int read_to_net{)
void ncsa_net_init{()
void listen_to_port()
void test_net_error()
int client_connect ()

void close_net ()

DESCRIPTION

read_to_net() - read a string from a network machine to an MSDOS machine. It
returns 1 on success and 0 on failure. The string written is in the array liobufl

which is definited in the header file glob.h.

write_to_net() - write a stzing from an MSDOS machine to a network machine.
It returns 1 on success and 0 on failure.

nesa.net.init(} - network initializations.

listen_to_port() - listen to the TCP port. It returns 1 on success and 0 on
failure.

3 UNIXCLIENT 4

3

test_net_error() - test the network errors. If there are errors, then it displays a
message on the screen.

client_connect() - wait for the connection signal.from the network side. It re-
turns 1 on success and 0 on failure.

close_net{) - close the connection between an MSDOS machine and a network
machine.

UNIXClient

On the network machine side, several functions are provided for communication. They are
described as follow

3.1

3.2

NAME

Open_pc - open the connection between an MSDOS machine and a network
machine

Close.pc - close the connection between an MSDOS machine and a network
machine

read.from.net- read a string from an MSDOS machine to a network machine

write.to.net - write a string from a network machine to an M5SDOS machine

SYNOPSIS

\#tinclude <sys/time.h>
\#include "net.h"
\#include "glob.h"

int Open_pc(devicename)
char *devicename

int Close_pc(TheDevice)
int TheDevice

int read_from_net{t)
int t

Int write_to_net(buf,size)
char buf
int size

4 AN EXAMPLE 5

3.3 DESCRIPTION

Open_pc() attempts to open the connection between an MSDOS machine and a
network machine, The parameter devicename specifies the name of the MSDOS
machine. It returns a descriptor on success and 0 on failure.

Close_pc() closes the connection established by Open_pc. The parameter TheDe-
vice is the descriptor returned by Open_pc(). It returns 1 on success and 0 on
failure

read_from_net{) reads a string from an MSDOS machine to a network machine
within time t. If there is no string being read in before time t elapses, it will
give a message. It returns n bytes actual read in on success and 0 if time t
expires and -1 on failure.

write_to_net() attempts to write a size bytes to a MSDOS. It returns size bytes
written on success and 0 on failure.

4 An Example

A example of the specific application program here is turtle control. On the network
machine side, the flow chart of the turtle control program can be described as:

On an MSDOS side, the specific application program is the turtle_control, the flow
chart 1s given in Figure 3

PCSERVER can be accessed on the network machine donald under the directory
/home/research/lces/projects/netcomm/RCS peserver, and UNIXCLIENT under the di-
rectory /home/reseearch/lecs/projects/netcomm/RCS unixclient.

To get the files for PCSERVER side, you should make a temporary directory, use RCS
co command to check out all the files, le. type:

donald> mkdir tmp

donald> cd tmp

donald> 1ln -s /home/research/lccs/projects/netcomn/RCS_pcserver RCS
donald> co-~lccs -1 filename

then use ftp download these files to the MSDOS machine, follow the instructions in the
README file to compile the files and generate the executable file peserver;
To get the files for UNIXCLIENT, you can type:

donald> mkdir tmp

donald>cd tmp

donald>in -s /home/research/lccs/projects/netcomm/RCS_unixclient RCS
donald>make

The make command automatically checks out all the file, compiles the files and produces
a executable file called turtle. '

4 AN EXAMPLE

[START j

Open the connection

Display a menu

Select a command

Write a command to the
MSDOS machine

wait an ack form net

i No
quit 7

Yes

Close the connection

[END J

Figure 2 Flow chart of the tartle control

4 AN EXAMPLE

Specific application - the turtle control

Read a command in

Control the turtle according

to this command

Send a message to

the UNIX client

Figure 3 The flow chart of the turtle_control

5 CONCLUSION 8

5 Conclusion

The network communication software package and its usage has been described. A exam-
ple of application has been given. The text files and Makefiles for both of PCSERVER and

UNIXCLIENT are given in the appendix. It still needs to be consummated through the ap-
plications. If there are any bug being found, please send E-mail to ssz&stan.xx.swin.oz.au.

6 Acknowledgements

5. Zeng would like to thank:

Luigi Rizzo (luigi@iet.unipi.it) for providing the original PCSERVER and ISERVER
codes;

Marec DeBruyn (mdb@stan.xx.swin.oz.an) for providing the original TURTLE control
prograri;

