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ABSTRACT

- The SDEM code models systems of interacting blocks of rock using the distinct
element (DE) method. The DE method represents these systems as
discontinuums with each block acting under Newton's Laws of Motion. The
data structures associated with the DE method are comprised largely of linked
lists which make the task of obtaining performance gains through vectorisation
difficult. The systems, however, are comprised of thousands of blocks and there
is the potential of performing block interaction calculations in parallel.

This paper details the analysis and refinement steps used in implementing a
paralle! version of the SDEM. Experience has shown that the gains due to
automatic annotation of the original FORTRAN source were limited but that with
a modest amount of effort critical data dependencies may be resolved.
Satisfactory gains may then be obtained with additional manual annotation of the
source. The paper details the procedures used and presents results for Cray
Research multiprocessors. The results show that although gains due to
vectorisation are limited, the gains due to the parallel implementation are quite
satisfactory.

INTRODUCTION

Computational stress analysis is now widely used in geomechanics for back
analysis of observed rock mass behaviour around surface and underground
excavations and as a tool for excavation design in mining and civil engineering.
The distinct element (DE) method, which represents a rock mass as a
discontinuum, has been shown to be more realistic than finite element (FE) or
boundary element (BE) (continuum) methods for modelling systems such as
subsiding strata over underground coal mine excavations. However, whereas
even 3D FE and BE analyses can now be performed readily on engineering
work stations or the more powerful personal computers, the DE method
generally requires orders of magnitude more computer processing time for



analyses of comparable complexity. This has so far prevented the DE method
from being applied widely in excavation design in industry.

The DE method represents these systems as discontinuums with each block
acting under Newton's Laws of motion. The data structures associated with the
DE method are comprised largely of linked lists making the task of obtaining
performance gains through vectorisation difficult. As the systems are comprised
of thousands of blocks there is however the potential of performing block
interaction calculations in parallel.

The paper describes the parallelisation of SDEM, a representative DE stress
analysis code for the analysis of two dimensional systems of interacting, simply
deformable polygonal DEs {2][5].

THE DISTINCT ELEMENT METHOD

The DE method of stress analysis was introduced in [1] to deal with problems in
rock mechanics which could not be treated adequately by the conventional
continuum methods. The earliest DE programs (e.g. program RBM in [2])
assumed that the blocks were rigid, so that all deformations within the system
took place at the block interfaces. A second program described in [2], SDEM,
allowed modelling of three simple modes of deformation of each block - two

" - compressive and one shear mode. The DE programs which are most widely

used at present are UDEC (3] and 3DEC [4]; the blocks in each of these may be
modelled as fully deformable via internal finite difference zoning.

The main factor working against the adoption of programs based on the DE
method for routine engineering design of excavations in highly jointed rock is
the very large computer execution time which is required for analyses involving
substantial numbers of distinct elements.

Theoretical basis

Most DE programs are based on force-displacement relations describing block -
interactions and Newton's second law of motion for the response of each block
to the unbalanced forces and moments acting on it.

The normal forces developed at a point of contact between blocks are calculated
from the notional overlap of those blocks and the specified normal stiffness of
the inter-block joints. Tensile normal forces are usually not permitted, i.c. there
is no restraint placed upon opening of a contact between blocks.

Shear interactions are load-path dependent, so incremental shear forces are
calculated from the increments in shear displacement, in terms of the shear
stiffness of the joints. The maximum shear force is usually limited by a Mohr-
Coulomb or similar strength criterion.

The motion of each block under the action of gravity, external loadings and the
forces arising from contact with other blocks is determined from Newton's
second law. A damping mechanism is also included in the model to account for
dissipation of vibrational energy in the system.



The equations of motion are integrated with respect to time using a central
difference scheme to yield velocities and then integrated again to yield
displacements. The velocity-dependent damping terms have been omitted here
for simplicity, but the same form of equations hold even when damping is
included.
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Figure 1. Block Interactions
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where 1= 1,2 correspond to x and y directions respectively;
u; are the components of displacement of the block centroid;
F; are the components of non-gravitational forces acting on the
block;
g; are the components of gravitational acceleration;
m is the mass of the particular block.

Block velocities and displacements are expressed explicitly in terms of values at
the previous time step and so each may be calculated independently.



The calculated displacements are used to update the geometry of the system and
to determine new block interaction forces. These, in turn, are used in the next
time step.

This explicit time integration scheme is only conditionally stable. Physically,
the time step must be small enough so that information cannot pass between
neighbouring blocks in one step, thus justifying the assumption of the
independence of the integrated equations of motion.

SDEM

SDEM's main computational cycle is contained within the CYCLE subroutine
(Figure 2): the new positions of blocks are computed using the current forces
acting on them (MOTION); from these positions, the stresses (STRESS) and
new forces induced by blocks on their neighbours (FORD) are determined; these
steps are repeated until the system stabilises. Contact lists, or lists of the other
blocks a block is touching, are maintained to exploit locality; these data
structures are the principal source of difficulties for vectorising compilers. If the
displacement of any block is greater than some threshold then the contact lists of
all blocks are updated (UPDAT); this deals with sudden events/collapses in the
system occurring in a particular time step.

while not stable do
if update required then
call updat
do each block
call motion{ compute motion
if current block velocity > max velocity then
max velocity = current block velocity
do each block corner
if corner outside box then
call rebox

}
do each block
call stress
do each block
do each contact
call ford

Figure 2. SDEM's main computational flow

For this study a system comprised of some 3000 blocks arranged in a "brick
wall" is used. After a number of initial "settlement" cycles, approximately 200
blocks are removed and another large number of iterations, or sufficient
iterations for all motion to stop, are performed.

Two systems were used for the study. They were the “entry level” Cray
Research YMP-EL and the top of the Iine Cray Research C90. These systems
share a common architecture allowing codes to be developed on the less
expensive YMP-EL.
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(3000 blocks 2000+50000 iterations)
Figure 3. Partially settled system of blocks showing stress vectors

VECTORISATION

The FORTRAN tool suite [8] on the Cray Research systems is extensive and is a
marked advance on those available generally only a few years ago. The tool suite
runs under X Windows.

The flowview too! identifies key subroutines and subroutines which are
candidates for inlining; inlining avoids the significant overhead associated with
subroutine calls and function invocations. flowview takes as its input profile
files generated at run time by flowtrace. Figures 4 and 5 show representative
-windows from flowview.
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The FORTRAN preprocessor (fpp) was used to inline subroutines identified by
flowview. To inline these subroutines required:

- inserting COMMON statements used by inlined routines but not present
in the enclosing subroutines;

- making the names used in the COMMON statements consistent across
subroutine boundaries;

- replacing DATA statements with PARAMETER declarations or
assignments.

Results for vectorisation

The times for non-vectorised and vectorised runs are presented in Table 1; it can
be seen that there is no improvement. The conditional branching in the inner
loops is too complicated for the optimisers; however, like many older codes it
may be possible to restructure the loop bodies to reduce their complexity. This
will be the subject of further work.

Time (Sec.) System Wall Clock
unvectorised ¢f77 -Zc -W1'-I inlinesubs” 2567.887 2667.735
vectonised cf77 -Zv -W1{"'-I inlinesubs" 2588.648 2659.164

{3000 blocks 4000 iterations Cray YMP-EL)
Table 1. Times for non-vectorised and vectorised runs

PARALIELISATION
Automatic annotation

Subroutine CYCLE and the inlined subroutines it enclosed was analysed using
fpp. fpp failed to discover significant parallel regions as it was unable to resolve .
the apparently complicated indexing used in SDEM's data structures and
associated data dependencies spanning loop iterations.

Results for automatic parallelisation

The atexpert measurement tool was used to examine individual DO loops for
predicted speedup. The tool accurately predicts performance for dedicated
systems. The tool provides parallelism profiles and allows routines associated
with parallel or sequential regions to be examined and analysed interactively.

Figure 6 shows the predicted speedup for the automatically annotated program.
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Explicit annotation

The atscope annotator provides an X-windows based interactive tool for
annotating FORTRAN DO loops (Figure 8). In most cases atscope can identify
which variables are private to the loop and which are shared. The user is then
invited to identify the scope of the remaining variables.

It was discovered that it was essential to inline subroutines prior fo this analysis
as the shared/private annotations are only checked prior to inlining by fpp. The
shared/private status of variables after inlining appears to be assumed as shared.

The inlined code of the MOTION subroutine computes each block’s new
position and velocity due to the forces acting on it. It also tracks the velocity of
the most rapidly moving block and calls the REBOX subroutine if a block’s
corner moves outside its bounding box. REBOX is called infrequently.
Potentially there may be more than one processor updating the maximum
velocity variable and the bounding box size and position at any one time.

The FORD subroutine computes the accumulated forces acting on a block due
to all other contacting blocks. Potentially there may be more than one processor
updating the variables in which the forces are being accumulated.

. Major dislocation or collapse in the simulated system is indicated by the
maximum block velocity tracked within MOTION; subroutine UPDAT is called
to update the lists of contacting blocks resulting in release of list entries where
blocks are no longer contacting and addition of new list entries where new
contacts are formed. The variable "pointing" to the next empty list item may be
potentially updated by more than one processor simultaneously.

Analysis of CYCLE, drawing in part on initial work described in [9], reveals
that its major loop bodies may be made parallel by:

- tracking maximum block velocity in MOTION with a variable
local to the loop chunk and then updating the global maximum
velocity variable at the end of each loop chunk;

- recording whether a block needs to have its bounding box recomputed
then recompute the new bounding boxes after the new position of all
blocks has been determined by MOTION;

- locking the contact data structures for both interacting blocks in FORD;

- locking the free list pointer variable in UPDAT while creating new and
discarding old contact records;

Locking means that no processor may execute a section of code, or change a
data structure, guarded by a lock until it obtains the lock. Processors contend
for a lock until they are successful in obtaining it. They then execute the section
of code or change the data structure associated with the lock releasing the lock
on completion. Some care is required when it is necessary to lock two block
records as it is possible for deadlock to occur. For example block A requires
Block B but another processor has Block B already and requires Block A to
consider another interaction. In this example both processors should release the
block they have and try again; if both try again immediately then the problem
may re-occur however! The solution adopted here is to immediately release the
first lock if the second lock cannot be obtained.



while not stable do

if update required then
do parallel all blocks
do each edge
do each surrounding box in both directions
if block is contacting then
guard free list variable
get new entry
release guard
store new contact data
do parallel all blocks
release old contact entries

do parallel all blocks
compute motion
if current block velocity > local velocity then
local velocity = current block velocity
do each block corner
if corner outside box then
dorebox(block no)=true
guard
global max velocity = max( global velocity local velocity)
end guard
do parallel all blocks
if dorebox then
rebox
do parallel all blocks
compute stress
do parallel all blocks
do each contact
lock both_block records
compute force between block and contact
unlock

Figure 7. Manual annotation scheme for CYCLE

The additional locks (or guards) protecting the critical regions in Figure 7 were
added manually.

The default annotation form of do all was replaced by the do parallel to permit
the tracking of maximum block velocity as a reduction operation [7]. The
optional numchunks directive specifies how many near equal size sub ranges
the loop range is broken into for allocation as tasks to processors. The default
number of chunks is equal to the loop range incurring parallel task start up costs
for each loop cycle. For this study the number of chunks was chosen to be 32
or four times the maximum number of processors. If the number of chunks is
set equal to the number of processors then one or more processors will get less
work than the others particularly when the loop body is not executed due to a
block or blocks being deleted. If the number of chunks is set too high then more
loop start up cost is incurred, this being approximately constant for each loop
chunk started.
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Figure 8. Annotation window of atscope

Results for explicit annotation

The predicted speedup (Figure 10) for explicit annotation is very satisfactory -
being significantly better than in previous studies of the SDEM code[9][10]. The
predicted and actual speedup achieved for a 3000 block system over 11 iterations
for a Cray Research C90 is given in Table 2; constraints on account time
prevented a larger number of iterations. The system time for this problem on a
Cray Research YMP-EL is 27.945 Sec. for the sequential version and 34.054
Sec. for the parallel version giving some insight into the parallelisation
overheads.
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Figure 10 shows the general scheme used by SDEM to number blocks in a
system. Blocks 57-59 are fixed and contain the movable blocks 1-56. Blocks
32.,33,38 and 39 have been removed.

With the loop partitioning scheme used processor-1 may be responsible for the
cluster of blocks 1-21, processor-2 for 22-42 and processor-3 for 43-38. With
this workload allocation several things may occur:

- having contended for block 57 simultaneously all processors may
reach the end of their first layer of blocks and contend for block 58;

- processor-2 appears to have less work than processor-1 but may be
busier when blocks fall into the excavation.

57 21 58
28
35
42
49

56

excavation

59

Figure 10. SDEM Block numbering scheme

Table 2 shows the speedup predicted by azexpert,- actual speedup relative to the
time for the unannotated sequential version of the program, wall clock time,
processor time and the number of lock contentions for three different schemes:

i)  default loop partitioning with no record locking;
ii) default loop partitioning scheme described above with record locking;
iii) random mapping of processors to blocks.

Case (i) is simply to determine the underlying speedup with no contention on
Jocks. This case may be used to estimate the degradation in performance due to
interference by other tasks on the non-dedicated system.

For case (ii) and two processors there has been major contention with run away
processor time as processors repeatedly attempt to acquire locks. This situation
is highly undesirable and usually unpredictable. The use of large blocks to
contain the moving blocks significantly increases the probability of contention.
Most internal blocks will have approximately four contacting blocks. The
boundary blocks may have hundreds of contacting blocks.




Processors | Speedup Wall System Lock Speedup
ref. Seq. (Sec.) (Sec.) Conflicts | n*(T1/Tn)
Sequential program with no annotation
1 1 | 43 | 43
atexpert predicted on C90
1 0.8 5.6
2 L5 3.0
4 2.8 1.6
8 5.6 0.8
Manually annotated version with no locks
1 1.0 4.3 4.3 0 1.0
2 1.4 3.0 4.3 0 2.0
4 1.8 2.5 4.3 0 3.9
3 2.0 2.1 4.4 0 7.8
Default mapping of blocks in clusters
1 0.8 5.3 3.2 2 1.0
2 0.1 29.9 57.9 | 7194730 0.2
4 1.6 2.8 5.4 6729 3.9
8 1.8 2.4 5.5 4551 7.6
Random mapping of blocks using lookup table
1 0.8 5.4 5.2 1 1.0
2 1.1 3.9 5.4 15586 1.9
4 1.4 3.0 5.4 7278 3.9
8 1.6 2.7 6.1 31159 6.8

(3000 blocks 11 iterations C90)
Table 2. Times for manually annotated SDEM

In case (iii) the sequential block access pattern was circumvented by constructing
a look up table whereby the next block to be processed was selected at random
for any given loop variable value. The amount of contention is lower but still
significant. This is due to the still significant probability of processors requiring
the same large fixed boundary block simuitaneousty. The speedup is lower than
the underlying speedup of case (i) probably because of memory accessing
patterns.

The system was carrying a significant timeshare load violating the atexpert
assumption of a dedicated system. Atexpert also appears not to model locks
within loop bodies although it does deal with loop work load imbalance caused
by conditional execution within loops. It may be assumed that the speedup for
case (i) would be close to the atexpert prediction if the system was dedicated to
this application therefore the degradation of case (ii) and (iii) may be compared
with case (i) . As the total machine time does not grow quickly from one to eight
processors it may be assumed that the load balance is reasonable. The upper
bound or ideal speedup can be computed using n*(T)/Ty) where n is the number
of processors and Ty and Ty are the total machine time for 1 and n processors
respectively. This however assumes the code is perfectly parallel.



CONCLUSIONS

The analysis and initial parallelisation of SDEM was made difficult by the
complicated data structures. The major data structure is contained in a single
integer/real vector with several consecutive elements of the vector constituting a
record describing a block. Some of the elements point in turn to other records of
contact blocks and all fields are referred to numerically rather than symbolically.
It is not surprising that the annotators and vectorisers have some difficulty
extracting performance gains.

The test cases typically used by SDEM consist of many layers of blocks
contained by large fixed blocks at either end spanning all layers (Figure 3). The
systematic numbering of blocks leads to significant contention for exclusive
access to the containing fixed blocks. A random mapping of blocks to
processors reduced the probability of contention and the subsequent generally
unpredictable run away of processor time. This occurred as processors actively
attempted to obtain the block records they need by repeatedly reading the lock
variable. SDEM is currently being modified to subdivide large fixed blocks into
blocks of nearly average size for the system being considered. It is not possible
to subdivide blocks internal to the system which are not fixed. Therefore a
stratum of larger blocks overlayed by or overlaying a stratum of smaller blocks
may continue to cause some difficulty.

Block systems may be very active in some regions as collapses occur and the
clustering effect while perhaps minimising lock contention may increase the
prospect of work imbalance of processors responsible for low versus high
activity regions. Clustering is likely however to reduce communication overhead
when supporting this class of problem on collections of high-performance work
stations; further work is being done in this area. The strategy of a random
mapping of blocks to processors, however, appears to offer some advantages
with shared memory multiprocessors.

Experience has shown that the gains due to automatic annotation of the original
FORTRAN source were limited but that with a modest amount of effort, critical -
data dependencies may be resolved using additional manual annotation. The
Cray Research FORTRAN tool set significantly eased the task.
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