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Abstract

The SISAL implicit parallel programming language
has been implementied on a number of platforms rang-
ing from scieniific workstations through medium cost
mulliprocessors to high end parallel super computers
and recently massively parallel processors. No changes
to source code are required to oblain good performance
across these platforms and i has been claimed that
SISAL exhibils similar uniprocessor performance to
FORTRAN while providing significant speedup com-
pared to FORTRAN on mulliprocessors.

The Australian Region Weather Prediction Model
is an experimental FORTRAN code which uses a vari-
able resolution nesting scheme o provide higher res-
olution prediclions over important areas of the Aus-
tralian continent such as cities and coastal fisheries.
In this preliminary study we explove the performance
of the SISAL implicit parallel programming language
on e significant scienlific epplication by recoding the
kernel subroutine of the Model in SISAL. Resulis are
presented for a low end SPARC worksiation, an entry
level Cray Y-MP EL and a high end Cray C90.

1 Introduction

The Australian Region Weather Prediction Model
(ARPE) was developed by the Australian Bureau
of Meteorology Research Centre [1] for short-term
weather forecasting up to 36 hours. ARPE draws upon
the work of Arakawa, Lamb and Miyakoda [2][3] for its
formulation and is intended to be a production code
for the prediction of weather over the Australian re-
gion. This paper will concentrate on the implementa-
tion of the core subroutine of the ARPE in the SISAL
language and readers are directed to reference [1] for a
detailed description of the model. The work is part of
a continuing long term international study of SISAL

being conducted in collaboration with the Lawrence
Livermore National Laboratory.

2 The SISAL language

SISAL is a functional language for numerical com-
putation [4]. The developers of SISAL have been able
to demonstrate performance comparable with FOR-
TRAN on a number of computing platforms including
the Cray Research multiprocessors [5].

SISAL prohibits by design the ability to express
constructions which lead to the side effects that make
compilation for parallel computer systems extremely
difficult. Examples of side effects inclnde those which
oceur through the COMMON and EQUIVALENCE
statements in FORTRAN and SISAL has neither of
these constructs. SISAL is block structured and su-
perficially resembles a number of modern languages.
The single assignment nature of SISAL means vari-
ables have values assigned to them once. This requires
some departure from a common style of programming
where variables are re-used in programs sometimes for
unrelated computations. Translation of FORTRAN
programs into SISAL is not necessarily a simple pro-
cess and can be complicated significantly if the pro-
gram being re-expressed has been the subject of undis-
ciplined maintenance or construction. This may be
compounded if there is no original formulation of the
mathematical model available. Direct transliteration
of well written FORTRAN code can yield satisfactory
results.

Most comparative studies to date have involved
the complete recoding of an application in SISAL. In
this study the mixed language facility of the current
(V12.9.1) Optimising SISAL Compiler is used with an
initial core subroutine being recoded.



3 The weather prediction model

The Weather Prediction Model code (ARPE} con-
sists of some 10,000 lines of FORTRAN source code.
{is pre-processors and ancillary code constitute per-
haps another 5,000 lines of code. The code is gen-
erally well written with disciplined use of COMMON
and EQUIVALENCE statements. The kernel routines
make almost no use of subroutines although the struc-
ture of the code suggests they should be used. ARPE
then is a reasonable example of a code where inlin-
ing has occurred from the outset in an attempt to
obtain improved performance. It predates modern
FORTRAN pre-processors which automatically inline
selected subroutines.

4 FORTRAN

The Cray Research FORTRAN tool suite used [6]
runs under X Windows and is a marked advance on
those generally available only a few years ago. The
tool set comprises: a profiler (flowview) which iden-
tifies key subroutines and subroutines which are can-
didates for inlining; a pre-processor which performs
inlining and aitempts to identify and annotate paral-
lel regions; an assistant for explicit parallel annotation
(atscope); and a parallelism estimator {atexpert).

Rouline Name Tot Thine Cails Avg Time Percentage Accumn%
INNER2 2526401 9 2.80E+400 42.24 42.24
LIE 1.08E+401 24 4.538-01 18.33 &0.47
PHYS 6. 188400 & 1.23E400 10.31 70,78
LIEBIG 5.6 E400 i2 1.68B-01 9.42 a0.21
LIEH 5.50E4+00 12 4.58H-01 .23 89.44
LIEBH 1.60E400 k] 1.88E-G1 2.84 92.28
SEMIMP 1.48E+4-00 ] 1.64E-61 2.48 94.76
VMODES 1.08E+406 4 2.71B-01 1.82 96.87
INNBER %.56H-01 2 1.06E-G1 1.60 98.18
DADADJ 4.40E-01 11470 3.84E-05 0.74 98.51
LAMLL 1.438.0F 2669 5.501E-05 0.24 98.15

Table 1: Execution Profile (5 iterations Y-MP EL)

The original program was profiled using flowtrace
to identify the core subroutines. For reasons already
stated flowtrace did not identify any subroutines eh-
gible for inlining.

The INNERZ2 subroutine was chosen as the starting
point for this study but as it represents only 42% of
the run time contribution no significant speedup is to
be expected. The LIE and PHYS subroutines will
be translated in due course. Our interest here is to
confirm that the run time is not adversely affected
and that underlying concurrency is uncovered by the
0SC compiler.
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Figure 1: speedup of INNERZ2 predicted by atexpert

4.1 Resulis for FORTRAN

The automatic parallel annotator was used to anno-
tate the INNER2 subroutine. No attempt was made to
resolve data dependencies in the original FORTRAN
in thizs part of the study although this is intended later.
The atexpert measurement tool was used to examine
individual DO loops for predicted speedup. Atexpert
is claimed to accurately predict performance for ded-
icated systems. The tool provides parallelism profiles
and allows routines associated with parallel or sequen-
tial regions to be examined and analysed interactively.

It can be seen in Figure 1 that fpp failed to discover
significant parallel regions in INNERZ.

5 SISAL

é‘.‘l“m}\/ﬁxed language compilation

+ The osc compiler compiles and links modules writ-
ten in FORTRAN and SISAL. In this FORTRAN is
invoking a SISAL function. To do this the original IN-
NER2 subroutine was replaced by a FORTRAN shell,
The shell initialises the array descriptors required by
SISAL and calls the replacement INNER2 written in
SISAL [7].

Fortunately the array descriptors may be re-used
for other arrays which have an identical shape. The
ability to specify an offset for returned data structures
could be used to avoid the often clumsy process of
dealing with boundary values. The current descriptor
mechanism unfortunately sets to zero the elements not
written to.

5.2 The transliteration process
Although the mathematical formulation was avail-

able it did not provide significant assistance in the
transliteration process. The INNER2 subroutine was



directly transliterated into SISAL with no restructur-
ing being attempted. A number of unintentional out
of bound accesses were discovered in the FORTRAN
program during this {ransliteration.

The transliteration process was significanily com-
plicated by the size of the INNER2 subroutine. While
the SISAL debugger (sdbx) gave some assistance there
were many cases where sdbx was not able to deter-
mine the original source line causing the error. Other
minor difficulties which would case irritation for pro-
grammers used to imperative styles also arose. In this
case even though the author has a reasonable under-
standing of SISAL the passage of time since writing
his previous SISAL program still led him to be caught
by the following:

for initial

ki=0;
while k < kz repeat
k:= old k +1;

Most programmers will expect k to be 1 when the
variable u is accessed on the first loop iteration rather
than zero as stated by the for initial clause.

Transliteration and debugging took approximately
35 hours.

5.3 Results for SISAL

The results for one call of INNER2 in FORTRAN
and SISAL are shown in Table 2. In their current
form both versions are several hundred lines long and
the interleaving of initialisation, the calculation of pri-
mary meteorclogical variables and common working
variables makes their inner workings difficult to com-
prehend (Appendices).

Language Spare EL {l-cpu} C90 (l-cpu) CB0 {4-cpu)
777 -0 6,640.7

<f7T -Zp 3.0140.48 0,294-8.01

o8C 0 73410 & 5T+0.25 T.0840.01 [ LRGN

Table 2: Run Times for FORTRAN and SISAL

It may be noted that although the run times on
the SPARC workstation for FORTRAN and SISAL
are comparable performance on the Cray systems is
not as good. It is believed that the fransliteration
resulted in a SISAL style which caused difficulty for
the SISAL optimisers; this is currently being resolved.

6 Conclusions

A modest amount of difficulty was encountered in
the transliteration of the kernel INNER2 subroutine
into SISAL. The run time for this first SISAL imple-
mentation relative to FORTRAN is acceptable. Good
speedup has been achieved with the SISAL version’s
runtime falling below that for FORTRAN at four pro-
cessors, GGiven this promising start the study will
now refine the version of INNER2 and move to the
other dominant kernel subroutines LIE and PHYS.
The PHYS subroutine is dominated by conditionally
executed code as are many other weather codes. It is
anticipated that this will produce a more demanding
test for SISAL.
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Appendices
INNER2.F

The original code of INNER2 has been stripped out
and replaced with descriptor initialisation and call to
sinner2,

SUBROUTINE INNER2

C

< INNER2 CALCULATES THE RH SIDES OF THE MAIN SEMI-
IMPLICIT EQUATIONS

C

include 'arpe.inc’
PARAMETER

+ (

+  I2=I141, [3=0142, 1151143, ILM=[L-1, ILN=1L-2

4+ J2=0141, I3=T142, Ja=Fi48, ILM=IL-1, ILN=JL-2

+  KZM1=KZ-1, KZP1=KZ41

+ | CP=1.00464E7, G=980.6, HL=2,501E10, PBAR=1.56, R=2.8TE6
+ LRV=4.61E46

+ )

Ie]
COMMON
+  /DTDS/ DT,DS,DTELDS1DSI2,DSSQ, TDSLHDTDS,BET65,DTMAX
+ J/INTGRL/ PRECP, PRECTA, CKS$, BEKE, PB, PS.
BAR, TRHAT, VROMG
+ JETAUS  KTAU

COMMON

JCDIFF/ CDIFP(IL,JL)
JCORPS  CORPUL,IL)
J/DNORM/ DNORM({KZ)
JDQ)  DGIKEZ

SDTODQ, DTODQRE)
JEM/  EM(IL,IL}

JEMSQ/ BMSQ(IL,JL)
JEMSQI/ BEMSQI(IL,JL)
JGAMAS GAMA{KZ)
JOMEGA/ OMEGA{KZ,IL,IL)
/PHL  PBIKZ,IL,JL)

WPS)  PSM(IL,JL), PS(IL,JL), PSP(IL,JL)
s Q(KZ)

JQPHS QPH(KZ)

b b bbb b b



o+ /RM/  RMM(KZ,IL,JL), RM(KZ,IL,JL), RMP{KZ,IL,JL)
+ JRTBAR/ RTBAR{KEZ)
+ L/SIGDOT/ SIGDOTF(KE,IL,ILY
+ WeV PMKZ,IL, L), TIRZ,IL, L), TP(KE,H, L}
+ J/TBAR/ TBAR{KZ)
+ ST UM(KZ,iL,JL}, U{KZ,IL,IL), UP{KZ,IL,JL)
+ W7 VM{KZ,IL, L), VK215, L), VP(KZ,IL,IL)
+ M2 TS(L,IL)
<
REAL G

integer ik{100),0j{F00} ikij{IC0)
DIMENSION RMPR({KZ,IL,JL}
DIMENSION TPLEV(KZ),DTFDQ(KEZ), WVEL(KZ)

DIMENSION VATIVU(KZP1),VADV V(KZP1),VADVRM{KZP1)
DATA VADVU/KZP1%0./,VADVY/KZP1%0./, VADVRM/KZP1%0./

DATA OMG /0.0 /

<
< BISAL array descriptora
¢ one dimension

ik{1)=0

ik(2)=0

ik{3)=0

ik{4)=1
ik({5)=ks
ik{6)=1
ik({T)=kz
ik(8)=1

c

¢ two dimensions
iij{1)=0
iij{2)m0
iij{3)=0

si(my=i1
iij{10)=ik

i#{13)=1

<

¢ ihree dimensions
ikij(1)=0
ikij{2)=0
ikij(a)=0

ikij{4)=1
ikij{8) ks
ikij{8)=1
ikij{?)=k=
ikij{8)=1

ikij{$)=it
ikij(10)=il
ikij{11)#=il
ikij{12)amil
ikij(13}=

ikij{14)=it
ikij(153 =k
ikij{16}=j1
ikij{17)emik
ikii(39}=1

call simner2{
<+dt,ds,dsi,dei2, tdsi,dtmax,cks, eke, pe, pakar, trhat, vromg,
dektan,
+ediff,iij,
+eorpiij,
+dnorm,ik,
+dq,ik,
+-dtodq,ik,
~+em iij,
+emsq,iij,
“+emagi,iij,
4 gama,ik,
+omega,ik,
+phi, ki,
+pem, iij,ps,iij,
+q,ik,
+aphiik,
“rmm, ikij,em, ikij,rmp ikij,
rtbar,ik,
+rigdot,ikij,
+tm ikij, 4,ikij, tp,ikij,
“ibarik,
+um, ikij,w, ikii,op,ikii,
+vm, ikijv, ikij,vp.ikii,
+us ,idj
c returne
e ikij,
+sigdot,ikij,
+up.ikif,
+new tp,ikij,
+aew tmp,ikif,
+p.ikij,
peke,
+cka,
4trhat,

Fpe,
“+psbar,
+vmrong)

RETURN
END

inner2.sis

define sinnerd
% G.K. Bgan 1993

type OneDleal = arrayfreal];
type TwoDReal = arrayiOuneDReal];
type ThreeDReal = array[FwaDReal];

global kog{a:real returas real)

global sqrt{a:real returns real)
function boundary'cel(kiE,iL,j,j jlinteger returns boolean)
(G = it)—{i = il)—{i = j1)—{i = i}})

end funciion

function divergence sums{
i,j,k®,31,1Lj1 jlinteger; dsiireal;
dq:uneDRealju,v,t:Threelfleal;emag:Twol i asl
Teturos
real, real, real, Onebreal, OneDReal,
OneDReal, OneDRcal, OneDReal)
for initiak
supny:m0.0;
aamv:=0.0;
ammx:=0.0;
zemly
while {k < kz) repeat
k:zold k 41;
sumu, sumv, samx = (
if boundary celi(i,il,il,j,j1,jl} then
old sumu, old sumv, old aumx
elae
old snmu+dqfk]*{ulici+1,j]-ulk,i-1,j]
Hvlleiil v ki bl v b 1w i 1,542]),
okd sumv4dglk]* (v jl4ufk,i,ji+1]
<k 3 jendl i 1] Fvlich i+ Lev [koig-1]),
old sumsddq[k]*(ulk,ijl-ulk,i-1,j]4-vk, l..\]-V[k i5-11)
end if)
retarns
value of sumu
value of sumwv
value of sumx
array of suma
atray of aumy
srray of sumx
array of {~emaq{i,j]*somx*dai}
array of tk,i,j]
end for
end function

function sinnerd{

d1,dx,dei,dsi2 tdsi,dtmax,cks, eke, pe, pshar, trhat, vromg:real;

ktausinteger;
ediff: TwoDReal;
corp:TweDReal;
dnorm:OnelReal;
dg:OneDReal;
diodq:Onelifeal;
cm:TwoldReals
emaq:TwoDReal;
emasgi: TweDReal;
goma:OneDReal;
omega:OnelDReal;
phi:ThreeDResl;
psa, ps:TwoeDReal;
q:OneDReal;
qph:OneDReal;
rmen, o, rmpiThreeDReal;
ribar:CaneDReal;
tm, {, tp:ThreeDReal;
thaniOnellRenl;
wim, @, apiThreeDReal;
vm, v, vp:ThreeDReal;
#s:TwolDReal

returas
ThreeDReal, Hnew'rm
ThreeDReal,%onew sigdot
ThreeDReal, Fonew up
ThreeDReal,%new tp
ThreeDReal, %new tmp
ThreeDReal,%enew vp
real,%new ke
real, %onew cks
real,%onew'trhal
real, %onew’'pe
real, %enew pabar
real%sew vinyong

)

iet



Jloszrjl-F;

kzemli=ke-1;
kapb:mha+1;
cprirl .00464eT;
gr=980.6;
hlim2.501e10;
pbari=1.c6;
r=3.8Te6;
rvizm4.6le+6;

ditrss
if (kiam = 1} then
dt

clae
2.0 *dt
end if;

new'tm, TmpriaE
for k in 1,kz crosa i in i1} crose j in j1,j1
t'rm,
rmpros
i (xmk,i,j] > 0.8) then
rm i i),
rmk,i,j] / (peliil+pbar)
else
0.0,
0.0
end if
returans
arvay of L'rm
array of t'rmpr
end for;

dmonpr=e.0;
emonpi=G.0;

new'ip, new' up, new’'vp, new IMp, new sigdot,
new'eke, new’cks, new'trhat,

new ' pe, xew prboar, new romgw

for i im i3] cross } in j1,j1

peijcimpafi f]bpbar
paijoiia .0/ psijc;
corfl,corf2:=

if boundary celi(i,i1,il,j,j1,j1} then
0.0,0.0

elae
0.128*{corp[ijl4corpli-41,il},
0.125%{corpliit+eorpliit i)

end if;

emthad = emsqfi.jj*psijci™tdsi;
em2ips 1= emibad®psijei®r [/ cp;

emhbadl,emiadd:=

if bounndary celllii1,il,},i1,§1) then
0.0,0.0

elge
0.25%tdei* (em i,j[+em+1,i]),
9.25%tdsi* (em[i,j]demfi,j41])

end if;

amonpemonp; % 0.0 then cyele’emonp
bmonpiztdmonp; % 0.0 then cycle'dmonp

cycle’dmonp, fmonp:i=

if boundary ¢ell(i,il,il,},j1,j1) thexn
0.0,0.0

elae
em[i+}.i)/ (psfid4 1]+ pbar),
emli,j+1]/ (paii)i+1]+pbar)

end if;

new bmonp:=

= i2) & ({3 = j1)~{j = ji))) then
em{i,j|*peijci

clae
cycle’dmonp

end if;

new'amonp o
M= 2) & ({ = j1)—( = 1)) thea

0.25%(new bmonpHtmonptemli-1,i] / {psfi-1,i[+pbar)

demfi-1,j41] / (psfi-1,i414pbar})
¢lae

emonp
end i}

tmonp:=new bmounp+cycle’dmonp;
cycle’emonp, Rew cmonp =
if boundary celi{i,i1,il,j,j1.j1} then

%
o

%

h)
%
Yo

&

%

0.25% cmonp-pemiidgl,jdi]/{pafidtjdiidpbar)dfmonp),
0.25% {cmonpFtemli+t,i-1] / {psli+i,i-1]4pbar}
+emlii-1] f (pelid-tl4+pbar)}

end i}

pie, pami=

if boundary ceH(i,i1,i1,j,j1,ji) then
0.0, 0.0

else
0.5%(palii]+pefi+1,i})+pbar,
0.5%(psfii]l+pafii4 1)) +pbax

end if;

extra variableas for cvalusting p.grad terms logarithmically

permi, parmj, psidi, paldj, zapdi, zepdj, emuded, emvdai, emrdain
if boundary celi(i ik il,j, i1, i) then
.0, 0.0, 0.6, 8.0, 0.0, 6.6, 0.0, 0.6, 0.9
eine
pafi+1,jl-ps[if]-pem[i+1 ]+ pemiijl,
palid+1l-psfiil-pamlij+2]+pamiijl,
log(pslid1,j]4 pbar)-log(paijc),
log{psli.i+1]+pbar)-log(peiic),
phar®(sa[i+1,jj-z2 i),
phar*(zali,i+1]-zsli.]}).
emuqfi,j]/{4.0%ds*pecy,
emeqfi,j]/{4.0%ds*pen},
exasqfi,jl/{4.0%ds¥peijc}
end ify

compute total divergence

snmu, sumv, samx, vadvu, vadvv, vadvrm, wvel, ifleviz
divergence'sumali,i, k=,i1,11,i1,jl,dsi,dq,n,v,t,emeq);

sigdot’k:=
for k in 1,kz
tetutrans array of (
if {k = 1} then
0.0
clse
wvelfk-1f-qph[k-1]*wvei[ks]
end if)
end for;

vadvrm’'k, vadvu'k, vadvvic=
for Fin 1,k%
=i
t'vadvrim, t'vadvu, t"vadvv =
if {1 = kz) then
0.6, 6.0, 0.0
eloe
emzdsi*{gpb{ll]*sumx-vadvrm|il]}
*(new' rmilli,i}+new rmili,i}
+2.0%aqrt (new rm[ii,i,j] new ' rm[Lii])},
emudsi*{gph[li*sumu-vadvuill])
*(ufiniilulligg
emvdsi*{gphili] *sumv.vadvvill])
“(v[a A vinbID
end if
returne
array of t'vadvim
array of t'vadvu
array of t"vadvv
end for;

set up temperature difference terma

dsfdgi=
for k in 1, kx
Teturns array of
if ((k = 1)—bonndary cell{i,il,il,j,jl,j1}) then
o.n
else
if (k = kz) then
dimax*(iflev[kz}-tflev[kzm1])+diodglk=]

elae
0.5%(iflev [k 1f-1flevik-1]) / dg[k]4-dtedg[k]
end if
end if)
end for;

PAmue, PRIMUW, PSINUN, PSINYE, PEIAL, PEINVE, PHNVE, DAMYE, DSMVW, psmyvise
if ({j = j2)-~boundary celi(i,ililj,jl,jl)} them
4.0, 0.9, 0.0, 0.9, &.0, 0.0, 8.0, .0, 0.0, 0.0
elae
if (i = tlm) then
1.5%pam{i},j]-0.5*pamiilm,j]+pbar
elae
0.5 (pemi+1,j]+pemli+2,i) 4+ pbar
end if,

-5%*(psmfi-1,j}+ psmfi,jl)+pbar,
S¥(pemfij+ii+pamfi+1,i41])+pbar,
¥ (pumfij-1]+pemfi+1 j-1]} 5 plar,
S {pumlijl4pemfid it eber,

if (J = ilm} then

1.5%pemii,ji]-6.5% pamii,jim]4 phar
elae

e 5%(psmlij+1]+pemii+2]}+pbar
end if,



AR

RARRSR

HRAR

%

%

0.5% (pamlii-1l+pemli i)+ phar,
6.5* (pemfid 1 i+ psmfi+r,i+ i)+ pdar,
6.5% (pomli-1,ij+pem[i-1,j+1]}+pbar,
6.5 (pemfijl+psmlij+1])+pbar

end ify

commence vertical fevel loop
ip'k, up'k, vp'k, rmp’k, omega’k,
new'eke, new'ppe, new pvromg, new ptrhat:=

for k inm 1,kz

compute verileal advection contribs, in rhs of mim. = na.

compute horizontal advection terms associated with rhs of mtm.

up'ka=
i €{§ = j2)—boundaryceil(i,i1,ik,},j1,j1)} then
wpici]
else
et
vatli=
if (k = kz) then
0.0 %gke

elae
-{vadvufk+il-vadvaik])/dqix]
end if;
nhi=alkd,j]duik,i-1,jl;
unerzmulk,d,j]+uik,ii-1);
wdzasn kil uik, it 1]
[Ny
ki) 4 vik,i,in1d;
vik i je 1] vii,id 1,52
versv]k,i,j]+v[k,id1,§);
hadvir=emhadl™ { ud*wd*cycle’dmonp-ub*ub*new bmonp
Fre*ve*cycle’emonprnc*vet new cmonyp);

compnte pressure gradient terms on rhs of mim. = ns.
logarithmically

pgli= ({pse-pban)®{phifk,i+1,jl-philk,ii)
+znpdicribar{ki*parmi
Fpectpaldi*( roas® (Akit1 fiHtiiiD
4rtbar{kf))¥dei;
cilizm corfl™{vc4ve);
ubdiffi=
if (dmorm[Rk] = 0.0) thex
o0
lae
cdifdfi,j]*dmorm[k]*dsi2
*f wm[k,i+1,i]/psmuetumlk,i-l,jl/prmuw
+um[k.i,i+1]/pamundumlk,ij-1]/psmus
~-4.0%um ki) /pamu )*pemn
end if
in
(ct14vati-hadvi-pgifabditf)*dttumiic,i,j]
end Iet
end if;

t'rmp'k, tp'k, omega'ki=

if ({i = i2)—boundary'cell{i,il,iLj,i1.jl)) then
rmplk,i,if,
volk,ii),
omega[k]

clae

caltulate horizontal advection term in the temp, = ation

et
weelavim
if (k > 1} then
9.5%(wvei[k-1]4wvel[k])

ekae

a.5*wvelf1]
end if;
thadvla=  ulk,i]* (i1, .5
o [he,d-1,5] * (e [, 1,37 -t [Xede 1)) g
thadv2im  v[k,i,i]® (4[k,ii41]-t{k,0,i])
Ak i 114l 14003 - 10)5
thadviz emthad?*(thadvitihadv2);
tfull:z tflev[k]4-tbar[k];
phadvliz u[kd f]*(pefit1il-psfiil)
+aulk,ie i1 (pafi.il-pali-Lail)
phadvai=  wikkil*€psfiitil-peliil}
Hvk,ii-11*{pa[i,i]-pslii-1]);
tomgrs emips¥ (phadvi-fphadv2);
tprtari= t'omg¥ifull;
omgrm wvelavtglk]*psijc*tomg®cp / 13
gamapri {r / cp)*ifull / qfk]-diidq(k};
thdiif:=
if (doorm[k] = 0.0) then

0.6

eise
cdifffi,j]*dnorm[k]*dsi2
*{ to [ il vmfk,ie1 5]
+tm ki i+ 14 rm ki j-1)-4.0%tm [k i)
and if;

tp'ki= (tpstar-thadv4ihdiff
+{wvelav®gamapriq[k]*difdg[k]* wvellkz]}*paijci
~(weelav*gamalk]+qlk]*dted glki* wveilke]) / phar
yrdittmiioiils

k3 moisture

%
rmetzmrmprfk,d i+ rmprlk i1,k
rmwsmrmprik,d,j]Frmprlk,i-1,il;
rmu:w=rmpr[k,ii]Frmprik,i i+ 1l
rmssrmpt{kd,i]Frmprik,ij-1];
rmvad:z
if {k = kz) then

0.0 Yoghke

elae

~(vadvrmik-+1}-vadvrmik]) / defk}

end if}

rmbad:s-cmsg[i,jf*edai® { ki, *rme-u[k,i-1,j}*rmw

+eiki,il*rmuovik,i,j-1]"rms};

rmme = rmmiki+1,ii/ (psmli41 jl4pbas);

rmmw @ rmamik,i-1,i]/(pamii-1,i]4-pbard;

rmma = rmm[k,i,j+3]/{psm{i,j+1}4pbar);

= rmm[k,ij1]/(psmB,i- 1] +pbar);

= rmmfk,iilf (pemlil+ prar);

rmhdif:=

H {dnormikf = 0.0) then

else
cdififi,i}*dnormfx]*dsi2
*{(rmmetrmmw-drmmn+rmms-4.0%rmmij}
*(psmlijl+prarn)
end if;
t'rmp ki rmmfk,ijl4dtt*{rmhad $rmvad+4 rmhdif);

% amppress negative mixing ratios
%o
Tmp k=
if {¢'tmp'k  1.0B-208} then
0.6

elue
trmp'k
end if
in
mmpk,
tp'k,
omg
end lot
end if;
%
vp'k,
new’eke'k,
new'ppe’k,
new pvromgk:=
i ((i = i2)—boundsry celi(i,i1,il,3,j1,jt}) then
vpliiil,
0.0, Poeke
0.0, %ppe
0.0 Wopvromg
elee

et
uasmuik,i-1,jj4+u[ki-Lit+1k
werm o [biLil4ulk,di+ 1]
varzvikd i+ vkin1,50
smvik,d i ki 3-15;
=v[k,iil+v[k.i+1,3];
vizzv ki34 [,k 4]

% calculate v velacity component lagarithmically

cl2i=-corid*{watne);
hadvZiw embad2*( ue*ve*cycle’emonp-ua*va*new'amonp
+vi*vf*fmonp-vb*vb*new bmonp);
pg2:= ((pen-pbar)*(phifk.i,j+1]-philkijl}
pauspdj-ribar]k]*psrmj
+pon®psldj® ( r*0.8% (tfk,ij41]4t ki)
Fribarfk]))*dsi;
vhdiffm
if (dnormf[k] = 0.0) then
0.0
elae
cditf]i,i]*dmorm{k]*dsiz
*( velk,i$1,j]/psmvetvmik,i-t,j]/psmvw
+vem[kij+1}/psmvn4vim|k,ij-11/pemve
-4.0*vm[k,i,j]/psmv)*pemv
end ify
watlm
if (k = ku} then
0.0 Y%gke
cise
w{vadvvik41]evadvv[k])/dq[k]
end if;
t'vpim (ci24vald-hadv2-pg24 vbdiffy*dt-fvmlk,i,j|

calculate contributions 1o integrals

"ER

in

t'vp,
daikf*psijei® (ulkij] afkii+ vk elkiil),
tilevik]*dq]k],
{omegak*omega'k}*dq[k]
end lct
end if;
retarns
array of tp'k
array of up'k
array of vp'k
arzay of trmp'k
array of omega'k



valuc of sum {dq[k]*psijci*(up k*up ktvp k*vp'k)) Fnew'eke'k
value of sum (tflev[kj*dg[k]} %new ppe’k

value of sum (omega'k®omega'k*dq(k]) Fenew pvromgTk

value of sum (' rmp k*dg[k]}%pirhat

end for; W% k

t'new’ptrhat ;= new ptrhattamaqili,jf:
t'new’epe 1= new'ppe*prijicYemaqili,jl;
t'new'viomg 1= new pyvromg*emsqifij};

returns
array of tp'k
array of up'k
array of vp'k
array of rmp'k
array of sigdet’k
vslue of sum new'eke
value of sum (2maqifi,j]) Bonew'cks
value of sum (¢ new ptrhat®emsqili,j]}
value of sum t'new epe
value of sum ({psijc-0.588e6)*emaqifi,i]}) % pebar
value of sum t'new vromg

end for % i,j

in

Bew K,

new rigdot,

new'ap,

new'tp,

new'rmp,

new'vp,

new eke,

new cks,

new irhat,

new pe,

new pebar,

new' ramg

end ket
exd function
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