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Abstract:

There are a number of approaches to the application of subspace techniques for
solving spectral estimation problems. These approaches are derived from the
covariance matrix which is constructed from incoming data. The covariance matrix
can be broken down through the use of appropriate matrix properties and eigen-
decomposition technigues into two subspaces. The performance of three traditional
algorithms which incorporate subspace techniques in the direction of the arrival are
evaluatedunder white and 1/f noise conditions. 1/f noise is chosen because it is
typical of the EEG signals. Simulation resultssuggest that the Johnson and DeGraaf
direction finding algorithm performs best under both noise environments.
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ABSTRACT

There are a number of approaches to the application of
subspace techniques for solving spectral estimation problems.
These approaches are derived from the covariance mafrix
which is constructed from incoming data, The covariance
matrix can be broken down through the use of appropriate
matrix properties and eigen-decomposition techniques into two
subspaces. The performance of three traditonal algorithms
which incorpotate subspace techniques in direction of arrival
are evaluated under both white and 1/f noise conditions. 1/
noise is chosen becasuse it is typical of the EEG signals.
Simulation results suggest that the Johnson and DeGraafl
direction finding algorithm performs best under both noise
envirotments.

A typical sample of EEG data was used to evaluate the
performance of the three algorithms, The Johnson and DeGraaf
algorithm gives estimates for the direction of the signal which
approximately agree with the anatomical locations of possible
electrocortical gererators.

INTRODUCTION

There are a number of approaches to the application of
subspace techniques for solving spectral estimation problems.
These approaches are derived from the covariance matrix
which is constructed from incoming signal data. The
covariance matrix can be broken down through the use of
appropriste matrix properties and eigen-decompasition
techniques into two subspaces, the signal subspace and a noise
subspace [1]-{5].

The work described here applies subspace techniques to
the processing of electroencephalogram (EEG) signals,
microvolt potentials generated by sources within the brain and
measured at the surface of the scalp. The aim is the estimation
of the position of electrocortical generators in the brain.

This paper consists of five sections. Section one reviews
some of the. current and past work in the area of subspace
techniques for solving spectral estimation problems. Section
two describes the area of application to both EEG and driven
EEG. Section three describes the results of simulations with
the subspace algorithms and a discussion of the limitations of
these algorithms under the conditions outlined. In this section
the algorithms are compared under white Gaussian noise and
coloured noise conditions. Section four discusses the results of
the application of subspace techniques to the EEG context. The
final section offers conclusions and comments on possible
further work in this area.

1. SIGNAL SUBSPACE METHODS
This section will briefly review signal subspace methods. The
following analysis assumes a system model in which M far-
field sources are viewed by N sensors (N > M). The sensors
may exist in any configuration, for example a linear or circular
array. This paper will be based on a linear phased array.

Consider the system
x=Vs+n, 1¢)]
where xT = {%(1), K(2)y-r-s X(@).c.o XN,

represents the instantaneous signals at the N sensors;
5T = [5(1),5(2);.-...5(m),-...sM],

represents the plane wavefronts from the M sources;

u! = [o(1), n(2),....(),....0(N)]

represents the instantaneous receiver noise contributions to the
signals at the N sensors, and the (N x M) matrix V represents
the response of the N sensors in the M signal directions. The
matrix V cannot be specified until the directions to the sources
are known, thus eqn. (1) cannot be solved directly.

The subspace methods require the use of the covariance
matrix of the system model which is defined as:

C=E{x}=E{(Vs + nXVs + m} 2

where E is the expectation operator and H is the hermitian
operator. If the sources are uncorrelated with the receiver noise
then E{nst} = E{sntl} =0 . )
and if the noise is white Gaussian with variance o2

C=VCVH+C, =VC Vg7, (4

The direction finding (DF) problem in this system is the
identification of the direction vectors

Vo= (W(Lm),v(2.m)... vm)}, m=1,..M 5)

Given that all the possible correlations between a pair of
individual sensor signals exist in C it is possible through the
use of eigen-decomposition techniques to decompose the
complex space that C spans into two mutually orthogonal
subspaces. These are the signal subspacc and the moise
subspace. It can be shown that either the signal or the noise
subspace contain ail the necessary information required to
determine the number of sources and the direction of
arrival[2].
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Using the hermitian property of C we are able to
transform it into a real diagonal matrix A using a unitary
matrix U as shown below:

CHCU = Aor C=UAUH 6)

where the columns of U=[u,, u,,..., ] arc the eigenvectors of
C and A holds the eigenvalues.

A =diag[A,d,,..Ay] With 4,22, 2.22y (D)
The transformation can be written as:

N N
C=z Auuf and C nz Al
— pr @®)
and since UH = U (a property of a unitary matrix}, ui“‘uj
constitute an orthonormal set.

Assuming that there are more sensors than unknown
sources, i.e. M<N, [2] shows that there must be (N-M)
eigenvalues A, equal to the noise variance ot The
corresponding (N-M) eigenvectors form the noise subspace. As
a result the M largest eigenvectors of C are the M orthonormal
vectors which form a subset of the entire complex vector
space. This space is known as the signal subspace and it
contains the signal vectors.

The subspace approach can be expressed concisely by:

c=[U, Un][[: f }E} ®

B8 n

It can be shown [2][5] that V=0 for n=M+],...N. By
sweeping the direction vector v(6) through sll possible values
of 8@ and over all noise cigenvectors we can derive the
MUSIC, [2], Johnson and DeGraaf (J&D,) [3] direction finding
functions[5]. Whereas MLM| {1} can be derived by sweeping
vI(0} over all eigenvectors.
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MUSIC, (8) = }/ { }N; v (0)u,

B=M+1 J

1&D,(8) = }/[ i x;[v“(e)uf an

n=M+1

MLM,_(0) = ?/ (v“(e) i x,{u,,ufv(e)} (12)

n=M+

2. AREA OF INVESTIGATION
Since the discovery of the EEG 60 years ago, innumerable
studies have investigated the relationships between neural
phenomena, the performance of cognitive tasks, and associated
changes in the EEG which are called Event Related Poteantials
[6]. The Swinburne Centre for Applied Neurosciences (SCAN)
has developed a novel extension of traditional methodology,

based on the technique of Steady-State Visually Evoked
Potentials (SSVEP) in which the subject is exposed to a
continuously flickering visual driving signal whilst petforming
cognitive tasks [7]. The signal processing significance of the
visual driving signal is that in excess of 38% of all sensory
input pathways to the brain's cortex are linked to the visual
pathways [8], so that driving the visual pathways presents a
substantial known input driving signal to the cortex. The
system identification problems which are intrinsic to most
EEG signal analysis work are therefore ameliorated to some
extent.

The ERG is recorded with the subjects wearing a
specially designed helmet with 64 sensors. The rigidity of the
helmet guarantees the relative positioning of the electrodes,
which are positioned according to the International 10-20
system for EEG recordings. Additional electrodes are placed at
sites extrapolated between the 20 sites defined by the 10-20
standard. The resultant inter-electrode separation, with an
average distance at the scalp of about 2.5 cm, is 2 significant
improvement over that available with traditional 20 electrode
arrays{7}.

By measuring the spatial distribution of EEG activity
under well-defined, stringent test conditions [7][9], estimation
of the positions of the electrocortical generators in the brain is
equivalent to the classical problem of estimating the Jocation
of multiple emitters. The estimation problem is complicated by
the noise present in the system. This noise is not usually
Gaussian but more likely in some, if not most, brain states of
interest to be closer to 1/f noise. Where the noise is
characterisable, it may be accounted for in the signal analysis,
whilst errors in the characterisation of the noise component
lead to consequential uncertainty in the parameter estimations.

3. SIMULATION RESULTS

This section describes the results of simulations with the
subspace algorithms and a discussion of the limitations of
these algorithms under the conditions outlined below:
-varying signal-to-noise ratio,
-varying numbers of signal snapshots, and therefore variations
in the quality of the covariance matrix,
-varying numbers of sensors, thus variations in aperture.

Traditionally results have been presented in the literature
which assume the noise to be white Gaussian, This last
assumption is not true for the EEG environment, refer figure
3.1 where the noise is similar to 1/f noise. We reproduce the
white and 1/f noise simulated conditions and compare the
performance of each algorithn under the different noise
environments. -
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Figure 3.1 Typical FEG Spectrum



White Noise Results
The following simulation results apply to the MUSIC,
J&D and MLM algorithms under the following conditions:
Linear array of NE sensors spaced at 0.5 1.
Two narrowband sources at +5 and -5 degrees.
Noise variance 1.0
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Figure 3.1.1 shows the results for a 20dB S/N ratio and
256 snapshots. As can be secen all three elgorithms can
successfully resolve the two sources. As the S/N ratio degrades
the MIM cannot resolve the sources, while MUSIC and J&D
offer better performance, see figure 3.1.2
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Figure 3.1.4 N=1024 S/N=0dB NE~8

Tncreasing the number of sensor elements improves the
performance see figure 3.1.3 where all three algorithms
successfully resolve the two sources, Extra peaks begin to
appear at the lower S/N ratios. Increasing the number of
snapshots also improves the performance for MUSIC and J&D,
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while MLM cannot resolve the two sources, refer to figure
3.1.4. Decreasing the number of snapshots or the number of
sensors reduces the resolution capabilities of the three
algorithms thereby broadening the peaks.

3.2 1/f Noise Results

The I/f noise simulation results were conducted under
similar conditions to the white noise case. The power of the 1/f
noise was chosen so that the S/N ratios were directly
comparabic with the white noise case.
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Figure 3.2.1 shows the results for a 20dB S/N ratio and
256 snapshots. Again ali threc algorithms can successfully
resolve the two sources. As the S/N ratio degrades MUSIC
cannot resolve the sources, while MLM and J&D offer better

performance, refer to figure 3.2.2
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Increasing the number of sensor eclements improves
performance, figure 3.2.3, however the improvement is not as



good as for the white noise case. Increasing the number of
snapshots also improves the performance for MLM and J&D,
while MISIC cannot resolve the two sources, refer to figure
324.

MILM and J&D provide better resolution performance in
this 1/f noise environment, while MUSIC and J&D perform
better than MLM in the white noise case. J&D performs best
over both noise environments.

4. RESULTS OF EEG ANALYSIS

This work includes EEG data recorded in the presence of
visually applied driving signals at a range of frequencies. The
particular case under investigation is when the subject is
exposed to a sinusoidal visual driving signal of 13 Hz. The
algorithms require that the sensor array be a liner phased
array. In this case, sensors on the helmet were chosen which
approximated 2 linear array. The sensors chosen were spaced
at approximately 35mm. Assuming an average wave velocity
in the cortex of 7ms™] the separation becomes approximately
0.065 wavelengths. The EEG signal was filtered to remove
unwanted components, the correlation matrix formed and the
DF plotted. Figures 4.1 and 42 show results of two
perpendicular amays located at the top centre of the scalp.
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From the simulation results we assume that J&D gives
the best estimates for the direction of the signal the results
approximately agree with the anatomical locations of possible
electrocortical generators, one of which may be the visual
cortex (+60,-60 +13 degrees). However, we must be careful in
the interpretation of the results due to a number of factors.
Firstly the S/N matio in the EEG environment is low and the
alporithms do not perform well in this case. The simulation
results clearly show this. Secondly the sensors are assumed to
be collinear and equispaced. This is not exactly true for the 10-
20 system. Thirdly the algorithms are sensitive to the spacing
of the sensors, since an average wave velocity was used this
could introduce errors. Finally the decision making criteria
which determines the number of sources was very simple and
requires further work to establish more rigorous results.

CONCLUSION
The paper has presented a comparison of threc DF
algorithms in the presence of white and 1/f noise. From the
simulation results Johnson and DeGraaf (J&D} outperforms
MUSIC and MLM. The application of the subspace techniques
to the EEG context are encouraging as a method for the
location of electrocortical generators in the brain. J&D seems
to be able to identify possible source locations in both the
simulated 1/f noise environment and with the real EEG data,
Whilst the results obtained are promising there is scope for
further work, for example:
1) redesigning of the EEG measuring sef-up to obtzin the
optimum sensor position and number of sensors,
2) investigating other subspace algorithms.
3) investigating non uniform sensor spacings to eliminate
the possible corrclation befween sources.
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