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Abstract:

Partly as a result of the diversity of the architectures and system software, Data-Flow
systems have not been compared directly. In this paper, three widely different Data-
Flow systems are compared using a relatively uniform metric which is representative
of the actual amount "work” performed by these systems to execute a small collection
of common benchmarks. One feature, common to all Data-Flow systems, forms the
basis for a metric for "work”, the creation of tokens. By counting the creation of
tokens in all parts of a Data-Flow system, an accurate measure of the work
performed can be obtained. The three systems compared are the Manchester Data-
Flow Machine, the Stateless Data-Flow Architecture (also from Manchester), and the
CSIRAC I machine. All machines perform approximately the same amount of work
when solving a collection of benchmark problems, but two systems (CSIRAC IT and
SDFA) exhibit successful exploitation of a memory hierarchy.




A Comparative Study of Data-Flow Architectures
David F. Snelling and Gregory K. Egan

Abstract

Partly as a result of the diversity of the architectures and system software, Data-Flow
systems have not been compared directly. In this paper, three widely different Data-
Flow systems are compare;d using a relatively unmiform metric which is representative
of the actual amount "work" performed by these systems to execute a small collection
of common benchmarks. One feature, common to all Data-Flow systems, forms the
basis for a metric for "work", the creation of tokens. By counting the creation of
tokens in all parts of a Data-Flow system, an accurate measure of the work performed
can be obtained. The three systems compared are the Manchester Data-Flow
Machine, the Stateless Data-Flow Architecture (also from Manchester), and the
CSIRAC II machine. All machines perform approximately the same amount of work
when solving a collection of benchmark problems, but two systems (CSIRAC 1l and
SDFA) exhibit successful exploitation of a memory hierarchy.

Introduction

Data-Flow systems represent a unique class of computer architecture which combines
a heterogeneous, fine-grain model of computation with latency hiding mechanisms.

In contrast to the von Neumarn model of computation, the execution of an instruction
in the Data-Flow model relies on the availability of its operands, rather than on a pre-
defined sequence on instructions. Even in parallel versions of the von Neumann
model, sequencing of instructions is controlled explicitly by the programmer or
compiler. In a Data-Flow system, the selection of instructions, for execution, is
performed by the hardware at execution time and is constrained only by the partial
order implicit in the program's data dependency graph. The resulting computation is
fine-grained and exhibits 2 much higher degree of parallelism than code written for
paraliel von Neumann machines. This fine- grained parailelism is then used for
exploiting replicated hardware for increased performance, masking memory access
iatency, and maintaiming a uniform distribution of workload.

In Data-Flow systems, data values, rather than being stored at particular addresses in
the system's memory, are fagged. The tag includes the address of the instruction for
which the particular data value is destined, and other information defining the
computational context in which that value is used. This context is called the value's
colour. The data value, together with its tag, is called a token.

In order for an instruction, requiring two operands tc execute, both tokens must exist
and be brought together. This synchronisation process is called maiching,
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Once these input tokens are matched, the instruction is performed, and the result
token(s) sent on to subsequent instructions. Note that tokens which do not require
matching may go directly to the execution unit. These tokens are called by-pass
tekens.

The management of data structures, arrays in particuiar, is one of the major problems
in Data-Flow research. Given that the semantics of Data-Flow languages are
basically functional in nature, the modification of a single element of an array
necessitates the creation of another array, identical to the original, except for the
altered etement. Multiple references to an array require multiple copies of the array,
even when only one element is needed. Solutions are varied and depend largely con
the architecture, but several approaches predominate.

Data structures have two modes of reference, to the data structure as a whole and to
the individual elements. The data structure is passed, as a unit, from one part of the
program to another, and references to, and modifications of, data structures are
performed on the elements. This dichotomy gives rise to various semantics for data
structures. The following techniques, representatwe of Data-Flow computing in
general, are drawn from the two major Data-Flow languages Id [Nikhil87] and
SISAL [SISALBS5].

SISAL streams - are one dimensional arrays, created element by element
in order. Once elements have been written they cannot be modified;
they can only be removed from the head of the stream; but they may
be referenced randomly by an index. They are non-strict, 1n the
sense that elements in a stream may be referenced before they have
been created.

I-Structures and non-strict SISAL arrays - are both non-strict in the same
sense as SISAL streams, however, they are of a fixed size and shape.
Elements may be modified, which implies that the entire array is
(logically) copied and the clement modified in the process. There are
compilation techniques to avoid excess (physical) copying of arrays
{Cann88, Sargent86].

Strict SISAL arrays - are distinct, from the non-strict variety, only in that
before the pointer to an array is released the entire array must have
been created. In this case, no references can occur prior to the
creation of a given element, since a reference requires a pointer. This
mechanism is supported in software and requires no special hardware
support, but all elements of an array must synchronise before the
pointer can be released. This can prove costly [Arvind88, Egan91].

M-Structures - are part of the Id language and are the most explicit form
of state in Data-Flow computation. They are initialised explicitly
and then exist until destroyed. Elements of an M-Structure may be
modified asynchronously in a variety of ways.

As 1s apparent from above, data structures in Data-Flow systems require special
treatment. In most systems, there is an additional, specialised function unit (e.g. the
structure store in the Manchester machine) that provides the storage and performs
token colouring. The most important aspects of this mechanism are the use of
pointers and reference counting.

This variety of approaches to data structure management gives rise to many of the
distinctions in Data-Flow systems and the difficulty in comparing them. Most studies
of Data-Flow systems in the past have relied on metrics similar to those commonly
used in conventional computing, e.g. instruction count or execution time. Execution



time, clearly the best metric for all such studies, has been avoided because of the
experimental nature of these architectures and their diverse and relatively slow cycle
times.

By taking the creation of a token as a single unit of work, an effective metric for
"work" can be derived. For example, where a proliferate instruction counts as only
one instruction it may create many tokens. To count instructions only would obscure
the actual "work" performed by the system. The number of Created Tokens is,
therefore, our measure of work.

In the remainder of this paper, the three Data-Flow systems are described briefly with
particular reference to the techniques used to manage data structures, the source of
greatest diversity and most of the Created Tokens. The next section outlines the
experimental framework used to compare these systems, and the last two sections
present the results of the comparative experiments and draw conclusions from them.

Three Data-Flow Systems

Although widely different, all three of these Data-Flow systems have their origins in
early research into Data-Flow architectures at the University of Manchester. All are
based on the data driven model described above, but vary significantly in the details
of their impiementation. For complete details of these architectures, the reader is
referred to the literature [Fgan91,Gurd87,Snelling93]. In the following sections, the
architectural details relevant to this paper are presented, in particular the memory
organisation, data structure colouring, the instruction-set architecture, and workload
distribution mechanisms.

Manchester Data-Flow System

The Manchester Data-Flow Machine (MDFM) represents one extreme in this
collection of systems. It has a relatively compiex instruction-set which includes
vector style operations. The MDFM relies exclusively on latency hiding to manage
non-local activity, as opposed to attempting to exploit locality directly.

Memory Organisation

The system 1s composed of four types of elements: one or more processing elements,
one or more structure stores, one global allocator, and one throttle. The processing
element contains the matching store where tokens are stored until they are matched by
tokens destined for the same instruction. Tokens issued from the function units are
placed onto the switch network and routed to one of the processing elements or
structure stores, the global allocator, the throttle, or the host.

The structure stores are managed dynamically as a single logical memory which
contains all data structures. Scalars are implemented as single tokens and are stored in
the matching stores.

There are several approaches to managing this kind of dynamic memory
[Kawakami86]. The strategy adopted in the MDFM 1avolves dividing the virtual
address space into two parts, one used for smaller structures (typically less than 10
locations) and one for larger structures. This dual allocation strategy involves both
local and global memory management. The global allocation of "large” structures is
designed to take advantage of interleaving, whereas, the distributed allocation of
small structures avoids contention at the global allocator. Memory management is
based on a reference counting scheme performed by software, but the hardware
performs the garbage collection function.



Data Structure Colovring

Data structures are stored colourlessly in the structure stores. They are, therefore,
accessible from all contexts via a pointer. As the pointer to a data structure is passed
from one context to another, it is re-coloured. When a data structure reference occurs,
the pointer (along with information describing what part of the data structure is
required and where it is to be sent) is routed to the appropriate structure store. The
structure store uses the context described by the pointer token to colour the data
structure tokens.

Instruction-set Architecture

The instruction-set of the MDFM is relatively complex. Although instructions may
have only one or two inputs, each instraction may produce several results. In
particular, the proliferate instruction produces a stream of values with different index
fields in their tags.! Even two result instructions may produce tokens with differing
tags and values. There is also a tuplicate instruction which sends copies of the
incoming token to a number of successive mnstructions. These complex instructions
obviate the need for many intermediate tokens in a data flow graph, e.g. the tuplicate
instruction eliminates the need for the intermediate arcs of a duplicate tree.

Workload Distribution

Workload distribution in the MDFM is based on a pseudo-random hashing function
applied to the tag field of each token. In particular, this function uses not only are
colour and index fields, but the destination address as well. The result 1s that a token
created by one instruction and destined for another planted "near by" will invariably
be routed to a different processor. This prevents the MDFM from exploiting temporal
locality within code blocks.

Stateless Data-Flow Architecture

This system was designed specifically to redress the "latency-hiding-only" approach
of the MDFM. A SDFA system is a homogenous collection of processors connected
by a network. FEach processor includes a matching store, a token quene and a
processing element.

Memory Organisation

As its name implies, the SDFA system has no explicit notion of state. There are no
structure stores, and only extract-wait functionality is provided in the maiching
stores, However, the SDFA architecture has a hierarchical memory organisation.
Within each processing element there is small matching store (Short Stay Matching
Store) where tokens wait a short time in the expectation that their matches will arrive
soon. If no match occurs in the SSMS after a prescribed number of cycles, the token
is forwarded to the main matching store for that processor. The main matching store,
in each processor, is composed of multiple banks (8 in the current design), each with
two tevels. The SDFA machine, therefore, has a three level memory hierarchy.

Data Structure Colouring

Data structures, arrays in particular, are collections of data values distinguished by the
index fields of their tags. There are four index fields within the tag: X, Y, Z, and S.
The S field is a scratch field for use in reductions and is not used as an array

I Related instructions can also modif y the value of these tokens, such as incrementing the value for
each successive oken.



dimension. Arrays are not stored at a particular address, and pointers do not exist.
The matching stores provide the storage space for all array elements, which are stored
and matched using the same associative mechanism as scalar values.

Instruction-set Architecture

The instruction-set for SDFA is based on a classical two-input, two-output Data-Flow
model. The basic philosophy of the instruction-set is that it should be simple and
RISC-like. The goal of simplicity (mofivated by the desire for speed of computation,
ease of compilation, and cost of hardware) is addressed by adhering to a short list of
requirements:

Each instruction:
a) has 1 or 2 inputs;

b} must have at least one input which is a token;
¢) may have one input which is a literal;

d) produces at most one result value;

e) produces results with exactly one tag value;

) has 0, 1, or 2 defined destinations.

These instructions may perform up to three operations as a result of a single match,
representing a kind of super-scalar approach. The restrictions are that 1) the second
two instructions must be simple integer operations (on either the data or tag fields of
the token), 2) the second two instructions must each have only one token as input, and
3) no more than two tokens can result from the collection of instructions. Therefore,
the tokens passing between these instructions are not included in the total token
COunt.

Workload Distribution

Spatial locality is exploited in SDFA through the hashing function used to route
tokens to processors. One of the aspects of this function is a locality factor. It
represents how many of the low order bits in the index fields are not used in the
hashing function. This insures that tokens with neighbouring indices are, for the most
part, processed on the same processor. This simple mechanism is exploited naturally
in applications, either as a result of template structures, as in finite difference
schemes, or algorithmic techniques, such as unit stride vector processing. In SDFA,
these structures and techniques can be exploited in several dimensions, rather than
jost the dimension corresponding to the linear organisation of conventional memories.
The part of the tag which keeps track of the recursive structure of the program is also
used in this hash function. This provides distribution of unstructured applications.
The instruction address is not used.

CSIRAC I

The CSIRAC I} architecture is directly descended from one of the author's early work
at Manchester [Egan79]. Its roots lie in the study of Data-Flow machines as applied to
image processing and robot control [Egan81,Egan85]. The architecture is unusunal in
that the temporal order of tokens with the same colour on the same graph arc is
maintained.

Memory Organisation

Data structure storage, provided by the Object Store of the CSIRAC II, is similar to
the MDEFM and MIT machines. The major difference being that large complex data-
structures may be associated with a single Object Store Cell. Read-before-write as
well as standard read and write functions are supported. All Object Store cells carry
state information and reference counts. The state of cells may be interrogated to



deternmine memory state e.g. full or empty. Data structures are stored colourlessly as
in the MDFM. The Object Store itself is partitioned and the partitions are associated
directly with processing elements. The particular partition is determined by the least
significant bits of the descriptor.

Interestingly the CSIRAC I architecture still retains a comprehensive set of in-graph
storage nodes [Egan87], with the Object Store being a comparatively recent addition.
The default on CSIRAC I is to transmit structures as a sequence of datum in separate
tokens (or as several datum in a single token) and not use the Object Store at all. In
this sense it 1s almost identical to the 'stateless’ operation of the SDFA.

The matching store has a two-way set associative cache to capitalise on temporal
locality., The arriving token's node number and colour is hashed to a store address. In
pipe-lined graphs, where no colours are used at all and temporal ordering of tokens is
assured by the hardware, this corresponds to a direct indexing operation with no
address collisions. The address is used 1n a conventional manner to access the cache.
‘The cache and associated large backing memory is managed by the matching store's
controlier. The matching store queues arriving tokens (with the same colour and
input arc) thus preserving temporal ordering.

Data Structure Colouring

CSIRAC 1I tokens carry a single undifferentiated colour tag; it does not separate
index and colour fields. This single tag is used to distinguish between different
function or loop body instantiations. The descriptor, used to reference a data structure,
in the Object Store contains an index and a vector of zero or more destinations to
which the accessed data structure should be returned; the descriptor is contained in a
single token. The colour of the returned object is the same as the descriptor. Unlike
the MDFM, the CSIRAC T Object Store does not produce sequences of tokens with
different index field values, relying instead on the temporal ordering on tokens. Data
structure elements, where necessary, are coloured explicitly by the execution graph.
In the case of pipe-lined execution the hardware maintains tokens in producer
consumer, and possibly index, order [Egan91}.

Instruction-set Architecture

The instroction set of CSIRAC II, like the MDFM 15 also relatively complex,
although in practice only a small subset is used. Instructions may have one or two
inputs and many outputs usually with a single value., Instructions may thus emit
many copies of a single value to different destinations without recourse to duplicate
trees and their associated latencies. FExceptions to this include instructions,
responsibie for loop throttling, the generation of loop indices, and proliferate nodes.
CSIRAC I's proliferate nodes, uniike those of the MDFM, generate multiple copies
of the input value and pass them to the output arc with the same colour as the original
input token. In the context of this study the proliferate token is used to generate
multiple copies of loop arguments for pipe-lined loops [Egan87].

Workload Distribution

Workload distribution 1s performed by hashing the token colour with the compile
time processor 'allocation' of the destination instruction. It needs to be said that a
copy of the entire graph exists on each processor and this scheme may be viewed as a
double hashing. The compiler may set the processor field of all instructions to zero.
The effect of this is to have all instructions involved with a particular colour, usually
a loop or function body, execute on a single processor. The allocation scheme under
these conditions is similar to that used SIDFA. This compile time opticn is used in
this study to give high locality, which can cause load imbalance under some
situations.



Experimental Framework

The difficulty in comparing systems, as distinct as the MDFM, SDFA and CSIRAC 1]
machines, arises from the need to measure something in common to all systems that
represents the amount of work done by the systems., Instruction count is
inappropriate since the complexity of the MDFM's and the CSIRAC II's instruction-
sets far exceeds that of the SDFA system, particularly when the iterative instructions
are considered.

Operation count is ruled out on the basis that defining what constitutes an operation
can be rather difficult. The use of cycle count assumes that the architecture is
independent of technology, clearly a falsehood. Likewise, using execution time is out
of the question.

Token Count as a Metric

Since all data values, in these systems, are carried on tokens, the number of tokens
generated by all components of the system is taken as a measure of the total work.
The creation of a token, as an abstraction of work done by a Data-Flow system, is
quite natural and 1s a common statistic gathered by the simulators. Notice that this
count includes tokens generated by the MDFM and the CSIRAC II's structure stores
as well as by their processing elements.

A token in most Data-Flow machines, is a well defined entity.? Although the size of
the data value and the tag vary, the token is relatively standard. It is straight forward
to identify where a token is created or copied within a Data-Flow system. These
token creations serve as a measure of the amount of work performed by the system.
Each time a token is created in a function unit or copied from a structure store, the
token count is incremented. This measure is independent of the complexity of the
instruction, e.g. proliferate type instructions contribute counts depending on the
number of tokens created.

Token count includes the ability of the software to reduce the number of tokens
created, but is independent of the cycle time, a necessity when comparing such
diverse systems.

Approximations
The following assumpiions underlie the experiments discussed below:

e CSIRAC II has the ability to transmit multiple values, such as
vectors, as a single "token" in the form of a multiple word network
packet. For comparison purposes, each such CSIRAC 1l network
word {containing two values) is counted as containing two tokens. It
should be noted that, in this respect, CSIRAC il is 50% more
efficient at transmitting structured data than the other two systems.

«  The structore store garbage collection in the CSIRAC I and MDFM
is not inciuded in the token count metric. There are no such
overheads for the SDFA or CSIRAC {1 when using transmitted data
structures.

2 The compound tokens in the CSIRAC 1 are counted based on the number of elements in the
multiple token, see approximations below.



Benchmarks

The following are summaries of the benchmark programs used in this study. The
codes are all available in SISAL from the authors by e-mail and listings can be found
in [Snelling93].

Adaptive Quadrature

Adaptive quadrature is a multiply-recursive program that computes the area
underneath a function by refining a trapezoid integration method until an error
tolerance is reached. Its interesting properties are that it is both numerical and
requires multiple recursion. It does not use arrays. The amount of work done by Ag
depends on a parameter, called the tolerance, which determines the accuracy of the
area computation. The reciprocal of the tolerance is used as the x-axis in the plots
presented later.

(Gaussian Elimination
Gaussian elimination is a computation with cubic complexity, which uses both array
constructs and recursion. It has bad load balancing characteristics and is, therefore,
useful in workload distribution studies.

Matrix Multiply

Matrix multiply is the most common of all computational benchmarks. [t is both
trivial and complex. Although load balancing well, it produces high degrees of
parallelism and can create "explosions” in resource needs.

The MDFM and CSIRAC 1T matrix multiply programs are based on that used
regularly in MDFM studies {Sargent86, Tec91]. It i1s written under the assumption
that the second matrix is already transposed. The SDFA version performs the
transpose as part of the computation.

g EHBGBS

Queens is a program which computes the number of arrangements of N queens on an
NxN chess board, such that no queen is threatened by another. It is intensively
multiply-recursive and uses many small arrays. The load balancing characteristics of
Queens are unpredictable.

Shallow

Shallow is the closest to an application program used in this study. It requires several
array variables, including temporaries, and uses both array constructs and recursion.
It is the largest and most complex code in the suite. A discussion of this bench-mark
can be found in [Hoffnmiann88].

Compilation Method

in this experiment, the above codes are executed on the Manchester Data-Flow
Machine Simulator (NMR) [Teo91, Gurd92}, the SDFA simulator and the CSIRAC 11
simulator/emulator. The following sections describe the implementation of the
benchmark suite on the three systems.

MDFM

All the following options are applied at the IF1 to Data-Flow code translation phase
of the compilation process [Sargent85]:



v Vectorize the code in loops, eliminating redundant addressing.

~clb O (Generate code assuming all arrays have zero lower bound.
-ini N Inline functions until their size exceeds N IF! nodes.
blo N Inline recursive functions until their size exceeds N IF1 nodes.

Their use in the various programs was as follows:

Ag3 -blo 250
Gauss? v -clb0
Mm v -clb 0

Queens>  -cib0 -blo 500
Shallow -v -clb© -inl 1000
SDEA,

The SDFA codes are hand written in assembler, since no compiler exists. Recall that
the SDFA instruction-set is simple and therefore, frequently, several instructions are
required where one suffices on the MDEFM or CSIRAC 1. These codes were writien
before the super-scalar facility was added to the simulator, but performance improved
nonetheless, see [Snelling93].

Two factors limit the degree of concern here. For the numeric codes, the SISAL
compitation system for MDEFM is known to be good. This is highlighted by the
instructions per floating point operation ratios for the various codes (MDFM: Aq -
2.6; Mm - 2.0; Shallow 4.6; and Gauss - 3.0).° The CSIRAC II with no low level
optimisation achieves (CSIRAC H: Aq - 2.03; Mm - 0.37; Shallow - 4.4; and Gauss -
6.35).

The SDAL code is written for a macro assembler; therefore, a small library of
frequently used SDAL code fragments is employed to simplify code generation.
Many redundant operations could be removed by techniques such as loop unrolling
and loop invariant removal, if the macros were not used.

CSIRAC I

The benchmark programs were compiled using the Optimising SISAL Compiler (osc)
[Cann89} with fuli IF1 optimisation. Optimisation includes common sub-expression
elimination, loop fusion and usrolling but does not include IF1/2 structure
optimisations.

3 The recursive inlining was tried for increasing values until the performance improvement became
constant. In this case, as with Queens below, this was a substantial increase in the number of
nodes, namely, an increase of 1180%.

4 This implementation of Gaussian elimination is performed "upside-down® so that the constant

lower bound optimisaiion could be applied.

In this case, the code size increased by 1560% due to recursive inlining.

©  This ratio has iis failings as a measurement, but it has ponetheless been used in the past
[Bohm0al.

A



The resulting IF1 intermediate code was compiled using the CSIRAC I IF1 translator
[Webb93] generating pipe-lined loops for all benchmarks excluding Aq which has no
loops. By pipe-lined code we mean that no colour tags are used and execntion relies
solely on the ability of the hardware to maintain the temporal ordering of tokens. It
may be observed that for many scientific applications there is no need for hardware
support of colours. The Aq, Gauss, and Queens benchmarks involve recursion and
require colours to support this.

Code generated for Ag, Queens and Mm uses transmitted structures and is, in SDFA
terms, 'stateless’. Gauss and Shaliow are the only benchmarks using the Object Store.

The only optimisation performed after translation from the IF1 is dead code
elimination. Low level optimisers, equivalent to those for the MDDEM, have not been
implemented for the CSIRAC II, resulting in significant penalties for Gauss and
Shallow.
The IF1 to CSIRAC I code translation flags used were:

-a  use structure stores {default - transmitted stateless structures)

¢ use pipe-lined loops (default - dynamically unravel loops)

-el all nodes comprising a loop or function body for a given colour
execute in the same processor

The translation flags used for each benchmark were:

(Gauss, Shallow -a-p
Ag, Mim -p
Queens -p -el

The following additional optimisations were performed manually for the Mm
benchmark in an attempt to explore the CSIRAC I performance on vector operations:

replaced sdot function with the inner product intrinsic function;
performed constant lower bound optimisation;

removed code associated with SISAL Fibre compatible output
formatting.

Analysis of Results

Two comparative experiments were conducted on the three systems. The first
compares the total work performed (tokens created), and the second examines the
locality behaviour of the three systems.

Total Work

It is clear that the 'stateless' computational model (as in SDFA and transmitted
structures versions of CSIRAC I codes) carries with it some specialised costs. These
costs manifest themselves in two ways. First, there is the potential that additional
copies of data structures might be required that are not required in state based
solutions. Second, since 'stateless' data structures are passed in their entirety through

10



function boundaries, rather than just the pointers, the re-colouring data structure
elements could prove costly.

There is reason to believe that the impact of these factors is not excessive. In most
Data-Flow machines, the bulk of the exira copying and colouring must be performed
anyway. However, the part of the machine performing the colouring may vary
depending on the computational model. For example, in the MDFM colouring of data
structures is done in the structure stores rather than in the processing element. In
CSIRAC II colouring, where necessary, is performed by the processing-elements.
Also, these extra costs could be partially compensated for by inlining techniques, and
balanced against the costs of garbage collecting in the structure memories. A
comparison between the SDFA, the MDFM and CSIRAC I is, nonetheless,

warranted,

Results
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Figure 1: Token Count in Adaptive Quadrature (Aqg).

The CSIRAC T performs slightly better than the MDFM or SDFA on Ag. Thisis due
in part to the local throttle mechanism used by the CSIRAC I1.
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Figure 2: Token Count in Gaussian Elimination (Gauss).
The CSIRAC I performs significantly worse on Gauss due largely to excessive

copying used to perform the array concatenate operation. Lack of a low level
optimiser contributes to the relatively poor performance.
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Figure 3: Token Count in Matrix Multiply (Mm).
The supplementary curve plot for the CSIRAC II is for where the comparison metric

would be network words rather than datum. As can be seen aggregation of datum into
a token with a single tag can be advantageous.
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Two dimensional arrays are not first class constructs in SISAL, rather they are
represented as an array of pointers to one dimensional arrays.” This has resulted in a
penaity for the MDFM and would have for the CSIRAC 11 if it had used its Object
Store. In this case, the CSIRAC 11 has, with modest hand optimisation capitalised, on
its vector tokens and associated vector instructions while using entirely transmtted

data structures.
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Figure 4: Token Count in the N Queens Problem (Queens).
The final point in the CSIRAC H curve is missing due to stimulator limitations.

In all cases, the rapid growth in computational load with board size results in a
sudden increase in the number of tokens created. Because of this exponential growth,
a small difference in the number of tokens created in the multiply recursive function
causes a substantial difference in the final token count. This accounts for the failure
of the SDFA system to track the other two as closely as it does in the other cases.

7 This is partially an artefact of the base language, SISAL, which supports this model for arrays.
However, if the execution model supported multidimensional arrays, a compiler could convert this
10 a mulfidimensional array representation.
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Figure 5: Token Count versus Grid Size in the Shallow Water Equations (Shallow).

Again the MDFM and the CSIRAC I have incurred a significant cost through the use
of SISAL array representations. The lack of a low level optimiser has further
penalised the CSIRAC 1. For Shallow the number of time steps was fixed at 8.

Locality

One of the fundamental motivations behind the SDFA and CSIRAC IT architectures is
to benefit from the distributed memory model. This experiment compares the amount
of work performed locally for each of the three machines.

Method

in most cases, the largest versions of the programs from above are run on a 16
processor MDFM, CSIRAC 11, and SDFA systems. The exception is Queens which
case a board size of 7 is used. As above, highly optimised versions of the MDFM and
CSIRAC 11 codes are used. Only the original versions of the SDFA codes are used.

For the purposes of this study, the important part of the MDFM traffic is that which
travels to and from the structure stores, because it is this that will always be global,®
regardless of what locality facilities are incorporated in the MDFM. The same applies
to the CSIRAC IT when using stored structures.

For the SDFA system two measurements are taken, the total number of tokens created
and the number of these which travel between processors. This is used to compute
the percentage global traffic. For the MDFM and CSIRAC 11 three measurements are
taken, the total nuinber of tokens created, the number of these which travel over the

8 In this 16 processor experiment, an average 1/16-th of this traffic could be counted as local if the
siructure stores were indegrated info the processing elements. It would be difficult to arrange for
more than 1/16-th of the structure siore traffic to be local, since data structures are colourless, see
Chapter 2. Therefore, all structure store traffic is considered global.
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switch network, and the number travelling to or from the structure stores. These
values are used to compute the percentage global traffic and the percentage structure

store traffic.

Results

The results obtained from the percentages study are presented in figures 6 and 7. The
percentages, in figure 6, represent the fraction of all created tokens which were
transmitted across the network of each machine, i.e. the percentage of non-local token
traffic. The percentages, in figure 7, represent the fraction of all created tokens which
were transmitted to or from the structure memories. These are the tokens that must be
transmitted across the network, due to the implied shared memory model of stored

data structures.

160 -

W Hetwork Traffis

Ag Gauss Mm Queens Shaliow

M MDFM % Giobal B SDFA % Global B CSIRAC I % Global

Program

Figure 6: Network Token Traffic.
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Figare 7: Network Structare Store Token Traffic.

The low figures for the MDFM and CSIRAC Il memory traffic on Aq and Queens,
are due to the nature of the programs. For Aq MDFM uses the structure stores only
for activation name recycling counters, and Queens has one array for each board, a
maximum of 7 elements long. The CSIRAC II does not use the structare store for Ag
and Queens.

It is acknowledged that the global traffic in the MDFM is a worst case, due to the
distribution function and basic architecture.” The structure store traffic, on the other
hand, represents a best case since it assumes that al] non structure store traffic is local.

Conclusions

There are several conclusions that can be drawn from the above experiments.

First, it is possible to compare experimental systems with diverse architectures using
a meamngful, simple metric which is not rendered useless by the experimental nature
of the systems. We invite other researchers to perform similar tests and extend the
scope of these comparisons.

Second, although mainstream Data-Flow computing assumes the existence of a
specialised structure memory, the provision of such 1s not a requirement. The stateless
operation of the systems above did not cause substantial reductions in performance.

Lastly, it has been argued recently, see [Culler92], that the increased processor state
required to support latency hiding in the traditional Data-Flow systems will
eventually force either a limit on the scalability of the system (due to increasing
latency} or a reduction in performance (due to the cost context switching). A multiple

Y Ta improve locality in the MDEFM, the destimation node address could be removed from the
disiribution function. It should be noted that the latter could have an impact on the machine's load
balancing ability.
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ievel, memory hierarchy, which can be exploited through locality in computations,
reduces the impact of this argument. In two of the systems presented here (SDFA and
CSIRAC 1), a memory hierarchy exists and the systems employ a variety of
techniques to extract locality from the computation. Although there is a barrier
inhibiting the scaling of traditional Data-Flow systems, there is no fundamental limit.
If the global, flat, shared memory of the state-based Data-Flow systems is abandoned,
a memory hierarchy can be constructed and exploited. Whether or not this leads to a
truly scalable system is beyond the scope of this paper. It has been addressed with
respect to the SDFA system in {Snelling92] and with respect to the CSIRAC II switch
network in [Abramson91], but both systerns are hampered in these studies by the
limits imposed by simulation environments.
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