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Executive Summary
Computer architectures have until recently been dominated by the von Neumann style
architectures. The improvement in re-configurable hardware with the development of
larger Field Programmable Gate Arrays (FPGAs) has allowed other styles of
architectures to be implemented. One of these styles of architecture is data-flow. The
data-flow architecture implemented on an FPGA, as described in this report, is a
significant subset of the CSIRAC II data-flow architecture. The performance of this
architecture was compared with a von Neumann style control-flow architecture, and
comparable results were obtained with noticeable performance benefits with some
programs.
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1 Introduction
The study of computer architectures has been largely dominated by the von Neumann
style architectures, which even von Neumann considered as being interim pending
more advanced implementation technologies. However at the time it was proposed in
the 1940’s [1] the von Neumann architecture was the best solution for the available
hardware. Despite the improvements in technology allowing other styles of
architecture to be implemented, industry’s conservative approach has meant that very
few of these have been implemented in practice. One of these styles of architectures
developed by research organisations was the data-flow architecture. Some of these
designs were Monsoon, Manchester Data-flow Machine, and CSIRAC II [2]. With the
recent advances in re-configurable hardware, caused by the development of large
Field Programmable Gate Arrays (FPGAs), the implementation of these more
advanced architectures has become viable.

2 Background

2.1 How do data-flow architectures work
Data-flow architectures only execute instructions when all of the required data is
available. This is in contrast to control-flow architectures, based on the von Neumann
design, where instructions are executed independent of whether the data is available.
The advantage with data-flow is that all of the dependencies commonly existent in
control-flow architectures are avoided as only instructions containing all their data are
executed.

The programs executed by the data-flow machine are ‘directed graph(s) consisting of
named nodes , which represent instructions, and arcs, which represent data
dependencies among nodes. Operands are propagated along the arcs in the form of
data packets, called tokens.’ [2] These directed graphs are normally written in a higher
level language like SISAL, IF1 or i2 and compiled into a set of node descriptions and
input tokens to be read into the processor. Both SISAL and IF1 compile into i2 which
is a structural assembly language. When the processor is executing the program, the
tokens are fired into the processor and then executed by the Execution Unit. This
directed graph approach allows the nodes to be executed in any order, thus improving
performance and in some cases simplifying programs that may be extremely
complicated to represent as a list of instructions.

2.2 Different types of data-flow architectures
Data-flow architecture can be split into a few groups: Static (Dennis), Static Queued,
Dynamic, and Hybrid. The Static architectures are the most restrictive as ‘An enabled
node is fired if there is no token on any of its output arcs (and when the resources are
available)’ [1]. This is a problem as more than one token could appear on an arc, thus
control tokens are used to block the execution until the output arc is available. The
Static Queued architecture permit tokens to be queued on arcs, thus eliminating the
requirement of an interconnecting network for the control tokens. The Dynamic
architectures also avoid the problem by altering the enabling and firing rule to be ‘A
node is enabled and fired as soon as tokens with identical tags are present on all input
arcs (and when the resources are available)’ [1]. These tags contain information about
the destinations and an extra colour field to separate tokens on the same arc. In a
normal application this could cause the number of tags to increase rapidly, thus a
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hybrid of Static Queued and Dynamic was proposed. The Hybrid architecture uses
static queuing for the inner loops while the dynamic loop unrolling is used for the
outer loops, thus obtaining the benefits of a dynamic architecture while reducing the
number of different tags with the static queuing [2].

2.3 The architecture being implemented
The CSIRAC II data-flow architecture was a Hybrid created in 1978 by Egan and was
later implemented into hardware in the early 80’s [1]. This implementation was
extremely complicated to build and reasonably large. Figure 1 below shows the
Execution Unit of this implementation and when compared to the FPGA, in the lower
corner, it is easy to realise how much re-configurable hardware has evolved in the past
few years. Some of the CSIRAC II architecture features include: a self loading Node
Store, buffers on both the Matching Store and Execution Unit, most instructions found
in a conventional processor and some extras, external network, 128-bit tokens, colours
and ordered execution [2]. A few other data-flow architectures use a standard
processor to load the node descriptions into the processor, however CSIRAC II does
allow the nodes to be loaded through the Input List and also allows them to be
changed while the processor is still executing. The external network allows the
architecture to operate with multiple processors while also allowing input and output
to peripheral devices to be separate from the processors executing the program. The
tokens used in this architecture are 128-bit long. These tokens store information about
which processor the token is going to be executed on, the ALU to be used on that
processor, a colour field allowing loop unrolling and recursion, the type of node the
token is for, and input side of the node, data type and the data required for that node.

Figure 1. Execution Unit of original CSIRAC II implementation and Altera Cyclone FPGA.
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Data-flow programs have two main types of nodes, monadic and dyadic, where
monadic nodes have one input and dyadic nodes have two. These types of tokens are
not be evenly fired into the processor, thus there has to be some elasticity in the
processor to allow for these runs of monadic and failed dyadic tokens. [2] CSIRAC II
accommodates this by having buffers before the Matching Store and Execution Unit.
Some other architectures like the Manchester Data-flow Machine created by
researches led by Watson and Gurd at Manchester University neglected this elasticity
causing their processor to continually stall while the Matching Store collected tokens
from the linked list [3].

3 Design

3.1 Architecture layout
The data-flow architecture being implemented for this project was a subset of the
CSIRAC II data-flow processor. The processor was designed only to execute
programs with graphs of less than one hundred nodes with only integer and bit
operations being available. The reason for this was to reduce the amount of hardware
required to implement it, thus enabling it to fit onto the FPGA being used.

The basic structure of the processor can be seen below in Figure 2.

Input 
List 

Local 
List 

Bypass 

Linked 
List 

Matching 
Store 

Execution 
Unit 

Distributor 

Node 
Store 

External Network 

Figure 2. Block diagram of the CSIRAC II architecture.



Page 4

The processor is split into six distinct sections: the Lists, Bypass, Matching Store,
Node Store, Execution Unit, and Distributor. Because of this separation, each section
was implemented as stand-alone function blocks with communication channels
between them. The details of each section are as explained in the function block
description section.

3.2 Function block descriptions

3.2.1 Lists
The lists hold the node descriptions and tokens before they enter the processing
sections of the processor. There are two lists: one is a Local List, and the other is the
Input List. The Local List is filled from the Distributor on that processor whereas the
Input List is filled from an external source, which is normally another processor’s
Distributor, thus allowing the program and data to be entered into the processor.

3.2.2 Bypass
The Bypass selects between the two lists with a bias to the Local List, as filling this
list will cause the processor to stall. The Bypass then adds the function and literal
from the Node Store to the token, if required, before distributing the token to either
the Matching Store or the Execution Unit. This causes dyadic tokens to pass through
the Bypass, which is not necessary, however it does simplify the logic required in the
Node Store to collect the function and literal.

3.2.3 Matching Store
The Matching Store is where tokens required for nodes with multiple inputs are
matched together. This is accomplished by storing the tokens in an array indexed by
the element number, which is the node id. When a token with the same element
number is found it is sent to the Execution Unit Buffer with the data from the
matching token if it is the opposite input, otherwise it is added to a Linked List
connected to that element number. As the new token is added to the end of the Linked
List, the order is preserved thus ensuring that the correct set of input data for each
node is found.

3.2.4 Node Store
The Node Store is where the information for each node is recorded. The Node Store
was split into two storage sections, one containing the function and literal and the
other containing where the data is sent after executing the node. The reason for
splitting the Node Store is that obtaining the function and literal when the tokens are
being manipulated, to insert them into Execution Unit Buffer, reduces the delay
before the Execution Unit can begin execution while not affecting the size of the
buffers required. The other information is not required until after the execution and
would require a larger buffer size if the information was obtained earlier. At the
beginning of execution the Node Store contains no information about the program
being executed, thus all of the node descriptions are entered through the Input List.
Thus the operations of the Node Store consist of three sections: one for each of the
storage sections to collect the information and one to insert the node descriptions into
the Node Store.
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3.2.5 Execution Unit
The Execution Unit uses an arithmetic logic unit (ALU) that is the same as in
common architectures with the only difference being the reduced instruction set. The
instruction set has been reduced as the processor was designed to only implement
integers and a selection of the possible instructions specified for the architecture in
The CSIRAC II Data-flow Computer Token and Node Definitions [4].

3.2.6 Distributor
The Distributor sends the newly created tokens to either another processor, or to the
Local List depending on the distribution system being implemented.

3.3 The features of the subset being implemented
The subset of the CSIRAC II data-flow architecture implemented has the following
instructions: Add, Subtract, Multiply, Shift Up, Shift Down, Equal to, Not Equal to,
Greater or Equal to, Pass if True, Pass if False, Switch, Nop, and Replicate. These
instructions can be either Bypass or Normal nodes, where the type of nodes indicates
the number of inputs: Bypass has one input and Normal has two. The data types
available on the processor are 8-bit, 16-bit and 32-bit integers, single bit, and node
descriptions. All of these data types are contained in single word tokens except the
node descriptions which in this implementation were restricted to the Input List and
Node Store. The other restrictions are that nodes can have a maximum of two
destinations, only Bypass nodes can have literals, and there is a maximum of 125
nodes in the directed graphs being implemented on the architecture. The processor it
self is a single processor which accepts 128-bit input tokens and outputs 32-bit values
if the destination is an output node.

3.4 Design considerations
The buffer and list sizes had to be carefully considered as filling one of these could
cause the processor to deadlock. While it may be advisable to perform some
probability tests in order to obtain the optimal size, in this implementation the FPGA
resources determined the buffer and list sizes. For the buffers and lists using RAM,
the size was dependent on the smallest number of RAM blocks required as there was a
limitation on these blocks and once a block was required there was no reason not fully
utilizing it. On the other hand the lists using an array were restricted to the absolute
minimum size to enable the processor to fit on the FPGA. Therefore the buffers and
lists using RAM were larger than required with no reason to reduce their size and
those using arrays were as small as possible with major performance deterioration if
they were increased. Even though the FPGA resources dictated the size of the buffers
and lists, the comparative size required had to be considered. The Local List was
made the largest, as filling this list will cause the processor to deadlock. Similarly the
Execution Unit Buffer size was obtained by the maximum influx possible in the
processor. The smallest in this implementation was the Input List, as there was no
external network this list only contained triggering tokens, and a stall would not affect
the rest of the processor.

As the processor was the only implemented part of the architecture, some of the data
fields could be reduced while others could be excluded. The excluded fields are
colour, process, and processor since the colours were not being implemented, there
was only one ALU and only one processor. The fields reduced in size were the data



Page 6

field, data type field, node id and the addresses to the Linked List. The data field was
reduced to 32-bits since this was the largest data type the processor was capable of
handling. The data type field was reduced to 4-bits so these two fields fit neatly into
the 36-bit words of the RAM blocks, thus reducing the number of RAM blocks
required for the Linked List while still being large enough to hold all of the data types.
The node id and addresses to the Linked List were reduced to their minimum size
because there is no reason for storing bits that are never going to be used.

As there are two lists feeding the Bypass a selection has to be made as to which list
the next token will be taken from. The main requirement is that the Local List never
becomes full, as this will deadlock the processor. Some approaches are to take the
tokens from the fuller list, take the tokens from the Local List unless the Input List
reaches a set level or take the tokens from the Local List unless the list is empty. Due
to there being no external network, the only tokens in the Input List will be priming
tokens thus the Local List will normally be empty when the Input List contains
tokens. Therefore the third approach was used as there was no benefit in complicating
the design to ensure the Input List never became full.

4 Design Tools

4.1 Compiler
There are many different compilers to program an FPGA, however only two were
chosen as possible compilers. These were Impulse-C and Handel-C. The reason for
choosing these was their similarity to standard C, thus there was familiarity with the
code and only a few new operations had to be learnt as opposed to an entirely new
language. One of the other possible languages was VHDL, however as C is a higher-
level language the development of the processor will be simpler and clearer to follow,
thus allowing the program to be easily extended or altered.

4.1.1 Impulse-C
Impulse-C offers a large library of functions to implement many of the more common
operations, such that the program is able to implement these processes in the most
optimal way [5]. However because the implementation is hidden the processes cannot
be adjusted to suit implementations that are slightly different from normal. This
becomes a problem when extra wide channels are required or queue jumping is
desired for a possible extension to reduce delays in the Matching Store. The other
problem with having processes in place to implement all of the channels as first in
first out (FIFO) queue is that they require setting up, thus there is a reasonable amount
of initiation code. The other major feature of this program is that each section is set up
as an individual process with inter-communication through channels, thus giving the
program a good structure, however this requires an extensive amount of initiation
code to initialise.

4.1.2 Handel-C
Handel-C on the other hand only offers some special operations to allow variables to
be manipulated and channels to allow handshaking transfer of data between different
sections of the code, which is operating in parallel [6]. For this reason most of the
operations like the queues have to be written in code thus increasing the amount of
code written, however it does allow the width of the queue to be unrestricted. The
width of the channels and variables can be preset or left for the compiler to set the
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optimal width. This program also implements bit extraction better than Impulse-C as
it allows any number of bits to be extracted by accessing them like bits in an array as
opposed to having a function call which only allows bits to be extracted from 32 bit
numbers.

4.1.3 Compiler Selection
The desired compiler was Handel-C as it does not have large amounts of initiation
code and has no restrictions on variable size and bit extraction. The downside was the
lack of pre-designed features i.e. the FIFO queues, however there was a possibility
that the buffers and lists would require extra features to improve performance thus
they would no longer be standard FIFO queues.

4.2 Loader Considerations
As the Handel-C package being used does not download the program directly onto the
FPGA, Quartus was used to compile the EDIF file generated by Handel-C. This
complicated the optimization of the processor as Quartus only gives line numbers of
the variables causing the restrictions on the clock speed, thus the Handel-C code had
to be cross referenced to find the section where the assignment occurred. This may
have been a direct assignment or a sequence of control logic causing the assignment
to restrict the clock speed. These could however be traced with the expected delays
output files generated by Handel-C which listed the longest delays for each type of
assignment and indicated the lines in the path.

4.2.1 Setting up Quartus
As the compiling of the program to the FPGA occurs in two different programs
Handel-C generates a tcl script to correctly set the FPGA device and link the virtual
pins created by the EDIF file to actual pins on the chip. As this linking is done
automatically by running the tcl script, the pins in the Handel-C code had to be
declared correctly. The pins were declared by typing only the pin number between
talking marks i.e. “pin number”. An example of this is in Appendix C.
Architecture.hcc.

There are also some settings in Quartus that have to be set in order for the FPGA to
operate correctly, these are all unused pins have to be set to tri-state inputs, and in the
‘Design Entry/Synthesis’ the ‘Tool name’ has to be set to custom with the ‘Format’
set to EDIF and the ‘Library Mapping File’ linked to the celeriox.mlf file in the
Handel-C directory.

4.2.2 Initializing external RAM.
The external static RAM can be initialised in a few different ways, one is to load a
program onto the FPGA to initialise the RAM before the actual processor is loaded,
and another is to load the information into the flash RAM and have part of the
program move this information to the static RAM. The loading of the program to
initialise the RAM is the simplest method and works very well as long as the device
has constant power. The other advantage with this method is that the processor can be
loaded into the flash memory, which enables the processor to be reloaded by pressing
the configure button on the board. Thus the program can be loaded onto the FPGA
using the Joint Test Action Group (JTAH) port and executed by pressing the
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configure button. The memory initialization program simply copies the program from
initialized on-chip RAM to the static external RAM, thus only the memory
initialization file (mif) has to be changed in Quartus to load a new program.      

4.3 FPGA
The FPGA used was an Altera Cyclone EP1C6T144C6 FPGA, which has the
following specifications:

• 20 M4K RAM blocks.
• 92160 RAM bits
• 5980 Logic Elements (LF)
• True dual-port RAM.

This chip was used with a development board designed and built by Dr. A Price of the
Monash University Department of Electrical and Computer System Engineering
(Appendix Q) containing.

• External Static RAM
• Flash RAM
• Eight LEDs

Some of these features, while being adequate for the project, placed restrictions on the
complexity of the implementation and the way in which the processor was
implemented. An example of this is the implementation of the Input and Local Lists.
Due to the limited number of M4K RAM blocks and Les, the Local List was
implemented using RAM, in the dual-port configuration, as it had to be larger to avoid
the processor from deadlocking when the list became full. However the Input List was
implemented as an array due to the restrictions on the number of RAM blocks and its
size, as only a few tokens were stored in it at any one time. The number of LEDs
available on the development board, while limiting displayable, information were
adequate for this project.

4.3.1 Hardware design considerations
The storage of data was a major design consideration as the type of storage used and
the size of the data has a major affect on the processor’s performance. There are three
types of storage: arrays and variables, on-chip RAM and external RAM. Each of these
has their benefits and drawbacks, thus choice of storage for each application has to be
carefully considered to ensure the best one or mixture is used.

The array does have a distinct advantage over RAM when it comes to accessing the
data. The array allows unlimited accesses to the data during a clock cycle, compared
to the on-chip RAM which restricts the accesses to a maximum of two per clock
cycle, for the entire instance of RAM, when dual port RAM is used. Access speed is
another area where the array delivers better performance than the RAM. The reason
for this is that the array is created with a set of flip-flops joined together and therefore
is mainly restricted by the control logic needed to locate the required set. RAM
requires longer setup and hold times to access the element contained in the RAM
block and is therefore restricted to a maximum of 200MHz [7], although the control
logic is more efficient. The major advantage RAM has over the array is the area
required on the chip. For an array each bit requires one logic element (LF) on the
FPGA, which could otherwise be used for logic required to implement the processor
whereas RAM is already allocated room on the chip, which can only be used for
RAM. The down side to this is that RAM is segmented into blocks, which can only be
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accessed a maximum of twice in a clock cycle and these accesses can only retrieve
36-bits at a time. Thus the standard data field size of 40-bits would be spread over two
RAM blocks to allow it to be accessed every clock cycle. Due to this, a combination
of both RAM and an array is sometimes desirable as the majority of the data can be
stored in RAM with the extra bits stored in an array, thus reducing the number of
RAM blocks and LEs used. However if a large amount of memory is required the
external RAM on the development board is available. This RAM allows one access
per a clock cycle and is limited by an 8-bit data bus, thus data requiring a larger word
size requires multiple clock cycles to access.

Another design consideration is the depth of the logic being used and the fan out
required for accessing variables multiple times. These affect the clock speed as they
create long data paths, thus causing large propagation delays. One of the areas this
becomes apparent is around RAM accesses, as they are initially restricted and any
further delay causes them to further restrict the maximum clock speed.

5 Implementation of the Architecture

5.1 Overview of the Architecture
The architecture is split into five sections as specified in the design sections. In
addition to these sections there is a function to retrieve the program, which is stored in
external RAM, and load it into the Input List, and a function to operate the display.

During the execution of this program, values can be viewed on the leds located on the
development board by using the appropriate instruction. The only drawback with this
is that the speed of the processor may cause the leds to flash too quickly to be
observed, therefore a delay section of code was added to the design stalling the
processor while the value was being displayed.

Another feature of the processor is a memory led, which indicates when one of the
memory sections has become full which will probably cause the processor to
deadlock. The cause of this in most cases is the Local List becoming full due to
excessive branching in the program, however allowing un-matched tokens to build up
in the Matching Store has the same effect as the memory allocated for the Linked List
becomes full. These problems can be avoided by writing the program so it does not
excessively diverge before converging and ensure that no one side of a dyadic node
enters the Matching Store excessively more often at any particular point in the
execution.

5.1.1 Design considerations
The major design consideration was whether to use RAM or arrays. In general this
decision was already made with the size restriction the FPGA placed on the project.
Thus the majority of storage was placed in RAM, with a lesser amount implemented
using arrays and the program executing on the chip stored in external RAM. The use
of external RAM was avoided in the main section of the processor because of the
effect it had on performance. Therefore the external RAM was restricted to storing the
program, which would only be accessed once, thus avoiding the performance
degradation in the main section of the processor while allow the processor to fit on the
chip.
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Another consideration was how Handel-C implemented some of its available features.
A perfect example of this was the default division as it required the entire FPGA and
reduced the maximum clock speed to 2MHz. The alternative to this was to implement
a pipelined division, which would complicate the design. Altering the design will
probable still restrict the processors performance while only prove that there are
implementation of ALUs available with division, which can be implemented on the
FPGA. Thus division was excluded for the instruction set and replaced with shift
operations allowing the programmer to achieve the same results using different
operations. Channels are designed for passing values between parallel sections of
code using handshaking. While this is useful in the correct implementation, in many
cases it was not practical to pass data this way, thus for some sections the data was
passed using variables and signal.

5.1.2 Implementation restrictions
Due to the FPGA size restrictions and the desired performance requirements the
following restrictions were placed on the processor.

The Linked List which stores the multiple tokens for a particular node in the Matching
Store was placed in on-chip RAM, thus its size was limited to 256 locations which in
most cases would be more than adequate as the probability of having more than three
tokens for one node stored is extremely low.

The number of nodes allowed in the program was restricted to one hundred. This
allows small programs to be executed on the processor, thus allowing the design to be
tested while not creating problems caused by allocating excessive amounts of memory
and therefore restricting the available space on the FPGA required for implementing
the rest of the processor.

The instruction set and number of types were reduced. The reason for doing this was
to simplify the ALU being used in the implementation as this part of the program
could very easily be obtained from a conventional processor which implements a
larger instructions set and more data types. Thus a select few instructions were chosen
to allow more of the chip space to be dedicated to the data-flow sections of the
processor while still allowing suitable programs to be written for the processor.

The branching factor for each node was restricted to two destinations. The reason for
this is that the design is for a single processor, which could be joined to other
processors later by using multiple FPGAs. Thus, having a larger branching factor
would only fill the Local List with tokens faster than they can be removed causing the
processor to deadlock. In a multiple processor design these extra tokens would be
spread between the processors thus avoiding this problem.
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5.1.3 On-chip specifications
The Quartus compilation results (Appendix R).

• 5,260 / 5,980 (87%) LE’s
• 19 / 20 M4K RAM
• 62,090 / 92,160 (67%) bits of RAM
• 33 / 98 (33%) pins used
• 50 MHz clock.

Despite the fact that there were a limited number of M4K RAM blocks only 19 of the
20 were used, as altering the design to increase the storage used required two RAM
blocks due to the way they had been configured. This configuring of the RAM in the
RAM blocks also meant that most blocks were not fully utilized, thus only 67% of the
total RAM bits where used. Not all of the LEs available on the FPGA were used, the
reason for this is that increasing the percentage of used LEs increases the
interconnections on the FPGA, thus reducing the clock speed. A larger FPGA would
have reduced this limitation on the clock speed while allowing sections of the
program to be written differently to obtain a higher clock speed.

5.2 Lists
The lists were FIFO queues with the head and tail recorded thus allowing the tokens
to flow through the list with a minimum delay of one clock cycle. One less obvious
feature is that the head and tail are only incremented with the size of the variable
being used to wrap the list around, thus simplifying the calculation. The addition and
removal of tokens was implemented in two independent parts of the procedure with a
common array or RAM and variables thus allowing them to work independently of
each other. To reduce the time required to remove tokens it is assumed the list always
contains tokens, thus if the list would normally be empty in the next clock cycle an
empty token is inserted. Similarly, the insertion of tokens does not check if there is
room in the list, as another section of the program checks if the list is becoming full
and stalls the pipeline. To eliminate pipeline stalls in the Distributor, the Local List is
able to accept two tokens at a time, thus allowing the two possible destinations of
each token to be inserted into the Local List at the same time. To enable this to occur
multiple storage elements are used (figure 3) as this simplifies the incrementing of the
tail and allows these tokens to be simultaneously inserted into the RAM blocks. When
outputting the tokens, both lists send them to the Node Store and the Bypass, thus
allowing the information from the Node Store to be collected and arrive at the Bypass
at the same time thus reducing the logic required to implement this process. As the
Bypass has to choose between the lists, only taking a token from the desired list,
empty tokens are not sent thus allowing the Bypass to only choose between valid
tokens.



Page 12

List_0 

Tail_0 

Head_0 
List_1 

Tail_1 

Head_1 

Selection 

Distribution 

Input from another section 

Output to another section 

Figure 3. Layout of the Lists or buffers with multiple storage elements.

The Input List also receives the tokens into the processor and either places them in the
list or sends them to the Node Store if they are node descriptions. In doing so the
Input List also reduces the data stored by disregarding the extra bits in a standard
token that are not required for this processor. The advantage with implementing the
inputting into the processor in this way is that it allows the standard compilers for the
language to be used while also removing unnecessary information to allow the
processor to fit on the chip.

5.2.1 Design considerations
These lists while functioning in the same way, have very different size and input
requirements affecting how they are implemented. These differences affect the
preferred type of storage: RAM, an array or a combination of both. The main factor
influencing the choice is size as any array requiring more than a few hundred bits uses
up too many LEs. For this reason the Local List was placed in RAM while the Input
List was placed in an array, as it could be restricted to a few hundred bits and there
were not enough RAM blocks available. As the Input List is implemented as an array
it does not have any accessing restrictions, whereas the Local List can only add and
remove one token per clock cycle. This causes a problem as the nodes can have two
destinations thus multiple lists are used for the Local List, this does however use more
RAM blocks thus restricting the number of RAM blocks available to other parts of the
processor.
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5.2.2 Implementation restrictions
In order to use the wrapping of the head and tail, the lists were restricted to orders of
twos. This had very little effect on the Local List, as the maximum number of
elements available in the RAM block was 128. Thus this allowed the Local List to be
256 elements, which is larger than required, however no extra resources were required
to have it this size. The Input List was made as small as possible to reduce the number
of LEs as these will affect the resources required. Thus a size of four elements was
chosen, as this was the smallest size that did not have problems with testing if the list
was full.

5.2.3 On-chip specifications
Input List specifications

•  2 elements
• Implement as an array
• Stores 45-bit tokens
• FIFO list
• Minimum delay of one clock cycle

Local List specifications
• 256 elements
• 2 interleaved lists
• Implemented using on-chip RAM
• FIFO list
• Minimum delay of one clock cycle

5.3 Bypass
The function of the Bypass is to collect the token from the desired list with a bias for
the Local List. This token is then attached to the functions obtained from the Node
Store and literal if required, before being sent to the Execution Unit or Matching Store
depending if the token is monadic or dyadic (figure 4).
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Figure 4. Layout of the Bypass.
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5.3.1 Design considerations
The design considerations in the Bypass were how to send the data to the appropriate
destinations and the biasing on the list selection. The data was sent using two different
methods. Due to the implementations of the following sections of the processor these
were a signal to the Execution Unit and channel to the Matching Store with empty
tokens being sent to keep the Matching Store pipeline full. Selection was biased to the
Local List as filling this list causes the processor to deadlock. There is no reason for
using more complicated methods of choosing from the fuller list, as the Input List is
mainly used at the start of execution to load the program and trigger tokens, as there is
no network.

5.3.2 Implementation restrictions
A restriction of the design is that only one token can be retrieved from a list at a time
thus causing a bottleneck. Most of the time this will not be a problem as the Input List
will be empty due to the processor not being part of a network, thus there will only be
one list to collect the tokens from anyway.

5.3.3 On-chip specifications
The features of the Bypass were:

• Blocking input channels
• Signal outputs
• Selects from the Local List first

5.4 Matching Store
The Matching Store is the heart of the data-flow architecture, where most of the
tokens are matched together before being sent to the Execution Unit, thus an
inefficient Matching Store will greatly affect the performance of the processor. The
Matching Store can be spilt into four sections receiving a new token from the Bypass,
collecting the information, updating and sending the information, and storing the
tokens (figure 5). Each of these sections can be implemented in various different ways
to ensure maximum performance is achieved.
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Execution Unit 

Figure 5. Layout of the Matching Store.
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The receiving of tokens was implemented without a buffer, thus any delays in the
Matching Store will propagate to the inputs into the processor and cause it to stall.
This was done due to the limited number of resources available on the chip, thus these
resources could be better utilised in another section of the processor.

Collecting of the information was implemented as a separate pipeline stage to enable
the clock speed to be maintained while still allowing the required test to be carried out
in the following stage. In this stage the information corresponding to the token in the
Matching Store is obtained, however the removal of the buffer has made it crucial that
there are no delays, therefore the values that have changed in the following pipeline
stage are forwarded and used if the following token corresponds to the same node.
This does create extra complication and control logic, however the performance
achieved by utilising the memory allocated to the buffer in other sections of the
processor outweighed any performance deterioration of the Matching Store.

The updating and sending of the tokens were combined into a single pipeline stage, as
they required the same control logic and both could be completed in a single clock
cycle. This was only possible as the programs were restricted to flat graphs as colours
were not implemented, therefore any matched tokens would be removed from the
front of the list, there is no searching requiring multiple clock cycles and a simple
single linked list can be used. Knowing where the token will be removed from also
simplifies the updating of the information as the updating section knows immediately
if the token is going to be removed, as the sections are closely connected, and its
location, thus the information can be updated by the completion of the second pipeline
stage of the Matching Store. The only problem with this is that new values are
unavailable until the next clock cycle, therefore these alterations and any other
information that may have changed is forward to the previous stage. The reason for
forwarding all of the information is that it reduces the logic required in the collecting
stage to ensure the information is up to date.

Storing of the tokens was split into two sections, one for the actual Matching Store
and a second for a Linked List to store multiple instances of the tokens. The Linked
List was implemented using on-chip RAM. While this did restrict its size to 256
elements it was still large enough and only took one clock cycle to access the data,
thus eliminating delays compared to five clock cycles if external RAM was used. To
ensure none of the elements in the Linked List were overwritten a linked list of empty
addresses was created, thus the next empty address could be quickly obtained and
recently vacated addresses recorded. The Matching Store itself was also implemented
using on-chip RAM for storing the control values, data and addresses to the Linked
List. The technique for accessing this RAM was direct mapped, as the colours were
not implemented, thus the first token stored will be the first to be matched. Therefore
this first token was always stored in the Matching Store section of the memory and is
immediately replaced by the first token in the Linked List when it is removed to
reduce the logic required to locate this token. An alternative approach is to use the
memory allocated to this token to store the addresses to the Linked List, when there is
multiple tokens, however due to the number of bits required this would have no
benefit in reducing the memory required as the same number of RAM blocks would
be used.
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5.4.1 Design considerations
The Linked List and Matching Store storage could be stored using arrays, on-chip
RAM, external RAM or a combination of these with each having its benefits and
restrictions. The array is the fastest of the three with the major drawback coming from
the amount of chip space required for each bit. The second fastest is the on-chip
RAM, which has an area on the chip allocated to it and thus it has minimal effect on
the amount of the chip available for logic. However, there is only a set amount of
RAM and RAM blocks. Each of these RAM blocks can only be accessed once in the
clock cycle thus tokens requiring words larger than 36-bits require multiple tokens,
however once a RAM block is being used there is minimal penalty in using all 128
elements. External RAM is the slowest of the three requiring multiple clock cycles to
access, however it does have the advantage of being larger than any on-chip RAM.
After considering the benefits and restrictions on the types of storage, on-chip RAM
was chosen for the Linked List and the Matching Store storage, as they are both too
large for arrays but not too large for the on-chip RAM thus there was no reason to
incur the speed penalty of external RAM. The Matching Store was written so all of
the stored values are only accessed once for reading and writing per clock cycle
enabling dual ported RAM to be used. The size allocated to the Matching Store
storage was dependent on utilising the minimal required amount of memory as it is
only available in discrete amounts. The Linked List was slightly different with the
size being restricted by the number of RAM blocks available after the rest of the
processor was implemented.

Indexing of the memory could have been accomplished by either direct mapped,
hashed, or using a 2-way set associative cache. Each of these methods has their
advantages and purposes. Direct mapped is the easiest to implement and access as the
index is used directly, thus ensuring fast accessing, although there is a possibility of
having only a small portion of the memory used. Hashing has the advantage of
spreading the values more evenly across the memory and possibly allowing the
memory size to be reduced, however there is a potential to have to look in multiple
locations if multiple tokens have the same hash values. The 2-way set associative
cache uses two memory locations, the faster cache to store the more recently added
tokens and slower directed mapped or hashed memory to store all of the tokens. The
advantage with this is tokens will normally arrive at approximately the same time as
their pair, thus these can be quickly accessed from the limited amount of fast
expensive memory while the other tokens are still stored in the slower more abundant
memory. This technique, of using an associative ‘token cache coupled with a
secondary hash table in bulk memory’ [2], was used in the full implementation of the
CSIRAC II architecture as the key field was too large for direct mapped memory. In
this implementation a direct mapped approach was used due to its simplicity.
Reducing the number of locations under one hundred would have no size advantage as
the same number of RAM blocks would be required, likewise a cache would have no
benefits as there is enough of this fast RAM available for this implementation, and as
there were no colours there were no benefits in using hashing to store the tokens.

The Matching Store could be implemented in any number of pipeline stages. The
advantage with increasing the number of stages is that the clock speed and through
put can be increased, however there are other restrictions placed on the clock speed
due to RAM accesses and control logic. For these reasons the Matching Store was
implemented in two pipeline stages, thus allowing RAM indexed by RAM to be
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spread over the two stages avoiding double RAM accesses, which restrict the clock
speed. Increasing the pipeline further would have minimal benefit as the major
restrictions on the clock speed were caused by RAM accesses and extra logic would
have to be considered for forwarding results as any stalling of the pipeline would be
unacceptable.

Consecutive tokens corresponding to the same node are a concern due to the multiple
pipeline stages. There are two methods to overcome this problem, the first is to delay
the pipeline until the values have been updated and the second is to forward the
information. The first does have a major drawback as consecutive sets of these
conditions could occur causing the tokens to bank up behind the Matching Store. The
second ensures there are no pipeline delays, however requires more logic to forward
the values. The other advantage with the second method is that the buffer can be
excluded, which uses much more logic than that required to forward the values and
has the added advantage of reducing the overall minimal number of pipeline stages for
the Matching Store to two.

5.4.2 Implementation restrictions
Due to the on-chip RAM being used for the Linked List there is only 256 elements,
however this should be sufficiently large to hold the Linked List required for any
graph as long as it is written acceptably. In the event the Linked List becomes full the
processor will deadlock with a signal being sent to an external pin, thus it is crucial
that this does not occur.

In this implementation of the Matching Store only flat graphs can be implemented, as
only the first token in the Linked List is matched with the incoming tokens, also
colours have been excluded from this implementation. The reason for using colours is
it allows different instances of a node to be distinguished instead of ensuring they are
always executed in the same order. This enables recursive programs to be executed,
however it complicates the Matching Store, possibly making it too large to fit onto the
FPGA, thus it has been excluded from this implementation.

5.4.3 On-chip specifications
The features of the Matching Store were:

• 125 directed mapped elements
• 256 element linked list
• Single linked list
• 2 clock cycle execution
• Implemented using on-chip RAM

6 Node Store
The Node Store has three sections, these are inputting of the node descriptions,
collecting the function and literal, and collecting the destinations (figure 6). Inputting
of the node descriptions obtains the tokens from the top of the Input List and places
them into the appropriate section of the Node Store. The storage of the information is
split into two sections corresponding to the collecting sections of the Node Store. As
RAM is used for the storing, some information is stored in temporary variables until
the rest required for that section is obtained from a following token.
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Figure 6. Layout of the Node Store

The collecting of the function and literal uses the read only part of this section of the
storage, which is accessed using a signal. The advantage of doing this is that the
information can be sent in the same clock cycle as it is requested, thus reducing the
logic required to obtain the information at the start of the Node Store. As this is done
in one clock cycle the literal value is sent regardless, so the Node Store does not affect
the overall clock speed of the processor with the value being disregarded in the
Bypass if it is not required.

Collecting of the destinations operates in the same way with the request sent in the
Execution Unit to be received in the Distributor at the same time as the result. The
reason these two sections are separate is that the destinations are not required until
later in the processor than the function and literal, therefore the memory required can
be reduced by collecting them at different stages in the processor. The function and
literal could have been collected later however this would complicate the Execution
Unit Buffer and possibly affect the maximum clock speed of the processor.

6.1.1 Design considerations
The type of storage used for this section had to be carefully considered as there is a
large amount of data to be stored and the access speed of this section will greatly
affect the processor as it is accessed for every token that enters the processor. For
these reasons on-chip RAM was chosen, as the access speeds would not degrade the
processor clock speed while still being an efficient way of storing the information.

The two collecting stages could be implemented with either one or two clock cycles.
Both methods deliver the same results, however with the two-clock cycle design the
requests have to be sent earlier creating the need for extra logic to ensure there are no
pipeline delays waiting for the Node Store, while having no performance benefits to
the overall processor.
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6.1.2 Implementation restrictions
Due to the size restrictions of the FPGA, the Node Store is only able to hold one
hundred nodes with the possibility of extending it to one hundred and twenty seven.
Any larger than this would require more RAM blocks which are not available. This
restriction on RAM blocks also restricts the Node Store to only allowing one
collection of the function with the literal in one section and one collection of the
destinations in the other section per clock cycle. This could be altered to allow two
collections of each, however this would require the assurance that the Node Store was
completely loaded before the processor begins or control logic to avoid one of the
collections occurring when information was being stored.

6.1.3 On-chip specifications
The features of the Node Store were:

• Same clock cycle retrieval on of information
• Implemented using on-chip RAM
• Separate storage for the function and literal, and destinations
• Maximum storage of 125 directed mapped nodes

6.2 Execution Unit
The Execution Unit consists of a buffer and an ALU (figure 7). The ALU section was
implemented with a switch statement to choose between the different instructions
available to the programmer. All of these instructions are single assignment
instructions on 32-bit integers with any smaller integers being sign extended to allow
the same functions to be used. The Execution Unit Buffer was required as tokens can
enter from the Bypass and the Matching Store, thus the buffer can handle the two
tokens without delaying either section of the processor whereas the Execution Unit
would have to stall the pipeline as it can only accept one token at a time. This buffer
has 256 elements, which is more than enough as the maximum influx of tokens is
four, as the Matching Store only has two pipeline stages. Any further increase will
only occur if the Local List becomes full, which will deadlock the processor anyway.
The reason there are so many elements is that the buffer is implemented similarly to
the Local List with multiple storage sections (figure 3) to allow for multiple insertions
in a clock cycle, thus the maximum number of elements using the minimum number
of RAM blocks is 256.
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Figure 7. Layout of the Execution Unit.
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6.2.1 Design considerations
The instructions could have been implemented as separate functions for each of the
types, however as they all behave the same this would only increase the logic required
while not delivering any performance benefits as the design would be limited by the
32-bit integer instructions. Also it is easier to sign extend everything to 32-bits, than
to calculate what the data has to be extended to.

The size of the buffer was chosen to be 256 elements as this would be sufficient to
handle the possible fluctuations in tokens while not being too large to require extra
resources while fully utilizing the minimal number of RAM blocks.

There are a few different ways to receive and input the tokens into the Execution Unit
Buffer. The first stores them in a temporary location allowing the nop instructions to
be discarded and the others to be correctly added to the buffer, while the second
method uses signals allowing the values to be checked and stored in the same clock
cycle. The advantage with the first method is that the amount of logic in each clock
cycle is reduced thus allowing the clock speed to increase, the down side is there is an
extra pipeline stage which can be avoid by adding extra control logic to Bypass the
buffer if it is empty. The second approach was chosen as it was simpler, thus requiring
less control logic to obtain the same results, and as the speed penalty was not
noticeable.

6.2.2 Implementation restrictions
There is a limited number of instructions available, this simplified the Execution Unit
and avoided the clock speed form being limited by the ALU. For this reason a major
exclusion was division as this reduced the clock speed by 90% and required more
space than was available on the FPGA. However there is a suitable selection of
instructions to enable most programs to be executed on this processor.

The number of data types was also limited to reduce the size of the ALU and the size
of the data being stored on the FPGA, thus allowing the performance of the processor
to be increased.

The Execution Unit contains a single ALU thus only one instruction can be
implemented at a time, however the number of tokens entering the processor is
basically equivalent to this, thus it should not create a bottleneck in the processor.

6.2.3 On-chip specifications
The features of the Execution Unit were:

• 13 instructions
• 32-bit sign extension
• Precision is maintained
• 256 element buffer
• Single clock cycle instructions
• Implemented using on-chip RAM
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6.3 Distributor
The Distributor obtains the information from both the Execution Unit and the Node
Store to enable it to send the appropriate data to the Local List, as there is no network
(figure 8). One of the pieces of information obtained from the Execution Unit informs
the Distributor if it should send the data to all of the destinations, one of the
destinations or none of the destinations, the other is the data to be sent which is
combined with the destinations obtained from the Node Store. As there is a maximum
of two destinations the Distributor was enabled to insert two tokens at a time into the
Input List, therefore ensuring there are no pipeline delays caused by this section of the
processor.

Execution Unit 

Local List External Network 

Node 
Store Distributor 

Figure 8. Layout of the Distributor.

6.3.1 Design considerations
As the Distributor only inserts tokens into the Local List the branching size had to be
considered as too large a branching factor would fill the Local List, increase execution
time, and cause possible pipeline delays while inserting tokens into the Local List.
Thus a branching factor of two was chosen, as it was suitable for the size of the
problems being implemented on the processor while not placing a large demand on
FPGA resources to obtain an implementation without pipeline delays.

6.3.2 Implementation restrictions
The Distributor was restricted to only accepting one answer from the Execution Unit
and generating two tokens at a time, thus ensuring that there are no pipeline delays
while not over restricting the programs that can be implemented on this processor.

6.3.3 On-chip specifications
The features of the Distributor were:

• Maximum of two destinations
• Only one clock cycle to store the destinations
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6.4 Tokens and Nodes
This architecture operates using tokens that contain the data and nodes that contain the
instructions to perform on the data and where the result is to be sent. The tokens being
inserted into the processor were implemented as specified in The CSIRAC II Data-
flow Computer Token and Node Definitions [4] with the restriction that they were
fixed length to handle a maximum of 32-bit integers and that vectors were not
allowed. Once in the processor some of the fields are reduced or ignored, as the
processor was not designed to handle these features. One such feature is the colours,
in the specifications there is 40-bits allocated to the colour field, which is ignored as
the processor does not implement colours, as this would increase the required control
logic causing the processor to become to large for the FPGA and the physical space
required on the chip to store the field is unavailable.

The Node descriptions were inserted into the processor using tokens and are
implemented as specified in The CSIRAC II Data-flow Computer Token and Node
Definitions [4]. Once in the processor they were inserted into the Node Store with the
relative information being extracted, thus reducing the resources required to store the
large tokens the node descriptions are stored in.

6.5 Problems encountered and solutions
Some of the problems encountered during this project were:

• Collecting the outputs from the Bypass and the Matching Store and inserting
them into the Execution Unit Buffer. As it was decided to do this in one clock
cycle signals had to be used, this caused some problems as the required control
logic only works if the signals are assigned before they are being tested. As it
could not be ensured that the signal containing the data to be stored would be
assigned before the testing, variables were used. These had to be assigned in
the previous clock cycle which was not too difficult, as knowing if something
will be sent is simpler than knowing what will be sent.

• The Node Store had a similar problem with obtaining the function and
argument, however the destinations could use a channel as there was no
control logic due to there only being one input to chose from.

• Being able to stall the pipeline if the lists and buffers were becoming full
caused some problems with the signal used in the pipeline stages. If the stages
were stalled when the list or buffer became full some of the information was
lost, however if the pipeline stages were fed Nop and continued to run the
processor operated correctly.

• Timing of the hardware design was found to affect the output with minor
adjustments in the design causing tokens to be gained or lost in different
sections of the processor. The cause of these problems was very difficult to
locate as the simulator in Handel-C was not affected by them and there were
very few debugging features added to the implementation, which would have
affected the design anyway. Another possibility was some of the data stored in
the external ram was being corrupted depending on the design being loaded
onto the FPGA.
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7 Operations

7.1 Compiling the test programs
To operate the processor the data-flow graphs had to be compiled into machine code.
This process was done in two steps to allow the program to be checked between the
steps. The first step compiled an i2 representation of the directed graph into a list of
node descriptions and tokens. The program was written in i2 as this higher-level
language allows functions to be written and reused as well as being easier to follow.
Normally the data-flow machine would execute this directly however due to the
restraints on the implementation a simple parser was used to convert this into serial
code.

7.2 Description of the test programs
There were two test programs implemented: a modeling of a small heated 2-d mesh
(Appendix M), and a filter (Appendix O). These programs were executed on a
control-flow processor as well as the data-flow processor in order to obtain a
performance comparison.

The mesh contained 9-cells being heated from the top, cooled from the bottom and
insulated on the sides. This mesh is continually heated until the center cell has a
constant temperature for a set number of iterations. The reason for having multiple
iterations at the same temperature was to ensure the cell had reached equilibrium as
the increase in temperature becomes very small around this temperature. This mesh
program should execute in approximately the same time for the two architectures as
the programs have approximately the same number of instructions due to the limited
branching factor on the data-flow program, the same clock speed, the data-flow
processor has the blocking node primed to allow multiple iterations of the same value
and branch predictions is enabled on the control-flow architecture. Taking all of these
considerations into account the data-flow processor should perform as well as the
control-flow processor. The reason for this is the mesh is very small thus allowing the
values to be stored in registers in the control-flow processor, this alleviates the need to
load and store data from cache therefore avoiding most of the data dependencies.
Having the values in memory also reduces the number of instructions required to
update the old values, thus the advantage of the data-flow processor keeping the
values for each iteration separate will not be apparent. The control instructions to
ensure the processors do the same number of iterations will only be slightly smaller in
the data-flow design and the advantage of the data-flow processor continuing to
execute nodes while the branching is being evaluated will probably not be obvious
due to the branch prediction being used in the control-flow processor.

The filter was an integrator consisting of a multiplication node, an add node and a
feedback path consisting of a shift down node. This graph was fed with a list of tokens
generating a step response. As a directed graph this program only contained four
instructions compared to the seven instructions for the control-flow implementation
written in C, thus the data-flow program was assured of executing faster. The reason
the data-flow machine had so few instructions as there was no branching required
because the output would be stopped when there was no input, instead of checking if
there is no input then breaking out of the loop.
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7.3 Performance comparison of the two architectures
With the mesh the data-flow architecture was found to perform slightly slower than
the control-flow architecture taking 125 clock cycles compared to 77 per iteration.
The main reasons for this was that all of the advantages a data-flow architecture has
over the control-flow architecture were not tested in this program, also about 50% of
the nodes in the directed graph were dyadic and as this implementation of the
CSIRAC II architecture sends all of the tokens through the Bypass, the Execution
Unit was only executing two-thirds of the time. However if the control-flow
architecture had to store and retrieve the values from memory the number of clock
cycles would increase by 54 per iteration causing it to execute slower than the data-
flow implementation, this is assuming each memory access only takes one clock cycle
which is very generous.

The filter also had better performance on the control-flow architecture. However this
was expected as the data-flow architecture reads the tokens from the external RAM
which takes 16 clock cycles thus the processor would have computed the result before
the next values was added to the Input List. As this did not give a fair comparison due
to the hardware limitations dictating the processors performance, the loading section
of the program was rewritten (Appendix L) so these tokens were fired multiple times
instead of multiple instances of them being read from memory. With this alteration
the data-flow architecture’s performance was found to exceed that of the control-flow
taking an average of five clock cycles compared to the seven clock cycles per input
value. The reason the data-flow processor is able to output an almost continuous
stream of results is the proceeding values beginning execution before the previous
values has been fully executed.

8 Conclusions
A subset of the CSIRAC II data-flow architecture was successfully implemented on
an Altera Cyclone FPGA. However there were some limitations on the design mainly
due to the large amount of memory required and the configuration of the available
RAM. One of these restrictions was that the program, due to its size, had to be stored
in external RAM. This increased the number of clock cycles required to load the node
definitions by a factor of 16 as the data bus was only 8-bits. This also starved the
processor while executing the filter program, as the previous token would have
completed execution before the processor had retrieved the next token from the
external RAM. The effect of this could have been reduced by using another device to
implement the external network thus allowing a larger data bus to be used.
Alternatively the token size could have been reduced however this would cause the
processor to differ from the specifications of the CSIRAC II architecture. The other
limiting factor causing the clock speed to be restricted to 50MHz was the number LEs
available on the FPGA. This caused compromises to be made in the design, thus
limiting possible performance improvements and reducing the performance gain
obtained from the scalability of a data-flow architecture.

When comparing the performance of the processor to a control-flow architecture it
was found that the performance advantages of the architecture were only apparent in
some of the programs being executed on the processor. This was due to the size
restrictions on the directed graphs being executed, thus the control-flow architecture
was able to use registers for all of its data storage. However if the program was scaled
up the control-flow architecture would have to access memory, drastically decreasing
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its performance, while the data-flow architecture would only be affected by the
increase in the number of instructions being executed. The program that performed
better on the data-flow architecture was the filter. This was an expected result as the
filter requires a constant stream of data to be processed simultaneously which is
possible in the data-flow architecture as another iteration of the graph can begin
execution before the previous finishes. Also, unlike the control-flow architecture, no
control logic is required, thus reducing the number of instructions being executed
from seven down to four.

8.1 Further work
Some possible improvements to the processor to improve its performance would be:

• Move the retrieval of the function and literal closer to the Execution Unit so
the dyadic tokens do not have to go through the Bypass thus increasing the
average throughput of the Execution Unit if more tokens are entering from the
Input List.

• Distribute the tokens to both the Local and Input List, thus allow a larger
branching factor to be used and therefore reducing the number of replicates
used in the programs.

• Allow the Local List to send tokens to the Bypass and the Matching Store
simultaneously.

• Collect the initialize tokens from another source so a larger word size can be
used or alternatively have a different clock for this section to ensure the
maximum clock speed to collect the tokens.

• Implement the architecture on a larger FPGA thus allowing it to be scaled-up,
therefore the performance will be comparable to the control-flow architecture.
Also this would allow the implementation of the design alteration that were
previously disregarded because of the size restrictions of the FPGA.
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Appendix A. Arch_marco.hcc
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Appendix B. Archdataflow.h
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Appendix C. Archdataflow.hcc
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Appendix D. bypass.hcc
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Appendix E. dist.hcc
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Appendix F. execution_unit.hcc
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Appendix G. input_list.hcc
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Appendix H. local_list.hcc
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Appendix I. matching_store.hcc
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Appendix J. Node_store.hcc
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Appendix K. program.h
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Appendix L. archdataflow.hcc edited for filter program
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Appendix M. mesh.i2
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Appendix N. mesh.dfo
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Appendix O. filter.i2
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Appendix P. filter.dfo
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Appendix Q. Schematic
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Appendix R. Quartus compilation Summary
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