


i

Abstract

This thesis describes a graphical visualization system for a UAV which was successfully

implemented using Microsoft Flight Simulator. The graphical display consists of a 3D

simulation of the aircrafts position and orientation as well as a graphical instrument panel

which displays important flight parameters.

To send the UAVs flight data to the simulator a Windows application was written using C++.

This application reads the flight data from either a log file, or from the computer’s serial port

in real-time, converts this data into the format required by the simulator, and then pipes it to

an instance of Microsoft Flight Simulator.

The instrument panel for the display was designed in consultation with the pilots of the UAV

and built using Flight Simulator’s XML gauge system; it displays such information as the

aircrafts speed, altitude, position, battery voltages, temperature levels, and the current state of

its autopilot and avionics systems.

A 3D graphical model of the UAV was constructed using the 3D modeling program gmax.

The model was converted to a Flight Simulator Aircraft to be displayed in the 3D simulation

window.

Satellite images and aerial photos of areas in which the UAV is usually flown were collected

and mapped to the terrain’s surface to improve the realism of the simulation.

The complete system that was implemented, and detailed in this document, offers a fully

functional system capable of providing crucial information about the state of the UAV during

its flight to the pilots on the ground.



ii

Declaration

I declare that this thesis is my own work and has not been submitted in any form for another

degree or diploma at any university or other institution of tertiary education. Information

derived from the published or unpublished work of others has been acknowledged in the text

and a list of references is given.

Evan Price



iii

Acknowledgements

I extend my sincere gratitude and appreciation to many people who made this undergraduate

thesis possible. Special thanks are due to my supervisor Professor Greg Egan for accepting

me to carry out this project and for his support, guidance and availability. I thoroughly

enjoyed working and learning from him.

Many thanks go to Ray Cooper and the rest of the Aerobotics Research Group for their ideas

and input into the design and layout of the graphical instrument panel.

Evan Price



iv

Contents
Abstract .................................................................................................................................i

Declaration ...........................................................................................................................ii

Acknowledgements............................................................................................................. iii

List of Tables ......................................................................................................................vii

List of Figures....................................................................................................................viii

CHAPTER 1:  Introduction.................................................................................................1

CHAPTER 2:  Objectives ....................................................................................................2

2.1 Application to pipe flight data to a flight simulator .................................................3

2.2 Constructing a 3D model of the UAV .....................................................................3
2.3 Creating a graphical instrument panel .....................................................................3

2.4 Customizing the terrain ...........................................................................................3

CHAPTER 3:  Choice of flight simulator software.............................................................4

3.1 FlightGear...............................................................................................................4

3.2 Microsoft® Flight Simulator....................................................................................4
3.3 Software Development Kits (SDKs)........................................................................5

3.3.1 Netpips: Data Input/Output................................................................................................. 5
3.3.2 Building Panels and Gauges ............................................................................................... 5
3.3.3 Aircraft Container System .................................................................................................. 6
3.3.4 Make Model ........................................................................................................................ 6
3.3.5 gmax Aircraft Creation ....................................................................................................... 6
3.3.6 Terrain ................................................................................................................................. 6

CHAPTER 4:  Data pipe application ..................................................................................7

4.1 Input data formats ...................................................................................................7
4.1.1 The MicroPilot log file format............................................................................................ 7
4.1.2 The Monash binary data format ......................................................................................... 8

4.2 Reading data from the serial port.............................................................................9
4.2.1 Opening the serial port........................................................................................................ 9
4.2.2 Setting parameters............................................................................................................... 9
4.2.3 Reading data...................................................................................................................... 10
4.2.4 Setting timeouts................................................................................................................. 11

4.3 The Flight Simulator Recorder .fsr file format.......................................................12
4.3.1 File Header ........................................................................................................................ 13
4.3.2 Data Records ..................................................................................................................... 14
4.3.3 Data Section header .......................................................................................................... 14



v

4.3.4 Object Definition Section Data ........................................................................................ 14
4.3.5 Property Dictionary Section Data..................................................................................... 15
4.3.6 Frame Section Data........................................................................................................... 15
4.3.7 File Trailer......................................................................................................................... 16

4.4 Piping data to Flight Simulator..............................................................................16
4.4.1 Flight Simulator parameters ............................................................................................. 16
4.4.2 Constructing the .fsr file ................................................................................................... 17
4.4.3 Creating the pipe ............................................................................................................... 18

4.5 Data interpolation and smoothing..........................................................................19

4.6 Graphical User Interface .......................................................................................21
CHAPTER 5:  3D model of the UAV ................................................................................25

5.1 Constructing the UAV model................................................................................25

5.2 Adding textures to the model ................................................................................27
5.3 Adding animations to the model............................................................................28

5.4 Converting the model to a Flight Simulator aircraft...............................................29
CHAPTER 6:  Instrument panel .......................................................................................31

6.1 Flight data displayed on panel...............................................................................31
6.2 Design of panel components .................................................................................33

6.2.1 Left Panel .......................................................................................................................... 34
6.2.2 Central dials ...................................................................................................................... 37
6.2.3 Navigational lights ............................................................................................................ 39
6.2.4 GPS display....................................................................................................................... 39
6.2.5 Clock.................................................................................................................................. 41

6.3 Panel configuration file .........................................................................................41

CHAPTER 7:  Customizing the terrain ............................................................................44

7.1 Image requirements...............................................................................................44
7.2 Converting a raw image to a terrain texture...........................................................46

CHAPTER 8:  Recommendations for further work .........................................................49

CHAPTER 9:  Conclusion .................................................................................................50

References...........................................................................................................................51

APPENDIX A:  Timeline ...................................................................................................52

APPENDIX B:  Contents of CD ROM ..............................................................................53

APPENDIX C:  Source code ..............................................................................................54

APPENDIX D:  XML gauge files.....................................................................................105

APPENDIX E:  IEEE Conference Paper ................................Error! Bookmark not defined.



vi



vii

List of Tables
Table 4.1   MicroPilot log file format .....................................................................................7

Table 4.2   List of errors and their codes...............................................................................24

Table 6.1   LevState parameters displayed on the panel ........................................................31

Table 6.2   AirframeState parameters displayed on the panel ................................................32

Table 6.3   NavState parameters displayed on the panel........................................................32

Table 6.4   Variables in the [WindowXX] section of the panel configuration file..................43

Table 6.5   Variables in the [Default View] section of the panel configuration file................43

Table 7.1   Destination directives..........................................................................................46

Table 7.2   Source directives.................................................................................................46



viii

List of Figures
Figure 2.1   Complete system diagram....................................................................................2

Figure 4.1   Format of data from ground station......................................................................8

Figure 4.2   Code to open serial port .......................................................................................9

Figure 4.3   Code to set the serial port parameters.................................................................10

Figure 4.4   Code used to read data from the serial port ........................................................10

Figure 4.5   Code used to set timeouts for the serial port.......................................................11

Figure 4.6   Algorithm for reading data from the serial port ..................................................12

Figure 4.7   Basic structure of Flight Simulator Recorder .fsr file .........................................13

Figure 4.8   Construction of a .fsr file ...................................................................................17

Figure 4.9   Code to create a pipe to MS Flight Simulator and playback simulation ..............18

Figure 4.10   Interpolation and smoothing of the flight data ..................................................19

Figure 4.11   Example of smoothed data when reading from a file ........................................20

Figure 4.12   Example of smoothed data when reading in real-time ......................................20

Figure 4.12   Smoothing the aircraft heading data.................................................................21

Figure 4.13   Graphical user interface ...................................................................................22

Figure 4.14   Open file dialog box ........................................................................................22

Figure 4.15   Set initial altitude dialog box ...........................................................................23

Figure 4.16   Serial port settings dialog box..........................................................................23

Figure 4.17   Data Structures property sheet .........................................................................23

Figure 5.1   Side view of body after applying a taper modifier..............................................25

Figure 5.2   Aligning vertices to the background image ........................................................26

Figure 5.3   Plan views of the complete model......................................................................26

Figure 5.4   Illustration of a mipmap.....................................................................................27

Figure 5.5   Final 3D model in flight.....................................................................................28

Figure 5.6   Texture used to create spinning propeller effect .................................................29

Figure 5.7   Disappearance of the aircraft model while in flight ............................................30

Figure 6.1   UAV instrument panel .......................................................................................34

Figure 6.2   Graphics of left panel section.............................................................................35

Figure 6.3   Example of a gauge using the <Select> element ................................................35

Figure 6.4   Example of a gauge using the <Text> element...................................................36

Figure 6.5   Battery voltage display with avionics alarm set..................................................36

Figure 6.6   Graphics of central dials ....................................................................................37



ix

Figure 6.7   Example of a gauge using the <Rotate> element................................................38

Figure 6.8   Example of a gauge using the <Mouse> element ...............................................38

Figure 6.9   Airspeed gauge showing its ToolTip..................................................................38

Figure 6.10   Graphics of navigational lights ........................................................................39

Figure 6.11   The custom draw element used to display the GPS map...................................40

Figure 6.12   Graphics of GPS display with terrain on ..........................................................41

Figure 6.13   Graphics of clock.............................................................................................41

Figure 6.14   Panel configuration file....................................................................................42

Figure 7.1   Terrain image coordinates..................................................................................44

Figure 7.2   Result of terrain mapping when image doesn’t fall on a cell boundary. ..............45

Figure 7.3   Example of an .inf file used to create a custom texture area ...............................47

Figure 7.4   UAV flying over some customized terrain east of Melbourne (aerial photo). .....48

Figure 7.5   UAV flying over some customized terrain of Philip Island (satellite image).......48



1

Introduction
An unmanned aerial vehicle (UAV) is a self-descriptive term used to describe the latest

generation of pilotless aircraft. The modern UAV originated in the early 1970s and promises

to transform both military and civilian aerospace operations. The attractiveness of UAVs is

their ability to do the dirty, dangerous and dull jobs autonomously.

Almost all of the UAVs currently in operation are military aircraft. Most of them are used for

reconnaissance, targeting and battle damage indication, while some are armed with missiles

for active combat. In the near future, UAVs are expected to be used more widely for civilian

missions as well. Some of the possible civilian uses include:

• Agricultural crop spraying
• Inspecting pipelines and electrical power lines
• Atmospheric research
• Traffic/security surveillance
• Data-link relay

Director of the association for unmanned vehicle systems international (AUVSI) says,

“they're going to be used in commercial markets for things we haven't even thought of” [1].

The Aerobotics© (Aerial Robotics) Research Group at Monash University, is interested in all

aspects of the design, construction and application of electrically powered UAVs. The

research group’s current aircraft transmit a significant amount of information while in flight.

This project aims to display this data within a flight simulator package to obtain a pilots eye

view of the aircrafts behavior in real-time to assist with flying the aircraft. This system will be

particularly useful when the UAV is flown out of sight, giving the pilots on the ground

information of its current position and orientation. Another very useful aspect of the system is

the displaying of warning alarms such as low battery voltage and motor temperature too high.

The display was to include both a 3D simulation of the UAV as well as a graphical instrument

panel displaying the relevant flight data to the pilot. The design of the instrument panel was

conducted in consultation with the pilots of the UAV.

This document provides a detailed description of the design and implementation of the

complete visualization system.

Chapter 1



2

Objectives
The project deliverables were divided into three distinct parts; an application to pipe the

collected data into an instance of Microsoft Flight Simulator; a graphical model of the UAV

for the 3D simulation, and an instrument panel displaying all the necessary flight information.

An optional extension to the project was to create more realistic terrain for the areas in which

the UAV is flown. A diagram showing the complete system is shown in Figure 2.1 below.

Data pipe application

Flight Simulator with...

• 3D model
• Instrument Panel
• and Customised terrain

installed.

Data Pipe

Wireless Access 
Point

Serial link

Visualization 
System

Figure 2.1   Complete system diagram

The three main objectives as well the optional extension were successfully implemented. This

chapter provides an overview of each of these objectives.

Chapter 2



3

2.1 Application to pipe flight data to a flight simulator

This application was required to read in the data collected by the UAV, convert this data into

the format required by Flight Simulator, and then pipe it to an instance of Flight Simulator.

The application was required to read the data from three different sources:

1. A text file with the data stored in the MicroPilot format.
2. A binary file with the data stored in the Monash binary format.
3. The serial port in real-time with the data in the Monash binary format.

Details of the Micropilot format and Monash binary format are described in section 4.1.

The application was also required to implement some smoothing and interpolation of the

incoming data as the data is only sent from the UAV once every second; whereas the flight

simulator requires about 20 frames per second for smooth simulation.

2.2 Constructing a 3D model of the UAV

A scale model of the UAV was to be made using a graphical modeling package. The model

was then to be converted to a new flight simulator aircraft so that when simulating the UAV it

would actually appear as the UAV rather than one of the standard aircrafts supplied with the

flight simulator.

2.3 Creating a graphical instrument panel

An instrument panel was to be designed that displays all the relevant flight data, such as:

• Position and orientation (latitude, longitude, altitude, heading, pitch, roll, etc)
• Battery voltages and warning alarms
• Temperature levels and warning alarms
• Navigational information

The content and layout of the panel was to be designed in consultation with those who fly the

UAV with the aim of designing a panel which displays the most important information in an

easy to read format without overloading the pilot with unnecessary information.

2.4 Customizing the terrain

The standard terrain used within Microsoft Flight Simulator contains major roads and

landmarks but is mostly just computer generated from knowledge of the population density in

a particular area. To provide more realistic terrain, satellite and/or aerial photos were to be

collected for the areas in which the UAV is flown and mapped to the terrain surface.



4

Choice of flight simulator software
Two possible choices of flight simulator software were considered; FlightGear and Microsoft

Flight Simulator. The features of both flight simulators were researched and it was concluded

that both simulators provided all the necessary features to meet the objectives of this project.

However, it was also concluded that the documentation provided with Microsoft Flight

Simulator was more comprehensive and understandable than that provided with FlightGear.

Based mainly on this reason Microsoft Flight Simulator was chosen to use for this project.

This chapter gives an overview of the two flight simulators, outlining the basis for the choice

of simulator. Also included is an overview of all the Microsoft Flight Simulator SDKs which

were used in this project.

3.1 FlightGear

The FlightGear flight simulator is an open-source, multi-platform, cooperative flight

simulator development project [2]. Source code for the entire project is available free under

the GNU General Public License [3]. Because FlightGear’s code is open-source the simulator

is very flexible, allowing any desired modifications to be made. The downside of using

FlgihtGear however is the limited documentation that it provides. When comparing

FlightGear to Microsoft Flight Simulator a research group from the University of South

Florida concluded, “The scarce documentation makes its modification a time-consuming and

error-prone process” [4].

Given the limited timeframe that was available to complete this project, it was felt that it

would take too much time to learn how to use FlightGear, and thus Microsoft Flight Simulator

was considered the better option for this project.

3.2 Microsoft® Flight Simulator

Microsoft Flight Simulator 2004 is a proprietary flight simulator developed by Microsoft

Corporation [5]. Although it is aimed mainly at the gaming market, it must be said that the

program is primarily a simulation, not a game. Flight Simulator provides a high degree of

realism and indeed for this reason it is widely used by pilots for flight training.

Chapter 3



5

Although Flight Simulator is not an open-source program like FlightGear is does comprise a

structure that allows users to modify the game content. Individual aspects that can be edited

include panel layout and gauges, aircraft model, aircraft model textures, aircraft flight

characteristic models, scenery models and scenery textures. The other imperative feature of

Flight Simulator is the ability to drive the simulation from an external data set, in our case

from a UAV.

Microsoft provides a number of downloadable Software Development Kits (SDKs) from the

Flight Simulator website which document how to customize Flight Simulator and also

provides a few tools for doing so.

3.3 Software Development Kits (SDKs)

Contained in this section is an overview of all the SDKs for Microsoft Flight Simulator that

were used throughout this project.

3.3.1 Netpips: Data Input/Output

This SDK describes the format in which data must be sent to Flight Simulator. The format is

the same as the .fsr file which is produced by the flight video recording feature of Flight

Simulator. It is a binary file and is organized around frames of data representing a snapshot of

the simulation and environment at a moment in time. Each data-frame is time stamped to

allow for synchronization on playback. Full details of the format are described in section 4.3.

The SDK also provides details on how to set-up a pipe to an instance of Flight Simulator to

pass external data to the simulator.

3.3.2 Building Panels and Gauges

This SDK provides all the necessary information to create new gauges and panels for aircraft

in Flight Simulator. It includes the following information:

• An overview of the Panel system within Flight Simulator.
• A discussion of how to write the necessary code to make the gauges work.

• A programming reference listing the functions and variables available to create panels
and gauges.

• A complete list of all the parameters used in flight simulator.
• Tips on creating artwork for panels and gauges.



6

Microsoft Flight Simulator provides two ways of programming gauges; C code and XML.

The SDK provides sample C code for several typical gauges. It does not provide any sample

code for XML gauges; however the XML files from the panels supplied with Flight Simulator

are stored in .cab files and can be extracted and viewed.

More information about the Panel system within Flight Simulator is given in chapter 5.

3.3.3 Aircraft Container System

This SDK provides details of the aircraft container system’s organizational structure. An

aircraft “container” is simply an aircraft folder within the FS9\Aircraft directory. The SDK

provides details of the file hierarchy within this container and also explains the structure of

and parameters in the various configuration files contained in it. The aircraft container

includes the following configuration files:

• aircraft.cfg – configuration of overall aircraft system
• panel.cfg – configuration of the panel and its gauges
• model.cfg – configuration of the aircrafts 3D model
• sound.cfg – configuration of the aircrafts sound files

3.3.4 Make Model

Contained in this SDK is an application MakeMDL.exe which converts 3D models, created

using a 3D modeling package, into aircraft or scenery objects that can be used by Microsoft

Flight Simulator. Information on using this program is also supplied with the SDK.

3.3.5 gmax Aircraft Creation

Microsoft Flight Simulator supports models created in gmax, a 3D modeling tool from

Discreet [6]. By using gmax, one can create a model of an aircraft, apply textures and

animations to that model, and then export the model to a Flight Simulator aircraft using the

MakeMDL program described above. The documentation provided with this SDK includes a

set of best practices to follow when using gmax to build aircraft.

3.3.6 Terrain

This SDK describes how to use a Digital Elevation Model (DEM) to customize the terrain in

Microsoft Flight Simulator and how to add custom satellite or aerial imagery to the terrain. It

also provides an application for each of these processes, to convert the custom data into the

required format for Microsoft Flight Simulator.



7

Data pipe application
In order to drive Microsoft Flight Simulator with external data from the UAV a Windows

application was written using Visual C++. This application reads in the flight data from a

selected source (either from a log file or from the serial port), converts the data into the format

required by Microsoft Flight Simulator, and sends this data to the simulator via a pipe. This

chapter seeks to detail the main functionality of this application. Full listing of the code is

provided in Appendix C.

4.1 Input data formats

The application was required to input flight data stored in two different formats. The first

format is a text log file, while the second format is a binary data stream which is sent via the

serial link in real-time. As well as being able to receive this data stream from the serial port in

real-time, the application was also given the functionality to read this same data from a binary

file. This allows a flight to be recorded and played back at a later time.

Details of the two input data formats will be outlined in this section.

4.1.1 The MicroPilot log file format

One of the autopilots being used by the Aerobotics Research Group is the MicroPilot MP2028

produced by a Canadian Company [7]. It produces a text log file with the following fields:

Table 4.1   MicroPilot log file format

Column Data Unit
1 Time hh:mm:ss
2 Longitude Degrees and decimal degrees
3 Latitude Degrees and decimal degrees
4 Pitch Radians times 1024
5 Roll Radians times 1024
6 Airspeed Feet per second
7 GPS Speed Feet per second
8 Altitude Feet times -8
9 Vertical Speed Feet time -8 per second
10 Heading Degrees times 100
11 Error field
12 Status bitfield

Chapter 4



8

13 Main battery voltage Volts times 100
14 Servo battery voltage Volts times 100
15 Throttle position Percentage times 2.55
16 Status2 bitfield
17 Empty
18 Empty

Each field is separated with a space, except after columns 7, 8 and 9 which are followed by a

comma and then a space. A typical line of data is shown below:

13:20:39 145.209949E  37.881020S  352 224 68 66, -3192, -210, 26633 0 141 580 576 137 1 0 0

The log file contains approximately 10 data records every second. However, all the data is not

updated every record, some data fields such as the latitude and longitude are only updated

once every second.

4.1.2 The Monash binary data format

The data which is sent by the ground station via a serial link comes in the form of three C data

structures. Each C structure is preceded by a ‘$’ character and ends with a checksum. The set

of data structures are sent once every second.

$ LevState Struct – 50 bytes Checksum

$ AirframeState Struct – 13 bytes Checksum

$ NavState Struct – 70 bytes Checksum
Figure 4.1   Format of data from ground station

The C file (common.h) where these structures are defined can be found in Appendix C. In

order to store the data in these structures the common.h file was included in the application’s

source code. The incoming byte stream could then be copied directly into these structures and

used from there.

A difficulty did arise however as the original structures are stored on an 8-bit microcontroller,

and thus the members of the data structures are byte aligned, while the members of the data

structures on a 32-bit PC are DWORD aligned. Hence, when copying the data stream into the

data structures, careful consideration of the alignment of the structures members had to be

taken into account.



9

4.2 Reading data from the serial port

The UAV ground station transmits the current flight data via the serial link once every

second. This section outlines the code that was used to read this data from the serial port.

4.2.1 Opening the serial port

The following code was used to open the serial port, with windows.h included as a header file.

Figure 4.2   Code to open serial port

First a variable of type HANDLE is declared and initialized with a call to CreateFile. The first

argument to CreateFile is the name of the file to open, which is usually COM1. The next

argument tells Windows that we want to read from the serial port rather than write. The 5th

argument simply tells windows that the serial port already exists, while argument 6 just tells

windows that we don’t want to do anything fancy here.

4.2.2 Setting parameters

Once a handle to the serial port has been made the next step is to set the parameters for it.

Windows does this through a data structure called DCB.

HANDLE hSerial;

hSerial = CreateFile("COM1",
GENERIC_READ,
0,
0,
OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL,
0);

if (hSerial == INVALID_HANDLE_VALUE)
{

if (GetLastError() == ERROR_FILE_NOT_FOUND)
{

//serial port does not exist. Inform user.
}
//some other error occurred. Inform user.

}



10

Figure 4.3   Code to set the serial port parameters

First, a variable of type DCB is created with all its fields cleared and its size parameter set. The

GetCommState function is then used to fill in the parameters for the serial port, namely the

baud rate, byte size, number of stop bits and parity. Functionality was later given to change

these constants within the user interface.

4.2.3 Reading data

Once the serial port is open and set up with the correct parameters, reading the actual data is

straight forward. The following code was used to read one byte at a time from the serial port.

Figure 4.4   Code used to read data from the serial port

ReadFile takes in a HANDLE to a file (the serial port in our case), a buffer to store the data in,

the number of bytes to read, a pointer to an integer that will be set to the number of bytes

actually read, and NULL.

const int n = 1;
char szBuff[n + 1] = {0};
DWORD dwBytesRead = 0;

If (!ReadFile(hSerial, szBuff, n, &dwBytesRead, NULL))
{

//error occurred. Report to user.
}

DCB dcbSerialParams = {0};

dcbSerialParams.DCBlength = sizeof(dcbSerialParams);

if (!GetCommState(hSerial, &dcbSerialParams))
{

//error getting state
}

dcbSerialParams.BaudRate = CBR_4800;
dcbSerialParams.ByteSize = 8;
dcbSerialParams.StopBits = ONESTOPBIT;
dcbSerialParams.Parity = NOPARITY;

if (!SetCommState(hSerial, &dcbSerialParams))
{

//error setting serial port state
}



11

4.2.4 Setting timeouts

One of the problems with serial port communications is that if there isn’t any data coming

into the serial port (if the serial port device gets disconnected or turned off, for example) then

attempting to read from the port can cause the application to hang while waiting for data to

show up. The problem was avoided through the use of timeouts.

Figure 4.5   Code used to set timeouts for the serial port

The COMMTIMEOUTS structure has the following fields:

• ReadIntervalTimeout specifies how long (in milliseconds) to wait between

receiving characters before timing out.

• ReadTotalTimeoutConstant specifies how long to wait (in milliseconds) before

returning.

• ReadTotalTimeoutMultiplier specifies how much additional time to wait (in

milliseconds) before returning for each byte that was requested in the read operation.

By setting ReadIntervalTimeout to MAXDWORD and the other two fields to zero, any read

operations are caused to return immediately with whatever characters are in the buffer. Thus

even if the buffer is empty the operation will return immediately.

It was essential that the program execution did not wait at the serial port because Flight

Simulator requires a new frame every 50 ms or so (depending on how many frames per

second are being sent), and if it doesn’t receive the next frame in time the simulation will just

hang there until it does. It will then discard the next frame anyway as the time given in its

timestamp will already have passed. Hence it is imperative that the reading of data from the

serial port and the processing of the data be completed in less time than the time interval

between frames.

COMMTIMEOUTS timeouts = {0};

timeouts.ReadIntervalTimeout = MAXDWORD;
timeouts.ReadTotalTimeoutConstant = 0;
timeouts.ReadTotalTimeoutMultiplier = 0;

if(!SetCommTimeouts(hSerial, &timeouts))
{

//error setting timeouts
}



12

The code was originally written so that when a packet started to arrive, the application would

wait until the complete packet was received. However it was found that this took too long and

the simulation would not play smoothly. The serial port operates at 4800 baud and each

packet is of about 200 bytes long, which gives a total transmission time of 330 ms, much too

long to wait in-between frames. Hence the code was changed so that only the data already in

the buffer was read in-between sending frames to Flight Simulator. The alternative approach

would have been to have a multithreaded program; one thread to read data from the serial port

and one thread to pipe data to Flight Simulator. This however would have added great

complexity to the program and was really not necessary.

Read byte from 
serial port buffer

Bytes read
= 0?

Calculate new 
data frame

Pipe frame to 
Flight Sim

Process byte

Complete 
packet?

Copy packet to 
data structures

Extract relevant 
data from structs 
and convert to 
Flight Sim units 

Yes

No

No

Yes

Figure 4.6   Algorithm for reading data from the serial port

4.3 The Flight Simulator Recorder .fsr file format

In Microsoft Flight Simulator, the “video” recorder captures data about the simulation and

stores it in a file with the extension .fsr. When piping external data to Microsoft Flight



13

Simulator the same file format must be used. An overview of this file format will be discussed

here. For a more detailed description see the Netpipes: Data Input/Output SDK available from

the Microsoft Flight Simulator website [5].

An .fsr file is organized around frames of data representing a snapshot of the simulation and

environment at a moment in time. The data recorded in each data-frame is indexed into a

dictionary of properties and objects specified at the top of the data file.

At a high level the format follows this basic structure:

Figure 4.7   Basic structure of Flight Simulator Recorder .fsr file

4.3.1 File Header

The file header is composed of three fields:

• A four-character string. This is always “FSIB” for Flight Simulator 2004.

• A two-character string for the format version. This is always “80” for Flight Simulator

2004.

• A single WORD for the Flight Simulator version. 0x800 for Flight Simulator 2004.

<File Header>
<Data Record 1 header>

<data section header: e.g., object definitions>
<data section data>

<Data Record 1 footer>
<Data Record 2header>

<data section header: e.g., property definitions>
<data section data>

<Data Record 2 footer>
<Data Record 3header>

<data section header: frame data>
<frame data section>
<data section header: frame data>
…

<Data Record 3 footer>
…

<Data Record N header>
<data section header: frame data>
<frame data section
…

<Data Record N footer>
<File Trailer>



14

4.3.2 Data Records

Between the file header and the file footer are data records. A data record is composed of a

header, followed by some number of data sections, and ending with a footer.

The header has the following form:

• A four character string. This is always “BFIB” in Flight Simulator 2004.

• A DWORD for the total size in bytes, including the header and footer. For this record.

The footer has the following form:

• A reserved DWORD that currently must be set to zero.

• A DWORD for the total size in bytes of the data record. This size should match the

size in the header.

4.3.3 Data Section header

The header is of the form:

String – Section ID DWORD – Section Size

Section ID – A four character string that identifies the section. There are three possible

values:

• “ODIP” – Object Definition Section Data

• “PDIP” – Property Dictionary Section Data

• “FRIB” – Frame Section Data

Section Size – A DWORD indicating the size of the section, including the header, in bytes.

4.3.4 Object Definition Section Data

An object definition is a dictionary of objects, where each object is represented as three fields:

WORD – Object ID WORD – String Length String – Object Name

Object ID – A WORD used to identify this particular object.

String Length – The length of the object name string, in bytes.

Object Name – Used to map the property values of an instance to a Flight Simulator object.

In Flight Simulator 2004 there are two possible values recognized for this field:

• UserAircraft – object representing the user aircraft

• Environment – object which has properties such as time



15

4.3.5 Property Dictionary Section Data

The property dictionary defines the set of properties for each object in the object definition

section:

WORD –

Object ID

WORD –

Property ID

Enum –

Value Type

WORD –

Name Size

WORD –

Unit Size

String –

Property

String –

Unit

Object ID – A WORD that must match an Object ID from the object definition section.

Property ID – A WORD that is used in the frame section to identify this property.

Entry – A 2-byte enumeration that indicates what the property type is. Defined values are: (1)

Boolean; (2) Number; (3) Ordinal; and (4) String.

Name Size – The length of the property name, in bytes.

Unit Size – The length of the properties unit name, in bytes.

Property – The properties name. A complete list of the property names is given in the

Building Panels and Gauges SDK.

Unit – The name of the unit that the property is reported in. The list of possible unit names is

also given in the Building Panels and Gauges SDK.

4.3.6 Frame Section Data

Each frame section begins with a timestamp of the form:

Signed 64-bit Integer –

Time Stamp

DWORD –

Frame Number

DWORD –

Tick Count

Time Stamp – This number is in 1/256th of seconds since some moment in history. It is

compared to the previous frames timestamp, and represents the simulated time which has

passed since the last frame.

Frame Number – A sequential number of this frame since the start of the file.

Tick Count – An internal Flight Simulator counter. This value can just be set to zero when

piping data to Flight Simulator.

Following the timestamp is a list of object property values. Each of the form:

WORD – Object ID WORD – Property ID WORD – Value Type Data Value

Object ID – A WORD that must match a Object ID from the object definition section.



16

Property ID – The property ID defined in the property dictionary.

Value Type – This is a duplicate of the value type enumeration in the Property Dictionary.

Data Value – The value of the property reported in the units specified in the Property

Dictionary. The number of bytes for this data item is dependent on the Value Type field.

4.3.7 File Trailer

The File Trailer is a three part record where the first and third parts are identical. The format

for these two parts is:

• A four-character string. This is always “TAIB” for Flight Simulator 2004.

• A DWORD for the size in bytes of the trailer record.

The part in the middle is used to give the simulation a name and description and has the

following format:

WORD – Item ID WORD – Data Length String - Data

Item ID – This can be either (1) Title, or (2) Description.

Data Length – The length in bytes of the data string.

Data – The title or description of the file.

4.4 Piping data to Flight Simulator

This section details the process of storing the data in the Flight Simulator parameters,

constructing the .fsr file, and creating the pipe to Flight Simulator.

4.4.1 Flight Simulator parameters

The names of all the internal Flight Simulator parameters are provided with the Building

Panels and Gauges SDK. These names must be used when defining the parameters in the

properties section of the .fsr file. There is no way to add new parameters.

Some of the UAV flight variables such as battery voltages and temperatures had no equivalent

parameters to use in Flight Simulator. To pass such variables to Flight Simulator, and hence

be able to display them on the panel, other unimportant Flight Simulator parameters had to be

found to represent these variables. Although there are hundreds of internal Flight Simulator

parameters, it was found that only a very limited number of them could be modified

externally, mostly only those that directly relate to the simulation. For example, airspeed and



17

aircraft position could be modified while next waypoint position could not. This presented a

problem as there were a limited number of parameters in which to store all the UAV flight

data. To overcome this problem the many Boolean variables were stored bitwise within the

one variable.

The complete list of internal Flight Simulator parameters that were used for each UAV flight

variable are shown in the function InitializeFilghtVariables() defined in the file netpipes.cpp,

listed in Appendix C.

4.4.2 Constructing the .fsr file

The data to be piped to Microsoft Flight Simulator must be constructed in the .fsr file format

described in section 4.3. To do this a function was written for each section of the file:
FileHeader()
ObjectSection()
PropertySection()
FrameSection()
FileTrailer()

Each of the above functions constructs its respective section and adds its data to the end of a

vector of bytes, named DataPacket, and defined as follows:
std::vector<__int8>* DataPacket;
DataPacket = new std::vector<__int8>;

This vector of bytes is then piped to Microsoft Flight Simulator by a function named

PipeData(), which pipes the complete vector of bytes to Microsoft Flight Simulator, and then

clears the vector to be used again. A flow chart detailing this process is shown below.

Start FileHeader () ObjectSection () PropertySection ()

Update flight 
parametersFrameSection ()PipeData ()End of data ?

FileTrailer () PipeData () End

No

Yes

Create data vector

Delete data vector

Figure 4.8   Construction of a .fsr file



18

4.4.3 Creating the pipe

Included with the Netpipes SDK is sample code for collecting data from one instance of Flight

Simulator and playing it back in real time in another instance of Flight Simulator, to drive

views of the same flight on two computers. Thus the code to create a pipe to Flight Simulator

was already given and was used by including two C++ files and there corresponding header

files from the Netpipes SDK. These files are named AnonymousPipe and FlightSimLink and

are contained in Appendix C. The classes contained in these two files were used to create a

pipe to Microsoft Flight Simulator and play the simulation. The following code shows how

this was implemented:

Figure 4.9   Code to create a pipe to MS Flight Simulator and playback simulation

try
{

// Open pipe to FlightSim
AnonymousPipe* pipe = new AnonymousPipe();

  pipe->Open (GENERIC_WRITE);

   //Tell FlightSim to start playing back
   CFlightSimLink flightsim;
   flightsim.Tell (CFlightSimLink::FS_START_PLAYBACK, pipe-
>GetTheHandle ());

try
{

// pipe data
pipe->Write();

}
catch (...)
{

try
{

flightsim.Tell (CFlightSimLink::FS_STOP_PLAYBACK);
}
catch (...) {}
throw;

}
flightsim.Tell (CFlightSimLink::FS_STOP_PLAYBACK);

}
catch (const char* msg)
{

//error occurred. Inform user.
}



19

4.5 Data interpolation and smoothing

New data is sent from the UAV once every second. For smooth simulation in Flight Simulator

about 20 frames per second are necessary. Thus interpolation of the data was required and

was implemented within the application. The data was also smoothed, resulting in an even

flowing simulation.

When the data is read from a file a moving average technique is used, with two data points

behind and two data points ahead being stored to calculate the values for each data frame.

Between each data point a number of interpolated points are calculated, equal to the number

of frames sent to Flight Simulator per second. Then, from these interpolated points, a moving

average curve is calculated using a number of points either side.

Figure 4.10   Interpolation and smoothing of the flight data

When the data is read from the serial port in real-time a moving average technique is again

used but only those points preceding the current point are used, otherwise an unnecessary

delay in the simulation would need to be introduced.

Examples of some smoothed data for both cases are shown in the following two graphs.

Interpolated points

Smoothed point
calculated from
average of
interpolated points
between horizontal
lines

Actual
recorded
points



20

50

55

60

65

70

75

80

0 5 10 15

Time (s)

A
irs

pe
ed

 (k
ph

)

Real data
Smoothed data

Figure 4.11   Example of smoothed data when reading from a file

50

55

60

65

70

75

80

0 5 10 15

Time (s)

A
irs

pe
ed

 (k
ph

)

Real data
Smoothed data

Figure 4.12   Example of smoothed data when reading in real-time

As can be seen in Figure 4.12, when reading the data in real-time a lag of about one second is

introduced as new data is only received once a second. Also, the outputted data is not quite as

smooth as when reading from a log file, since the moving average is not taken over as many

data points.

It is only necessary to smooth the data which is used by Fight Simulator to play the

simulation, data such as latitude, longitude, heading, roll, etc. Other data which is only to be

displayed on the panel such as battery voltages are not smoothed.



21

A complication to the smoothing process arose when attempting to smooth the aircraft’s

heading. This occurred because the aircraft’s heading changes from 360° to 0° at a north

bearing, the moving average technique described above does not produce correct results if

there are points on either side of this bearing, i.e. when the aircraft is passing through a north

bearing.

To overcome this problem, when there are points either side of the 0° bearing, 360° is added

to the points which are to the east of it. The average is then calculated and if it is greater than

360° than 360° is taken off it to result in a correct value.

Figure 4.12   Smoothing the aircraft heading data

4.6 Graphical User Interface

A graphical user interface (GUI) was built for the data pipe application by using the Microsoft

Foundation Class Library (MFC). While a user interface could be created without using MFC,

it would take a tremendous amount of work. The advantage of using MFC is that an interface

can be quickly and efficiently produced using classes that Microsoft has already created.

The GUI was built by first creating a basic dialog box, and then adding to it a number of

controls; radio buttons, edit controls, check boxes and buttons. The main dialog box is shown

below in Figure 4.13.

90°

0°
360°

270°

180°

360° added to
these points
before applying
smoothing
function



22

Figure 4.13   Graphical user interface

The Browse buttons are used to select an input file and to select a name and destination for the

two possible output files. When the browse button is clicked a new window is displayed using

the CFileDialog class which creates the standard Windows Open File dialog box as shown

below in Figure 4.14.

Figure 4.14   Open file dialog box

Three other dialog boxes were created, one to set the initial altitude, one to select the serial

port settings and one to view the current values in the data structures from the UAV.

The initial altitude is required because the altitude on the UAV is initialized to zero before

takeoff, whilst the Flight Simulator requires an altitude above sea-level. Hence the initial

height of the UAV above sea-level must be known and set with this dialog box; otherwise the

plane is likely to be placed under the ground’s surface.



23

Figure 4.15   Set initial altitude dialog box

The Serial Port Settings dialog box contains a series of combo boxes containing drop down

lists of all the possible settings. The serial port settings are initialized to their default values at

startup and thus it is not necessary to select the port settings every time the program is run if

the default settings have not changed.

Figure 4.16   Serial port settings dialog box

When the View Data Structures button is pressed a property sheet is created using the

CPropertySheet class.

Figure 4.17   Data Structures property sheet



24

The property sheet contains three property pages, one for each of the data structures (as

described earlier in section 4.1.2). These pages display all of the fields contained in these data

structures and their values are updated when a new packet is received from the UAV. This

provides a means of viewing the less important data fields which are not displayed on the

graphical instrument panel, and was also very useful during debugging.

The user input collected from the various controls on the main dialog box, and the other child

dialog boxes, is stored in a data structure, named params, which is passed as a parameter to

the main run() function in netpipes.cpp (see Appendix C), when the start button is pressed.

The run() function is created on a new thread so that the user still has control of the user

interface and is thus able to stop the simulation by pressing the stop button. The start and stop

button are actually the same button but the text on the button is made to change to reflect what

state it is in. On completion of the simulation, the thread sends a message back to the initial

thread to let it know that it is finished and can start another simulation at the user’s request.

If an error occurs in the run() function and the thread is ended prematurely, an error code is

passed back to the main thread via the params data structure, and a message box containing

the error is displayed. A list of all the possible error’s and their codes is shown below.

Table 4.2   List of errors and their codes

Code Error
0 No error
1 “FlightSim is not running”
2 “Please select an input file”
3 “Incorrect input file path”
4 “Please select a name for the .fsr output file”
5 “Please select a name for the binary log file”
6 “Serial port does not exist”
7 “Could not open serial port”
8 “Error getting serial port state”
9 “Error setting serial port state”
10 “Error setting timeouts for serial port”
11 “Error reading from serial port”



25

3D model of the UAV
To add to the realism of the simulation a graphical model of the UAV was built and converted

to a Microsoft Flight Simulator aircraft. To build the model the software package gmax was

used. Gmax was chosen as it is supported by Microsoft with an SDK which provides an

application to convert a model created within gmax to a Flight Simulator aircraft, and also

provides details on how to design aircraft within gmax. Gmax is supplied with the Microsoft

Flight Simulator installation disks.

5.1 Constructing the UAV model

The following steps were taken to construct a 3D model of the UAV:

• Measurements of all the components of the aircraft were taken and recorded on

diagrams. It was not necessary to draw the diagrams to scale as all the information

needed was contained within the measurements.

• Photos of the side and of the top of the UAV were taken and loaded as background

images in gmax. These were used as guides to the shape of the aircraft components.

• A box with the dimensions of the body was created and placed over the background

image. The box was split into multiple length, width and height segments to allow the

shape of it to be modified.

• A taper modifier was first used to roughly match the shape of the box to that of the

aircraft body.

Figure 5.1   Side view of body after applying a taper modifier

Chapter 5



26

• The vertices of each segment were then aligned with the background image to produce

the exact shape of the aircraft body. This was done in both the side view plane and the

top view plane.

Figure 5.2   Aligning vertices to the background image

• In a similar way objects were created for the wings, the tail, the nose cone, and for the

propellers. Plan views of the complete model are showed in Figure 5.3 below.

Figure 5.3   Plan views of the complete model



27

5.2 Adding textures to the model

To improve the realism of the model, photos of every surface were taken and mapped to the

model as textures. To map multiple textures to the one object, e.g. the four sides of the body,

sub-object selections were made, each with a different texture mapped to its surface.

To be used within Flight Simulator the textures were converted into mipmaps. A mipmap is a

sequence of textures, each of which is a progressively lower resolution representation of the

same image. The height and width of each image, or level, in the mipmap is a power of two

smaller than the previous level. Mipmaps do not have to be square.

A high-resolution mipmap image is used for the plane when it appears close. Lower-

resolution images are used as the plane appears farther away. Mipmapping decreases the time

required to render a scene and also improves the scene’s realism [8]. However they do require

more memory.

The following illustration shows an example of the levels in a mipmap.

Figure 5.4   Illustration of a mipmap

To create mipmaps for each of the aircrafts textures a program called Imagetool (provided

within the gmax Aircraft Creation SDK) was used. The textures also needed to be given a

filename with the suffix _T to be recognized by Flight Simulator.

The final model showing the texture mapping is shown below in Figure 5.5.



28

Figure 5.5   Final 3D model in flight

5.3 Adding animations to the model

Two animations were added to the model; a spinning propeller, and moving wing flaps.

For Microsoft Flight simulator to recognize animated parts it uses a naming convention

described in the gmax Aircraft Creation SDK. The following names are used for the propeller:

prop0_still – visible when the engine is off

prop0_blurred – visible and rotating when the engine is on

To create the effect of a spinning propeller a disk was created with the texture shown below in

Figure 5.6 mapped to it. The texture was extracted from another aircraft within Flight

Simulator.

The result of this texture mapping on the spinning propeller can be seen in the screen shot

shown above in Figure 5.5.



29

Figure 5.6   Texture used to create spinning propeller effect

The naming conventions required by Microsoft Flight Simulator for the flaps are L_Flap_Key

and R_Flap_Key. To control the movement of the flaps a keyframe animation was set-up in

gmax by specifying the parameters of rotation. The flaps could then be controlled through

Flight Simulator.

5.4 Converting the model to a Flight Simulator aircraft

Once the gmax model was completed it was converted to a Flight Simulator aircraft using the

MakeMDL.exe program which is provided with the Make Model SDK. The model was then

placed in the directory FS9\Aircraft\UAV\model, while the textures were placed in the

directory FS9\Aircraft\UAV\texture, as detailed in the Aircraft Container System SDK.

It was found that with the model at the correct scale (approx 1.5m wingspan) it would not

display in the aircraft preview window. The model was also found to disappear during flight

at certain view angles. This is shown in Figure 5.7 below where the right wing and the tail are

just starting to disappear. The graphics generator within Flight Simulator is just too crude for

models of that small a scale to display correctly.



30

Figure 5.7   Disappearance of the aircraft model while in flight

To overcome this problem of the model disappearing, the scale of the model was increased to

have a wing span of about 5 meters. It was found that at this size the model would display

inside the aircraft preview model and would also display correctly during flight. It was not

important to have the model at the correct scale as it is simply a visual of the aircraft’s

position and orientation during flight.



31

Instrument panel
A large amount of information is captured by the UAV during flight. Some of this data is very

useful to the person piloting the aircraft, whilst other information is pretty well irrelevant. The

objective of this part of the project was to consult with those people who pilot the UAV to

determine which data would be useful to the pilot and how this data would best be displayed.

During the initial consultation process the importance of each parameter was ranked by the

pilots for each of the flight modes. Recommendations on the format of the display for each

parameter were also given. After this initial consultation process a panel was built and then

brought back to the pilots for feedback. Changes and improvements were then made until the

pilots were satisfied with the content and layout of the panel.

This chapter contains a list of all the flight data which was considered to be useful to the

pilots and gives details of each of the gauges that were built.  It also provides details of the

configuration file that was written to configure the panel from all the individual gauges.

6.1 Flight data displayed on panel

A total of approximately 100 flight parameters are currently recorded by the UAV and stored

in the three C data structures; LevState, AirframeState and NavState. The definitions of these

data structures are in the file common.h, provided in Appendix C. From these data structures

the pilots of the UAV determined which parameters are useful and should be displayed on the

panel, and how they should be displayed.

The following tables list all the parameters from the three C data structures that were deemed

to be useful.

Table 6.1   LevState parameters displayed on the panel

Type Parameter name Gauge type
ThrottleArmed Light; 0 = off, 1 = green
FlapsAndSpoilersArmed Light; 0 = off, 1 = green
ElevatorArmed Light; 0 = off, 1 = green
AltitudeAlarm Altitude display flashes red when set
GroundProximityAlarm Altitude display flashes red when set
NavValid Light; 0 = red, 1 = green

LevFlags

RCLinkup Light; 0 = red, 1 = green
enum CommandState Text window displaying command state

Chapter 6



32

AirspeedV Dial (kilometers per hour)
RollV Vertical horizon indicator
PitchV Vertical horizon indicator
HeadingV Dial

VarRec

AltitudeV Dial (meters)
ThrottleC Dial (percentage)

Positioned with ThrottleArmed light
ElevatorC Digital display (percentage)

Positioned with ElevatorArmed light
FlapsC Digital display (percentage)

Positioned with FlapsAndSpoilersArmed light

int

SpoilersC Digital display (percentage)
Positioned with FlapsAndSpoilersArmed light

Table 6.2   AirframeState parameters displayed on the panel

Type Parameter name Gauge type
AvionicsBatteryVoltsAlarm Display background goes red
ServoBatteryVoltsAlarm Display background goes red
MotorBatteryVoltsAlarm Display background goes red
BatteryTemperatureAlarm Display background goes red

AirframeFlags

MotorTemperatureAlarm Display background goes red
AvionicsBatteryVolts Digital display (volts)
ServoBatteryVolts Digital display (volts)
MotorBatteryVolts Digital display (volts)
BatteryTemperature Digital display (degrees celsius)

int

MotorTemperature Digital display (degrees celsius)

Table 6.3   NavState parameters displayed on the panel

Type Parameter name Gauge type
NavArrivalAlarm Light; 0 = off, 1 = yellow flashing
ReturningToOrigin Light; 0 = off, 1 = yellow
GPSValid Light; 0 = red, 1 = green

NavFlags

WayPointValid Light; 0 = red, 1 = green
long MissionTime Digital clock (hh:mm:ss)

Latitude Waypoint marker on GPS display
Longitude Waypoint marker on GPS display

WayState

Altitude Digital display on GPS
Latitude Current position marker on GPS display
Longitude Current position marker on GPS display

GPSState

RateOfClimb Dial (meters per second)
long ClosingRange Digital display on GPS
int WayHeading Digital display on GPS



33

6.2 Design of panel components

Microsoft Flight Simulator has traditionally used gauges programmed in C. However, in

Flight Simulator 2002 a new kind of gauge was introduced, the XML gauge. Currently, in

Flight Simulator 2004, both C gauges and XML gauges are supported, although the majority

of the standard panels still use C gauges. The shift is however towards XML gauges and thus

the panel for the UAV was built using XML gauges to increase the chances that it will be

compatible with future versions of Microsoft Flight Simulator.

A downside of using XML gauges was that there is currently very limited documentation on

how to build XML gauges in the Building Panels and Gauges SDK. However the SDK does

provide an XML schema which was used as a resource for all the possible XML fields and

types of their values. The XML files from the standard panels which use XML gauges are also

available and were used as references.

An XML gauge in Flight Simulator consists of three parts:

1. The first part provides generic information about the gauge: its name, its background

image, and its size.

2. The second part of the XML gauge is a list of elements of the gauge (marked by

<Element> tags). Each element is generally a bitmap image or a text string.

3. The third part of the XML gauge describes the gauge’s mouse rectangles, which can be

used to display tool tips or to obtain user input from a mouse click.

The root element of an XML gauge is the <Gauge> element.

The graphics of the panel and its gauges were designed using the drawing tools in Adobe

Photoshop to create vector shapes (mathematically defined lines and curves), which could be

easily manipulated and resized as desired. Once designed the images were converted to 8-bit

bitmap images as required by Microsoft Flight Simulator. When transparency was required,

such as for the rounded ends at the top of the panel and for all of the circular dials, the

background colour was set to true black (0,0,0 RGB value). True black is made to appear

transparent in the simulation.

The final design of the graphical instrument panel for the UAV is shown below in Figure 6.1.



34

Figure 6.1   UAV instrument panel

The following sections detail all of the components that make up the UAV panel, and shows

the major XML elements which were used to build them. A complete list of all the XML files

for the panel is contained in Appendix D.

6.2.1 Left Panel

The left component of the panel consists of a text display of the UAV’s command state,

digital displays of the control surfaces (elevators, flaps, and spoilers), digital displays of the

battery voltages and digital displays of the temperature readings.



35

Figure 6.2   Graphics of left panel section

The XML file associated with this section of the panel is named Left Panel.xml and is given in

Appendix D.

The lights for the ElevatorArmed and FlapsAndSpoilerArmed flags are displayed using the

<Select> element. Figure 6.3 below shows the code used for the ElevatorArmed light.

Figure 6.3   Example of a gauge using the <Select> element

The <Position> element specifies the X, Y position of the <Element> relative to the gauge.

The <Select> element displays an image depending on the result of the <Value> element. The

<Value> element checks if the ElevatorArmed flag is set. The <Case> element then displays

the GreenLightOn image if the flag is set or the GreenLightOff image if the flag is not set.

<Element>
   <Position X="10" Y="83"/>
   <Select>
      <Value>(L:ElevatorArmed, boolean)</Value>

<Case Value="0">
         <Image Name="GreenLightOff.bmp"/>
      </Case>
      <Case Value="1">
         <Image Name="GreenLightOn.bmp"/>
      </Case>
   </Select>
</Element>



36

The text displays for the command state, for the flaps, spoilers and elevator positions, for the

battery voltages, and for the temperature readings, are implemented with the <Text> element.

Figure 6.4 below shows the code used for the ElevatorC display.

Figure 6.4   Example of a gauge using the <Text> element

The <Text> element contains a number of attributes for the text such as the position, length,

font color etc. The <String> element then defines the string to display. The <Visible> element

is used to display the elevator position only if the ElevatorArmed flag is set; otherwise the text

string is not displayed.

The other text displays are implemented in a similar way. For the battery voltage and

temperature reading displays, the background colour and the text colour are changed to red

and white respectively when the corresponding alarm flag is set.

Figure 6.5   Battery voltage display with avionics alarm set

The battery voltage and temperature gauges were originally designed as analog displays but it

was decided by the pilots during the consultation process that it would be better for them to be

digital displays. The main reason for this is that a number of different batteries are used with

different voltage levels, making it difficult to design a scale for an analog dial. The added

benefit is that they use up less space as digital dials, resulting in a smaller panel and thus more

room for the 3D simulation.

<Element>
   <Visible>(L:ElevatorArmed, boolean)</Visible>
   <Position X="45" Y="90"/>
   <Text X="40" Y="20" Length="3" Fixed="No" Font="Quartz"
FontHeight="0" FontWeight="400" Charset="Default" Attributes="Normal"
Adjust="Center" VerticalAdjust="Center" Multiline="No" Color="#00FF00"
BackgroundColor="transparent" HilightColor="white" Bright="Yes"
UseTransparency="Yes">
      <String>%((A:Elevator position,percent))%!3d!%</String>
   </Text>
</Element>



37

6.2.2 Central dials

The central component of the panel contains six analog dials displaying airspeed, attitude,

altitude, throttle, heading and vertical speed.

Figure 6.6   Graphics of central dials

The following XML files are associated with each of the dials and are given in Appendix D.

Airspeed Indicator.xml
Attitude Indicator.xml
Altimeter.xml
Throttle Indicator.xml
Heading Indicator.xml
Vertical Speed Indicator.xml

Each of these gauges uses the <Rotate> element to rotate either a needle or a background

image in accordance with a particular parameter. Figure 6.7 below shows how the rotate

element was used for the Airspeed Indicator.



38

Figure 6.7   Example of a gauge using the <Rotate> element

The Airspeed Indicated parameter to control the rotation of the needle is selected with the

<Value> element; the Minimum and Maximum attributes are set to specify the allowable

range. The <Nonlinearity> element specifies the X, Y coordinates that the needle is to point

towards for a value of “0” and for a value of “180”. The needle is then rotated linearly

between these two points. The element is given the name <Nonlinearity> because it can be

used to rotate the needle in a nonlinear manner by specifying more than two <Item> elements.

The <Delay> element is used to control the speed at which the needle can move. This is done

by setting the maximum rotation of the needle over a one second period.

Each of these gauges also uses the <Mouse> element to display a ToolTip as the mouse enters

the area defined by that gauge. A complete list of all the possible ToolTip IDs is provided

with the Panels SDK.

Figure 6.8   Example of a gauge using the <Mouse> element

Figure 6.9   Airspeed gauge showing its ToolTip

<Mouse>
   <Tooltip ID="TOOLTIPTEXT_AIRSPEED_KILOS"/>
</Mouse>

<Element>
   <Position X="79" Y="79"/>
   <Image Name="Airspeed_Needle.bmp" PointsTo="East">
      <Axis X="7" Y="6"/>
   </Image>
   <Rotate>
      <Value Minimum="0" Maximum="180">(A:Airspeed indicated, kilometer
per hour)</Value>
      <Nonlinearity>
         <Item Value="0" X="79" Y="18"/>
         <Item Value="180" X="43" Y="30"/>
      </Nonlinearity>
      <Delay DegreesPerSecond="20"/>
   </Rotate>
</Element>



39

When either the AltitudeAlarm (the UAV is flying to high) or the GroundProximityAlarm (the

UAV is too close to the ground) flags are set the altitude dial flashes red. This was

implemented by using the time parameter and alternating the background colour every

second.

6.2.3 Navigational lights

This section of the panel contains six lights that display information discerning the

navigational state of the UAV.

Figure 6.10   Graphics of navigational lights

The four lights at the bottom of this panel display the state of the four flags from the NavState

data structure. The two lights at the top actually display two of the flags belonging to the

LevState data structure; however it was decided by the pilots that these flags would be best

displayed together with the navigational flags as they relate to the navigational state of the

UAV.

The XML file associated with this section of the panel is named Nav Lights.xml and is given

in Appendix D. The XML elements used in this section of the panel are much the same as

those used to display the ElevatorArmed and FlapsAndSpoilersArmed lights on the left panel,

described earlier in Section 6.2.1.

6.2.4 GPS display

Microsoft Flight Simulator comes with a standard GPS display which opens in a separate

window. As most of the functionality of this GPS was not needed, a new GPS was built and

incorporated into the main panel as seen earlier in Figure 6.1. The XML file for the standard

GPS was used as a reference to build the new GPS. Much of the functionality of the standard

GPS is contained in a DLL file within the FS9\Modules directory and unfortunately no

documentation on these functions is provided. However, by studying the standard GPS XML

file enough knowledge of these functions was gained to be able to use them.



40

The main function which was used was the <CustomDraw> element named fs9gps:map

which displays the map. This element accepts a number of attributes and child elements which

set parameters for the map such as its dimensions, global position and heading, as seen in

Figure 6.11 below.

Figure 6.11   The custom draw element used to display the GPS map

The <DetailLayerTerrain> element sets the map to either show with the terrain OFF as seen

earlier in Figure 6.1, or to show with the terrain ON as seen in Figure 6.12 below, depending

on the value of the variable setup_ColorTerrain. This variable is changed with the TRN

button. Likewise the map_ZoomFactor variable used with the <Zoom> element is changed

with the + and - buttons.

The fs9gps:map function provides the functionality to display waypoints on the map.

However, only airports can be set as waypoints and thus this functionality could not be used

and instead the waypoint marker was placed on the map manually. The point at which to

display the marker was calculated using the distance to the waypoint, together with the map

zoom factor, and the desired heading.

The heading arc seen on the GPS display is also a <CustomDraw> element, named

fs9gps:rose.

A number of digital displays were included on the GPS to display the heading, desired

heading, distance to waypoint, current altitude and altitude of waypoint, as seen in Figure 6.12

below.

<CustomDraw Name="fs9gps:map" X="230" Y="145" LayerTerrain="Yes"
LayerBorders="Yes" LayerFlightPlan="Yes" FlightPlanLineWidth="2.5"
ActiveColorLayerFlightPlan="0x7010B0" astColorLayerFlightPlan="0xF0F0F0"
ColorLayerFlightPlan="0xF0F0F0" Bright="Yes" CenterX="115">

<CenterY>115</CenterY>
<Zoom>(@g:map_ZoomFactor) 1852.0 *</Zoom>
<Latitude>(A:GPS POSITION LAT, Radians)</Latitude>
<Longitude>(A:GPS POSITION LON, Radians)</Longitude>
<Heading>(A:GPS GROUND TRUE TRACK, Radians)</Heading>
<DetailLayerTerrain>(@g:setup_ColorTerrain) 0 == if{ 1 } els{ 2

}</DetailLayerTerrain>
</CustomDraw>



41

Desired 
heading

Current 
heading

Distance to 
waypoint

Current 
alititude

Altitude of 
waypoint

Zoom 
in/out

Terrain 
on/off

Waypoint 
marker

Figure 6.12   Graphics of GPS display with terrain on

The XML file associated with the GPS is named GPS.xml and is given in Appendix D.

6.2.5 Clock

When the input file is in the MicroPilot format the digital clock displays the time that the

flight was recorded. When the input is of the Monash binary format, however, the actual time

is not available and so the clock displays the time since the start of the flight, using the

MissionTime field in the NavState data structure.

Figure 6.13   Graphics of clock

The XML file associated with the clock is named Clock.xml and is given in Appendix D. It

uses the <Text> element, described earlier, to display the time.

6.3 Panel configuration file

When Microsoft Flight Simulator loads an aircraft, the panel is configured from the panel.cfg

file which is located in the aircraft’s Panel folder. It defines the characteristics of the aircraft’s

cockpit, including window settings, view settings, and gauges. This section details the

structure of the panel.cfg file.



42

A panel configuration file contains five possible sections:

[Windows Titles]
[Views]
[WindowXX]
[VCockpitXX]
[Default View]

The [Views] section and the [VCockpitXX] section were not used and thus will not be

described here. Full detail of all five sections is provided in the Building Panels and Gauges

SDK.

The configuration file written for the UAV’s panel is shown below in Figure 6.14.

Figure 6.14   Panel configuration file

Following is an explanation of each of the sections and the variables which were used:

[Window Titles] section: Creating Panel Windows

The panel system creates the aircraft’s panel window by using the [Window Titles] section.

For each WindowXX variable in this section, the panel system creates a panel window. The

string assigned to each WindowXX (e.g. Window00=Main Panel) is the title displayed within

Flight Simulator.

[Window Titles]
window00=Main Panel

[Window00]
file_1024=UAV_Panel_Background.bmp
size_mm=1024
position=7
ident=MAIN_PANEL
gauge00=UAV!Clock,175,17,70,24
gauge01=UAV!Left Panel,0,60,265,300
gauge02=UAV!Airspeed Indicator,270,30,158,158
gauge03=UAV!Attitude Indicator,433,30,158,158
gauge04=UAV!Altimeter,596,30,158,158
gauge05=UAV!Throttle,270,193,158,158
gauge06=UAV!Heading Indicator,433,193,158,158
gauge07=UAV!Vertical Speed Indicator,596,193,158,158
gauge08=UAV!Nav Lights,759,60,265,105
gauge09=UAV!GPS,759,160,265,200

[Default View]
X=0
Y=0
SIZE_X=8192
SIZE_Y=6144



43

[WindowXX] section: Describing panel windows

This section describes a panel window (i.e., an individual panel): its shape, position,

properties, the background image, and what gauges belong to the panel. Each of the variables

which were used in this section is described in the following table.

Table 6.4   Variables in the [WindowXX] section of the panel configuration file

Variable Description
file Specifies the bitmap file to load and use for the panel window

background. (Flight Simulator 2004 uses a background designed for
1024 by 768 resolution.)

size_mm Specifies the width of the panel window, in millimeters. To keep
things simple this value was set to the width of the panel in pixels.
This allows pixels and millimeters to be used interchangeably for all
references within the Panel.cfg file.

position Specifies the relative position of the panel window to the main
window. There are nine possible values for this field. A value of 7 was
used which places the panel window centered at the bottom of the
main window.

ident Specifies a unique identifier to define the panel window.
gauge00-gaugeXX Specifies which gauge file to load and the position of the gauge.

The basic format is:
        gauge## = gaugefolder!gaugename, X, Y, W, H

Where:
        gauge## – indicates the order in which the gauge is loaded.

        gaugefolder! – indicates the folder in which the gauge is found.
        X, Y – indicates the X and Y position of the gauge in millimeters,
        relative to the panel background.
        W, H – indicates the width and height of the gauge in millimeters.

[Default View] section: Setting the view

This section sets the overall view for the default 3-D simulation window.

Table 6.5   Variables in the [Default View] section of the panel configuration file

Variable Description
X Specifies the X position of the default 3D window.
Y Specifies the Y position of the default 3D window.
SIZE_X Specifies the width of the default 3D window. This was set to the

maximum width of 8192.
SIZE_ Specifies the height of the default 3D window. This was set to the

maximum width of 6144.



44

Customizing the terrain
To improve the realism of the terrain in Microsoft Flight Simulator, satellite images from

NASA were collected for Victoria, as well as one aerial photo of an area of east of Melbourne

where the UAV is often flown, and mapped to the terrain using the Terrain SDK. This chapter

gives details of the steps that were taken to produce these terrain maps.

7.1 Image requirements

The raw image must be either a 24-bit per pixel Windows .bmp or a 32-bit per pixel Targa

.tga file. The latitude and longitude of the northwest corner of the image must be known as

well as the spacing (in decimal degrees) between the image pixels. The spacing between

pixels however can be calculated from the latitude/longitude values of the image corners and

the image pixel size:

height pixel image
lat2-lat1spacing pixelh North/Sout =

 widthpixel image
long1-long2spacing pixelEast/West =

(long1, lat1) (long2, lat1)

(long1, lat2) (long2, lat2)

Image pixel width

Image 
pixel 

height

Figure 7.1   Terrain image coordinates

Chapter 7



45

The extent of each terrain texture pixel is 4.75 meters in Flight Simulator. The re-sampling

process will filter the raw image to the right size.

• If the raw image is more than 4.75 meters per pixel, the final result will appear blurry.

• If the raw image is less than 4.75 meters per pixel, some detail will be lost.

The terrain textures in Flight Simulator are stored as terrain cells, with each cell falling on a

multiple of 360/32768 degrees latitude and 480/32768 degrees longitude. If the input image

does not completely cover a terrain cell the uncovered area will be mapped as water. Thus to

avoid this happening the borders of an image should be cropped to fall exactly on a cell

boundary.

The picture below illustrates the mapping that results when an image is not defined to fall

exactly on a cell boundary. Unfortunately this aerial photo is too small and doesn’t completely

cover a terrain cell. Terrain mapping is better done with larger images which can be cropped

to align with a cell boundary.

Cell boundaries

Customized 
terrain

Figure 7.2   Result of terrain mapping when image doesn’t fall on a cell boundary.



46

7.2 Converting a raw image to a terrain texture

To convert a raw satellite image or aerial photo into a terrain texture an application named

resampler.exe is provided with the Terrain SDK. To use this application an .inf file must be

written which provides the re-sampler with the information necessary to create a custom

texture area.

There are two distinct areas of the .inf file:

• The [Destination] section, which defines the destination directory, the filename, and

the desired geographical bounds of the resulting files.

• The [Source] section, which defines the geographical area covered by the source

image and where to find the source file.

The tables below list the sets of directives required for each section.

Table 7.1   Destination directives

Directive Description
DestDir Specifies the directory where the files created by the re-sampler

will be placed.
DestBaseFileName Specifies the name given to the .bgl file created by the re-sampler.
BuildSeasons Tells the re-sampler to generate seasonal texture variations:

0 – Assumes a single source image for all seasons.
1 – Creates a set of seasonal textures.

UseSourceDimensions Specifies the dimensions of the destination image:
0 – Explicitly defines the dimensions of the resulting image. Used
if the source image is much larger than the desired result.
1 – Uses the latitude and longitude specified in the [Source]
section as the limits of the bounding area.

NorthLat Specifies the northern latitude of the destination image (only
needed if UseSourceDimensions = 0)

SouthLat Specifies the southern latitude of the destination image (only
needed if UseSourceDimensions = 0)

EastLon Specifies the eastern longitude of the destination image (only
needed if UseSourceDimensions = 0)

WestLon Specifies the western longitude of the destination image (only
needed if UseSourceDimensions = 0)

Table 7.2   Source directives

Directive Description
Type Specifies the type value. This must be Custom.
SourceDir Specifies the directory where the source image file is stored.
SourceFile Specifies the name of the source image file.
Lat Specifies the latitude of the Northwest corner of the image in

decimal degrees.



47

Lon Specifies the longitude of the Northwest corner of the image in
decimal degrees.

NumOfCellsPerLine Specifies the width of the image in pixels.
NumOfLines Specifies the height of the image in pixels.
CellXdimensionsDeg Specifies the distance between each pixel in degrees longitude.
CellYdimensionsDeg Specifies the distance between each pixel in degrees latitude.

For all of the custom texture areas that were created, BuildSeasons was set to 0 as satellite

images for each season were not available, neither would it have been necessary to have a

different terrain texture for each season.

An example of one of the .inf files that was written is shown below.

Figure 7.3   Example of an .inf file used to create a custom texture area

After creating an .inf file for the texture data, the re-sampler was run, which produces a .bgl

file (which contains the terrain mesh) and a set of .tga files (one for each terrain cell).

The .tga files must then be converted into mipmaps, and this was done with the application

Imagetool, which is provided with the Terrain SDK.

Figure 7.4 below shows the UAV flying over an area of customized terrain east of Melbourne

which was produced from an aerial photo with a pixel resolution less than 5 meters. Roads,

buildings and other major landmarks are clearly visible at this resolution.

The only satellite images that could be obtained free of charge had a pixel resolution of 15

meters. At this resolution major roads and landmarks are just visible but minor roads and

buildings become a blur. Figure 7.5 shows the UAV flying over a satellite image of Philip

Island, with the race track just visible in the foreground.

[Destination]
DestDir = "."
DestBaseFileName = "dandenong_valley"
BuildSeasons = 0
UseSourceDimensions = 1

[Source]
Type = Custom
SourceDir = "."
SourceFile = "dandenong_valley_parklands_12Feb04.bmp"
Lat = -37.8726667
Lon = 145.1992667
NumOfCellsPerLine = 4084
NumOfLines = 5057
CellXdimensionDeg = 4.0931929480901077E-006
CellYdimensionDeg = 3.2067747676488036E-006



48

Figure 7.4   UAV flying over some customized terrain east of Melbourne (aerial photo).

Figure 7.5   UAV flying over some customized terrain of Philip Island (satellite image).



49

Recommendations for further work
Although a visualization system for a UAV has successfully been implemented using

Microsoft Flight Simulator, there are many possible areas for further improvements. These

include:

• Collecting Digital Elevation Models (DEMs) and mapping these to the terrain to

produce a more accurate terrain mesh. Currently, 9 second DEMs (data points

approximately every 250m) are available as a free download from the Australian

government’s geoscience website [9]. More accurate 3 second models are available

with the payment of a licensing fee.

• Collecting more aerial photos for the areas in which the UAVs are most often flown.

These could be either captured with cameras onboard the UAV or could be purchased.

• Creating 3D models of the other UAVs that are used by the Aerobotics© Research

Group.

Chapter 8



50

Conclusion
A visualization system for a UAV has successfully been designed and implemented using

Microsoft Flight Simulator. Microsoft Flight Simulator was chosen over the open-source

flight simulator FlightGear due to the comprehensiveness of its documentation, although it

was concluded that either flight simulator would have been suitable for this project.

A Windows application capable of reading the UAV’s flight data from a log file, or from a

serial port in real-time, and piping this data to an instance of Flight Simulator was written.

Algorithms to smooth the flight data were also added which resulted in a sufficiently smooth

simulation of the UAV. A user interface was written for the application providing an easy

method of setting user options.

A 3D graphical model of the UAV was constructed using the 3D modeling program gmax. At

the correct scale the model was found to not display correctly in the simulator. To overcome

this problem the size of the model had to be increased to have a wing span of about 5 meters.

It was not considered important to have the model at the correct scale as it is simply a visual

of the aircraft’s position and orientation during flight.

In consultation with the pilots of the UAV an instrument panel was designed that displayed all

of the UAVs flight data which the pilots considered to be relevant. Changes and

improvements to the design were made until the pilots were satisfied with the content and

layout of the panel.

As an optional extension to the original project requirements, satellite images and aerial

photos were collected for the areas in which the UAV is flown and were mapped to the

surface of the terrain to improve the realism of the 3D simulation. For best results images

with a pixel resolution of 5 meters or less should be used.

Together these components provide a fully functional system capable of providing crucial

information about the state of the UAV during a flight to the pilots on the ground.

Chapter 9



51

References
[1] Wired News, “Human Pilots: Who Needs ‘Em?”, [online], Available:

http://www.wired.com/news/technology, November 2003, (Accessed September

2005).

[2] FlightGear, [online], Available: http://www.flightgear.org, September 2005,

(Accessed September 2005).

[3] GNU General Public License, [online], Available:

http://www.gnu.org/copyleft/gpl.html, July 2005, (Accessed September 2005).

[4] M. Castillo-Effen, W. Alvis, C. Castillo, K. Valavanis and W. Moreno, “Modeling and

Visualization of Multiple Autonomous Heterogeneous Vehicles”, University of South

Florida [online], Available: http://crasar.csee.usf.edu/research/Publications/CRASAR-

TR2005-6.pdf, (Accessed September 2005).

[5] Microsoft Corporation, “Flight Simulator 2004”, [online], Available:

http://www.microsoft.com/games/flightsimulator/, 2005 (Accessed April 2005).

[6] Autodesk, [online], Available: http://www.discreet.com, 2005, (Accessed May 2005).

[7] MicroPilot, [online], Available: http://www.micropilot.com, 2005, (Accessed April

2005).

[8] Microsoft Corporation, “Texture Filtering with Mipmaps”, [online], Available:

http://msdn.microsoft.com, 2003, (Accessed June 2005).

[9] Australian Government Geoscience Australia, [online], Available:

http://www.ga.gov.au, July 2005, (Accessed September 2005).



52

Timeline
At the beginning of the project a proposed timeline was produced and is shown below.

Semester 1 Semester 2

TASK NAME 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 H 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3

S u b m i s s i o n s

Risk Assessment

Requirements Analysis

Design Document

Poster

Draft Thesis

Final Thesis

Choose  so f twa re

N e t p i p e s  A p p l i c a t i o n

Read  Netpipes SDK  documentation

Program application to pipe from log file

Extend application to pipe in real-time

Program GUI

Panel  and Gauges

Read Panels & Gauges SDK  documentation

Read Aircraft Container SDK  documentation

Build basic set of gauges and simple panel

Consult with supervisor on panel layout

Build panel and gauges

Model ing the UAV

Read gmax Aircraft Creation SDK

Read Make Model SDK  documentation

Complete gmax tutorial on modeling aircraft

Take measurements & photos of UAV

Model UAV in gmax

Add textures to model

Add animations to model

Opt iona l  Ext ra :  Customiz ing  Ter ra in

Read Terrain SDK documentation

Collect satellite/aerial images & map to terrain

This timeline was adhered to closely with the only major change being an overlap in the

writing of the thesis report and the completion of the practical part of the project. The thesis

report was started much early than proposed (week 4 of semester 2), while the data pipe

application and the instrument panel were completed later than proposed (week 11).

Appendix A



53

Contents of CD ROM
The accompanying CD ROM contains the following files and directories:

Aircraft\UAV\ Flight Simulator Aircraft Container. This folder must be copied
into the Aircraft directory of Flight Simulator. It contains the
complete UAV aircraft including model, panel and sound files.

Addon Scenery\ Customized terrain. The contents of this folder should be copied
to the Addon Scenery directory of Flight Simulator. To install the
terrain open the Scenery Library from the Settings tab within
Flight Simulator and click the Addon Scenery check box.

Netpipes Project\ Visual Studio project for the data pipe application, including all
source files and resources.

Gmax Model\ Gmax model of the UAV.

Gauge Graphics\ Photoshop drawing files of all the gauges which were created.

Log Files\ A collection of log files for testing the project.

netpipes.exe The executable file for the data pipe application.

Conference Paper.doc A 5 page IEEE conference paper detailing the outcomes of the
project.

Appendix B



54

Source code
All the source code that was written for the data pipe application is included in this appendix.

Also included are the four files from the Netpipes SDK which were used in the project and the

file common.h which contains the data structures sent from the UAV.

Files written for this project: Page

netpipes.cpp
netpipes.h

Contains the main functional code for the
application.

55
73

NetPipesGui.cpp
NetPipesGui.h

Defines the class behaviors for the GUI
application.

76
77

NetPipesGuiDlg.cpp
NetPipesGuiDlg.h

Implementation and header files for the main
dialog box.

78
84

SetAltDlg.cpp
SetAltDlg.h

Implementation and header files for the Set
Initial Altitude dialog box.

85
86

SerialPortDlg.cpp
SerialPortDlg.h

Implementation and header files for the Serial
Port Settings dialog box.

87
88

DataStructPropSheet.cpp
DataStructPropSheet.h

Implementation and header files for the Data
Structures property sheet.

89
90

LevPage.cpp
LevPage.h

Implementation and header files for the LevState
page of the Data Structures property sheet.

91
92

AirframePage.cpp
AirframePage.h

Implementation and header files for the
AirframeState page of the Data Structures
property sheet.

93
94

NavPage.cpp
NavPage.h

Implementation and header files for the NavState
page of the Data Structures property sheet.

95
96

Files included from the Netpipes SDK: Page

AnonymousPipe.cpp
AnonymousPipe.h

Implementation and header files for the
AnonymousPipe class.

97
98

FlightSimLink.cpp
FlightSimLink.h

Implementation and header files for the
CFlightSimLink class.

99
100

File included from the UAV code: Page

Common.h File containing the data structures sent from the
UAV.

101

Appendix C



netpipes.cpp

55



netpipes.cpp

56



netpipes.cpp

57



netpipes.cpp

58



netpipes.cpp

59



netpipes.cpp

60



netpipes.cpp

61



netpipes.cpp

62



netpipes.cpp

63



netpipes.cpp

64



netpipes.cpp

65



netpipes.cpp

66



netpipes.cpp

67



netpipes.cpp

68



netpipes.cpp

69



netpipes.h

70



netpipes.h

71



netpipes.h

72



NetpipesGui.cpp

73



NetpipesGui.h

74



NetPipesGuiDlg.cpp

75



NetPipesGuiDlg.cpp

76



NetPipesGuiDlg.cpp

77



NetPipesGuiDlg.cpp

78



NetPipesGuiDlg.cpp

79



NetPipesGuiDlg.cpp

80



NetPipesGuiDlg.h

81



SetAltDlg.cpp

82



SetAltDlg.h

83



SerialPortDlg.cpp

84



SerialPortDlg.h

85



DataStructuresPropertySheet.cpp

86



DataStructuresPropertySheet.h

87



LevPage.cpp

88



LevPage.h

89



AirframePage.cpp

90



AirframePage.h

91



NavPage.cpp

92



NavPage.h

93



NavPage.h

94



AirframePage.cpp

95



AirframePage.h

96



AnonymousPipe.cpp

97



AnonymousPipe.h

98



FlightSimLink.cpp

99



FlightSimLink.h

100



Common.h

101



Common.h

102



Common.h

103



Common.h

104



105

XML gauge files
This Appendix contains all the XML files written for the graphical instrument panel.

Page

Airspeed Indicator.xml 106

Attitude Indicator.xml 107

Altimeter.xml 108

Throttle Indicator.xml 109

Heading Indicator.xml 110

Vertical Speed Indicator.xml 111

Left Panel.xml 112

Nav Lights.xml 116

GPS.xml 118

Clock.xml 122

Appendix D



Airspeed Indicator.xml

106

<Gauge Name="Airspeed Indicator" Version="1.0">
   <Image Name="Airspeed_Background.bmp"/>
   <Element>
      <Position X="79" Y="79"/>
      <Image Name="Airspeed_Needle.bmp" PointsTo="East">
         <Axis X="7" Y="6"/>
      </Image>
      <Rotate>
         <Value Minimum="0" Maximum="180">(A:Airspeed indicated, kilometer per hour)</Value>
         <Nonlinearity>
            <Item Value="0" X="79" Y="18"/>
            <Item Value="180" X="43" Y="30"/>
         </Nonlinearity>
         <Delay DegreesPerSecond="20"/>
      </Rotate>
   </Element>
   <Mouse>
      <Help ID="HELPID_GAUGE_AIRSPEED"/>
      <Tooltip ID="TOOLTIPTEXT_AIRSPEED_KILOS"/>
   </Mouse>
</Gauge>



Attitude Indicator.xml

107

<Gauge Name="Attitude Indicator" Version="1.0">
   <Image Name="Attitude_Background.bmp"/>
   <Element>
      <Position X="0" Y="0"/>
      <MaskImage Name="Attitude_Card_Outside_Mask.bmp">
         <Axis X="79" Y="79"/>
      </MaskImage>
      <Image Name="Attitude_Card_Outside.bmp">
         <Axis X="79" Y="79"/>
      </Image>
      <Rotate>
         <Value>(A:Plane bank degrees,radians)</Value>
      </Rotate>
   </Element>
   <Element>
      <Position X="0" Y="0"/>
      <MaskImage Name="Attitude_Card_Inside_Mask.bmp">
         <Axis X="79" Y="79"/>
      </MaskImage>
      <Image Name="Attitude_Card_Inside.bmp">
         <Axis X="79" Y="79"/>
      </Image>
      <Shift>
         <Value Minimum="-25" Maximum="25">(A:Plane pitch degrees,degrees) /-/</Value>
         <Scale Y="1.25"/>
      </Shift>
      <Rotate>
         <Value>(A:Plane bank degrees,radians)</Value>
      </Rotate>
   </Element>
   <Element>
      <Position X="79" Y="26"/>
      <Image Name="Attitude_Arrow_Icon.bmp">
         <Axis X="5" Y="0"/>
      </Image>
   </Element>
   <Element>
      <MaskImage Name="Attitude_Card_Outside_Mask.bmp">
         <Axis X="79" Y="79"/>
      </MaskImage>
      <Image Name="Attitude_Bars.bmp">
         <Axis X="36" Y="2"/>
      </Image>
      <Shift>
         <Value>(A:Attitude bars position, position)</Value>
         <Scale Y="7"/>
      </Shift>
   </Element>
   <Element>
      <Position X="80" Y="138"/>
      <Image Name="Attitude_Knob.bmp">
         <Axis X="13" Y="13"/>
      </Image>
      <Rotate>
         <Value>(A:Attitude bars position, position) pi *</Value>
      </Rotate>
   </Element>
   <Mouse>
      <Tooltip ID="TOOLTIPTEXT_ATTITUDE_INDICATOR_BANK_PITCH"/>
      <Area Left="67" Right="93" Top="125" Bottom="151">
         <Area Right="13">
            <Cursor Type="DownArrow"/>
            <Click Event="ATTITUDE_BARS_POSITION_DOWN" Repeat="Yes"/>
         </Area>
         <Area Left="13">
            <Cursor Type="UpArrow"/>
            <Click Event="ATTITUDE_BARS_POSITION_UP" Repeat="Yes"/>
         </Area>
      </Area>
   </Mouse>
</Gauge>



Altimeter.xml

108

<Gauge Name="Altimeter" Version="1.0">
   <Image Name="Altimeter_Background.bmp"/>
   <Element>
      <Position X="0" Y="0"/>
      <Select>
         <Value>(P:Local time,seconds) flr 2 % if{ (A:Rudder position,percent) near 8192 % 4095 > }
els{ 0 }</Value>
         <Case Value="0"></Case>
         <Case Value="1">
            <Image Name="Altimeter_Warning_Background.bmp"/>
         </Case>
      </Select>
   </Element>
   <Element>
      <Position X="0" Y="0"/>
      <Select>
         <Value>(P:Local time,seconds) flr 2 % if{ (A:Rudder position,percent) near 16384 % 8191 > }
els{ 0 }</Value>
         <Case Value="0"></Case>
         <Case Value="1">
            <Image Name="Altimeter_Warning_Background.bmp"/>
         </Case>
      </Select>
   </Element>
   <Element>
      <Position X="78" Y="79"/>
      <Image Name="Altimeter_Needle_1000.bmp">
         <Axis X="5" Y="5" PointsTo="East"/>
      </Image>
      <Rotate>
         <Value>(A:Indicated Altitude, meters) 1000 / </Value>
         <Nonlinearity>
            <Item Value="0" X="78" Y="15"/>
            <Item Value="5" X="78" Y="138"/>
         </Nonlinearity>
      </Rotate>
   </Element>
   <Element>
      <Position X="78" Y="79"/>
      <Image Name="Altimeter_Needle_100.bmp">
         <Axis X="5" Y="5" PointsTo="East"/>
      </Image>
      <Rotate>
         <Value>(A:Indicated Altitude, meters) 100 /</Value>
         <Nonlinearity>
            <Item Value="0" X="78" Y="15"/>
            <Item Value="5" X="78" Y="138"/>
         </Nonlinearity>
      </Rotate>
   </Element>
   <Mouse>
      <Help ID="HELPID_GAUGE_ALTIMETER"/>
      <Tooltip ID="TOOLTIPTEXT_ALTIMETER_METERS"/>
   </Mouse>
</Gauge>



Throttle Inicator.xml

109

<Gauge Name="Throttle Indicator" Version="1.0">
   <Image Name="Throttle_Background.bmp"/>
   <Element>
      <Position X="79" Y="79"/>
      <Image Name="Throttle_Needle.bmp" PointsTo="East">
         <Axis X="7" Y="6"/>
      </Image>
      <Rotate>
         <Value Minimum="0" Maximum="100">(A:General eng throttle lever position:1, percent)</Value>
         <Nonlinearity>
            <Item Value="0" X="49" Y="131"/>
            <Item Value="100" X="137" Y="57"/>
         </Nonlinearity>
         <Delay DegreesPerSecond="100"/>
      </Rotate>
   </Element>
   <Element>
      <Position X="6" Y="128"/>
      <Select>
         <Value>(A:Rudder position,percent) near 1024 % 511 ></Value>

 <Case Value="0">
            <Image Name="GreenLightOff.bmp"/>
         </Case>
         <Case Value="1">
            <Image Name="GreenLightOn.bmp"/>
         </Case>
      </Select>   
   </Element>
   <Mouse>
      <Help ID="HELPID_GUAGE_THROTTLE_THROTTLE"/>
      <Tooltip ID="TOOLTIPTEXT_THROTTLE_THROTTLE_PERCENT"/>
   </Mouse>
</Gauge>



Heading Inicator.xml

110

<Gauge Name="Heading Indicator" Version="1.0">
   <Image Name="Heading_Background.bmp"/>
   <Element>
      <Position X="0" Y="0"/>
      <MaskImage Name="Heading_Mask.bmp">
         <Axis X="79" Y="79"/>
      </MaskImage>
      <Image Name="Heading_Card.bmp">
         <Axis X="79" Y="79"/>
      </Image>
      <Rotate>
         <Value>(A:Plane heading degrees true,radians) /-/</Value>
      </Rotate>
   </Element>
   <Mouse>
      <Help ID="HELPID_GAUGE_HEADING_INDICATOR"/>
      <Tooltip ID="TOOLTIPTEXT_HEADING_INDICATOR_HEADING"/>
   </Mouse>
</Gauge>



Vertical Speed Inicator.xml

111

<Gauge Name="Vertical Speed Indicator" Version="1.0">
   <Image Name="Vertical_Speed_Background.bmp"/>
   <Element>
      <Position X="80" Y="78"/>
      <Image Name="Vertical_Speed_Needle.bmp">
         <Axis X="6" Y="6" PointsTo="East"/>
      </Image>
      <Rotate>
         <Value Minimum="-10" Maximum="10">(A:Vertical speed, meter/second)</Value>
         <Nonlinearity>
            <Item Value="-10" X="139" Y="90"/>
            <Item Value="-5" X="74" Y="140"/>
            <Item Value="0" X="16" Y="78"/>
            <Item Value="5" X="74" Y="19"/>
            <Item Value="10" X="139" Y="69"/>
         </Nonlinearity>
         <Delay DegreesPerSecond="25"/>
      </Rotate>
   </Element>
   <Mouse>
      <Tooltip ID="TOOLTIPTEXT_VSI_METERS_PER_SEC"/>
   </Mouse>
</Gauge>



Left Panel.xml

112

<Gauge Name="Left Panel" Version="1.0">
   <Image Name="Left_Panel_Background.bmp"/>
   <Update Hidden="No">
      <!-- AvionicsBatteryVoltsAlarm -->
      (A:Rudder position,percent) flr 2 % 1 == (>L:AvionicsBatteryVoltsAlarm, boolean)
      <!-- ServoBatteryVoltsAlarm -->
      (A:Rudder position,percent) flr 4 % 1 > (>L:ServoBatteryVoltsAlarm, boolean)
      <!-- MotorBatteryVoltsAlarm -->
      (A:Rudder position,percent) near 8 % 3 > (>L:MotorBatteryVoltsAlarm, boolean)
      <!-- BatteryTemperatureAlarm -->
      (A:Rudder position,percent) near 16 % 7 > (>L:BatteryTemperatureAlarm, boolean)
      <!-- MotorTemperatureAlarm -->
      (A:Rudder position,percent) near 32 % 15 > (>L:MotorTemperatureAlarm, boolean)
      <!-- FlapsAndSpoilersrArmed -->
      (A:Rudder position,percent) near 2048 % 1023 > (>L:FlapsAndSpoilersrArmed, boolean)
      <!-- ElevatorArmed -->
      (A:Rudder position,percent) near 4096 % 2047 > (>L:ElevatorArmed, boolean)
   </Update>
   <!-- Command State -->
   <Element>
      <Visible>(A:GENERAL ENG PROPELLER LEVER POSITION:3,percent) 0 ==</Visible>
      <Position X="115" Y="20"/>
      <Text X="130" Y="20" Length="5" Fixed="No" Font="Arial" FontHeight="15" FontWeight="400"
Charset="Default" Attributes="Normal" Adjust="Center" VerticalAdjust="Center" Multiline="No"
Color="#FF0000" BackgroundColor="transparent" HilightColor="white" Bright="Yes"
UseTransparency="Yes">
      <String>Pilot</String>  
      </Text>
   </Element>
   <Element>
      <Visible>(A:GENERAL ENG PROPELLER LEVER POSITION:3,percent) 1 ==</Visible>
      <Position X="115" Y="20"/>
      <Text X="130" Y="20" Length="10" Fixed="No" Font="Arial" FontHeight="15" FontWeight="400"
Charset="Default" Attributes="Normal" Adjust="Center" VerticalAdjust="Center" Multiline="No"
Color="#FF0000" BackgroundColor="transparent" HilightColor="white" Bright="Yes"
UseTransparency="Yes">
      <String>Bus Driver</String>  
      </Text>
   </Element>
   <Element>
      <Visible>(A:GENERAL ENG PROPELLER LEVER POSITION:3,percent) 2 ==</Visible>
      <Position X="115" Y="20"/>
      <Text X="130" Y="20" Length="10" Fixed="No" Font="Arial" FontHeight="15" FontWeight="400"
Charset="Default" Attributes="Normal" Adjust="Center" VerticalAdjust="Center" Multiline="No"
Color="#FF0000" BackgroundColor="transparent" HilightColor="white" Bright="Yes"
UseTransparency="Yes">
      <String>Autonomous</String>  
      </Text>
   </Element>
   <Element>
      <Visible>(A:GENERAL ENG PROPELLER LEVER POSITION:3,percent) 3 ==</Visible>
      <Position X="115" Y="20"/>
      <Text X="130" Y="20" Length="14" Fixed="No" Font="Arial" FontHeight="15" FontWeight="400"
Charset="Default" Attributes="Normal" Adjust="Center" VerticalAdjust="Center" Multiline="No"
Color="#FF0000" BackgroundColor="transparent" HilightColor="white" Bright="Yes"
UseTransparency="Yes">
      <String>Starting Abort</String>  
      </Text>
   </Element>
   <Element>
      <Visible>(A:GENERAL ENG PROPELLER LEVER POSITION:3,percent) 4 ==</Visible>
      <Position X="115" Y="20"/>
      <Text X="130" Y="20" Length="8" Fixed="No" Font="Arial" FontHeight="15" FontWeight="400"
Charset="Default" Attributes="Normal" Adjust="Center" VerticalAdjust="Center" Multiline="No"
Color="#FF0000" BackgroundColor="transparent" HilightColor="white" Bright="Yes"
UseTransparency="Yes">
      <String>Aborting</String>  
      </Text>
   </Element>
   <Element>
      <Visible>(A:GENERAL ENG PROPELLER LEVER POSITION:3,percent) 5 ==</Visible>
      <Position X="115" Y="20"/>



Left Panel.xml

113

      <Text X="130" Y="20" Length="18" Fixed="No" Font="Arial" FontHeight="15" fontWeight="400"
Charset="Default" Attributes="Normal" Adjust="Center" VerticalAdjust="Center" Multiline="No"
Color="#FF0000" BackgroundColor="transparent" HilightColor="white" Bright="Yes"
UseTransparency="Yes">
      <String>Parachute Deployed</String>  
      </Text>
   </Element>
   <!-- Elevator Light -->
   <Element>
      <Position X="10" Y="83"/>
      <Select>
         <Value>(L:ElevatorArmed, boolean)</Value>

 <Case Value="0">
            <Image Name="GreenLightOff.bmp"/>
         </Case>
         <Case Value="1">
            <Image Name="GreenLightOn.bmp"/>
         </Case>
      </Select>   
   </Element>
   <!-- Elevator Display -->
   <Element>
      <Visible>(L:ElevatorArmed, boolean)</Visible>
      <Position X="45" Y="90"/>
      <Text X="40" Y="20" Length="3" Fixed="No" Font="Quartz" FontHeight="0" FontWeight="400"
Charset="Default" Attributes="Normal" Adjust="Center" VerticalAdjust="Center" Multiline="No"
Color="#00FF00" BackgroundColor="transparent" HilightColor="white" Bright="Yes"
UseTransparency="Yes">
         <String>%((A:Elevator position,percent))%!3d!%</String>  
      </Text>
   </Element>
   <!-- Flaps and Spoilers Light -->
   <Element>
      <Position X="109" Y="83"/>
      <Select>
         <Value>(L:FlapsAndSpoilersrArmed, boolean)</Value>

 <Case Value="0">
            <Image Name="GreenLightOff.bmp"/>
         </Case>
         <Case Value="1">
            <Image Name="GreenLightOn.bmp"/>
         </Case>
      </Select>   
   </Element>
   <!-- Flaps Display -->
   <Element>
      <Visible>(L:FlapsAndSpoilersrArmed, boolean)</Visible>
      <Position X="145" Y="90"/>
      <Text X="40" Y="20" Length="3" Fixed="No" Font="Quartz" FontHeight="0" FontWeight="400"
Charset="Default" Attributes="Normal" Adjust="Center" VerticalAdjust="Center" Multiline="No"
Color="#00FF00" BackgroundColor="transparent" HilightColor="white" Bright="Yes"
UseTransparency="Yes">
         <String>%((A:GENERAL ENG THROTTLE LEVER POSITION:3,percent))%!3d!%</String>  
      </Text>
   </Element>
   <!-- Spoilers Display -->
   <Element>
      <Visible>(L:FlapsAndSpoilersrArmed, boolean)</Visible>
      <Position X="205" Y="90"/>
      <Text X="40" Y="20" Length="3" Fixed="No" Font="Quartz" FontHeight="0" FontWeight="400"
Charset="Default" Attributes="Normal" Adjust="Center" VerticalAdjust="Center" Multiline="No"
Color="#00FF00" BackgroundColor="transparent" HilightColor="white" Bright="Yes"
UseTransparency="Yes">
         <String>%((A:GENERAL ENG MIXTURE LEVER POSITION:3,percent))%!3d!%%</String>  
      </Text>
   </Element>
   <!-- Avionics Battery Voltage -->
   <Element>
      <Visible>(L:AvionicsBatteryVoltsAlarm, boolean)</Visible>
      <Position X="50" Y="155"/>
      <Image Name="Battery_Warning_Background.bmp"/>
   </Element>
   <Element>



Left Panel.xml

114

      <Visible>(L:AvionicsBatteryVoltsAlarm, boolean)</Visible>
      <Position X="55" Y="160"/>
      <Text X="50" Y="20" Length="4" Fixed="No" Font="Quartz" FontHeight="0" FontWeight="100"
Charset="Default" Attributes="Normal" Adjust="Center" VerticalAdjust="Center" Multiline="No"
Color="#FFFFFF" BackgroundColor="transparent" HilightColor="white" Bright="Yes"
UseTransparency="Yes">
      <String>%((A:GENERAL ENG THROTTLE LEVER POSITION:2,percent))%!2.1f!%</String>  
      </Text>
   </Element>
   <Element>
      <Visible>(L:AvionicsBatteryVoltsAlarm, boolean) 0 ==</Visible>
      <Position X="55" Y="160"/>
      <Text X="50" Y="20" Length="4" Fixed="No" Font="Quartz" FontHeight="0" FontWeight="100"
Charset="Default" Attributes="Normal" Adjust="Center" VerticalAdjust="Center" Multiline="No"
Color="#00FF00" BackgroundColor="transparent" HilightColor="white" Bright="Yes"
UseTransparency="Yes">
      <String>%((A:GENERAL ENG THROTTLE LEVER POSITION:2,percent))%!2.1f!%</String>  
      </Text>
   </Element>
   <!-- Servo Battery Voltage -->
   <Element>
      <Visible>(L:ServoBatteryVoltsAlarm, boolean)</Visible>    
      <Position X="120" Y="155"/>
      <Image Name="Battery_Warning_Background.bmp"/>
   </Element>
   <Element>
      <Visible>(L:ServoBatteryVoltsAlarm, boolean)</Visible>
      <Position X="125" Y="160"/>
      <Text X="50" Y="20" Length="4" Fixed="No" Font="Quartz" FontHeight="0" FontWeight="100"
Charset="Default" Attributes="Normal" Adjust="Center" VerticalAdjust="Center" Multiline="No"
Color="#FFFFFF" BackgroundColor="transparent" HilightColor="white" Bright="Yes"
UseTransparency="Yes">
      <String>%((A:GENERAL ENG MIXTURE LEVER POSITION:2,percent))%!2.1f!%</String>  
      </Text>
   </Element>
   <Element>
      <Visible>(L:ServoBatteryVoltsAlarm, boolean) 0 ==</Visible>
      <Position X="125" Y="160"/>
      <Text X="50" Y="20" Length="4" Fixed="No" Font="Quartz" FontHeight="0" FontWeight="100"
Charset="Default" Attributes="Normal" Adjust="Center" VerticalAdjust="Center" Multiline="No"
Color="#00FF00" BackgroundColor="transparent" HilightColor="white" Bright="Yes"
UseTransparency="Yes">
      <String>%((A:GENERAL ENG MIXTURE LEVER POSITION:2,percent))%!2.1f!%</String>  
      </Text>
   </Element>
   <!-- Motor Battery Voltage -->
   <Element>
      <Visible>(L:MotorBatteryVoltsAlarm, boolean)</Visible>
      <Position X="190" Y="155"/>
      <Image Name="Battery_Warning_Background.bmp"/>
   </Element>
   <Element>
      <Visible>(L:MotorBatteryVoltsAlarm, boolean)</Visible>
      <Position X="195" Y="160"/>
      <Text X="50" Y="20" Length="4" Fixed="No" Font="Quartz" FontHeight="0" FontWeight="100"
Charset="Default" Attributes="Normal" Adjust="Center" VerticalAdjust="Center" Multiline="No"
Color="#FFFFFF" BackgroundColor="transparent" HilightColor="white" Bright="Yes"
UseTransparency="Yes">
      <String>%((A:GENERAL ENG PROPELLER LEVER POSITION:2,percent))%!01.1f!%</String>  
      </Text>
   </Element>
   <Element>
      <Visible>(L:MotorBatteryVoltsAlarm, boolean) 0 ==</Visible>
      <Position X="195" Y="160"/>
      <Text X="50" Y="20" Length="4" Fixed="No" Font="Quartz" FontHeight="0" FontWeight="100"
Charset="Default" Attributes="Normal" Adjust="Center" VerticalAdjust="Center" Multiline="No"
Color="#00FF00" BackgroundColor="transparent" HilightColor="white" Bright="Yes"
UseTransparency="Yes">
      <String>%((A:GENERAL ENG PROPELLER LEVER POSITION:2,percent))%!01.1f!%</String>  
      </Text>
   </Element>
   <!-- Battery Temperature -->
   <Element>



Left Panel.xml

115

      <Visible>(L:BatteryTemperatureAlarm, boolean)</Visible>
      <Position X="50" Y="240"/>
      <Image Name="Temperature_Warning_Background.bmp"/>
   </Element>
   <Element>
      <Visible>(L:BatteryTemperatureAlarm, boolean)</Visible>
      <Position X="55" Y="245"/>
      <Text X="85" Y="20" Length="3" Fixed="No" Font="Quartz" FontHeight="0" FontWeight="100"
Charset="Default" Attributes="Normal" Adjust="Center" VerticalAdjust="Center" Multiline="No"
Color="#FFFFFF" BackgroundColor="transparent" HilightColor="white" Bright="Yes"
UseTransparency="Yes">
      <String>%((A:GENERAL ENG MIXTURE LEVER POSITION:1, percent))%!3d!%</String>  
      </Text>
   </Element>
   <Element>
      <Visible>(L:BatteryTemperatureAlarm, boolean) 0 ==</Visible>
      <Position X="55" Y="245"/>
      <Text X="85" Y="20" Length="3" Fixed="No" Font="Quartz" FontHeight="0" FontWeight="100"
Charset="Default" Attributes="Normal" Adjust="Center" VerticalAdjust="Center" Multiline="No"
Color="#00FF00" BackgroundColor="transparent" HilightColor="white" Bright="Yes"
UseTransparency="Yes">
      <String>%((A:GENERAL ENG MIXTURE LEVER POSITION:1, percent))%!3d!%</String>  
      </Text>
   </Element>
   <!-- Motor Temperature -->
   <Element>
      <Visible>(L:MotorTemperatureAlarm, boolean)</Visible>
      <Position X="155" Y="240"/>
      <Image Name="Temperature_Warning_Background.bmp"/>
   </Element>
   <Element>
      <Visible>(L:MotorTemperatureAlarm, boolean)</Visible>
      <Position X="160" Y="245"/>
      <Text X="85" Y="20" Length="3" Fixed="No" Font="Quartz" FontHeight="0" FontWeight="100"
Charset="Default" Attributes="Normal" Adjust="Center" VerticalAdjust="Center" Multiline="No"
Color="#FFFFFF" BackgroundColor="transparent" HilightColor="white" Bright="Yes"
UseTransparency="Yes">
      <String>%((A:GENERAL ENG PROPELLER LEVER POSITION:1, percent))%!3d!%</String>  
      </Text>
   </Element>
   <Element>
      <Visible>(L:MotorTemperatureAlarm, boolean) 0 ==</Visible>
      <Position X="160" Y="245"/>
      <Text X="85" Y="20" Length="3" Fixed="No" Font="Quartz" FontHeight="0" FontWeight="100"
Charset="Default" Attributes="Normal" Adjust="Center" VerticalAdjust="Center" Multiline="No"
Color="#00FF00" BackgroundColor="transparent" HilightColor="white" Bright="Yes"
UseTransparency="Yes">
      <String>%((A:GENERAL ENG PROPELLER LEVER POSITION:1, percent))%!3d!%</String>  
      </Text>
   </Element>
</Gauge>



Nav Lights.xml

116

<Gauge Name="Nav Lights" Version="1.0">
   <Image Name="Nav_Lights_Background.bmp"/>
   <Update Hidden="No">
      <!-- NavValid -->
      (A:Rudder position,percent) near 32768 % 16383 > (>L:NavValid, boolean)
      <!-- RCLinkUp -->
      (A:Rudder position,percent) near 65536 % 32767 > (>L:RCLinkUp, boolean)
      <!-- NavArrivalAlarm -->
      (A:Rudder position,percent) near 64 % 31 > (>L:NavArrivalAlarm, boolean)
      <!-- ReturningToOrigin -->
      (A:Rudder position,percent) near 128 % 63 > (>L:ReturningToOrigin, boolean)
      <!-- WayPointValid -->
      (A:Rudder position,percent) near 256 % 127 > (>L:WayPointValid, boolean)
      <!-- GPSValid -->
      (A:Rudder position,percent) near 512 % 255 > (>L:GPSValid, boolean)
</Update>
   <!-- Nav Valid-->
   <Element>
      <Position X="89" Y="10"/>
      <Select>
         <Value>(L:NavValid, boolean)</Value>

 <Case Value="0">
            <Image Name="RedLightOn.bmp"/>
         </Case>
         <Case Value="1">
            <Image Name="GreenLightOn.bmp"/>
         </Case>
      </Select>   
   </Element>
   <!-- RC Link-->
   <Element>
      <Position X="220" Y="10"/>
      <Select>
         <Value>(L:RCLinkUp, boolean)</Value>

 <Case Value="0">
            <Image Name="RedLightOn.bmp"/>
         </Case>
         <Case Value="1">
            <Image Name="GreenLightOn.bmp"/>
         </Case>
      </Select>   
   </Element>
   <!-- Nav Arrival Alarm-->
   <Element>
      <Position X="29" Y="75"/>
      <Select>
         <Value>(L:NavArrivalAlarm, boolean)</Value>

 <Case Value="0">
            <Image Name="YellowLightOff.bmp"/>
         </Case>
         <Case Value="1">
            <Image Name="YellowLightOn.bmp"/>
         </Case>
      </Select>   
   </Element>
   <!-- Returning to Origin -->
   <Element>
      <Position X="89" Y="75"/>
      <Select>
         <Value>(L:ReturningToOrigin, boolean)</Value>

 <Case Value="0">
            <Image Name="YellowLightOff.bmp"/>
         </Case>
         <Case Value="1">
            <Image Name="YellowLightOn.bmp"/>
         </Case>
      </Select>   
   </Element>
   <!-- Way Point Valid -->
   <Element>
      <Position X="149" Y="75"/>
      <Select>
         <Value>(L:WayPointValid, boolean)</Value>



Nav Lights.xml

117

 <Case Value="0">
            <Image Name="RedLightOn.bmp"/>
         </Case>
         <Case Value="1">
            <Image Name="GreenLightOn.bmp"/>
         </Case>
      </Select>   
   </Element>
   <!-- GPS Valid -->
   <Element>
      <Position X="209" Y="75"/>
      <Select>
         <Value>(L:GPSValid, boolean)</Value>

 <Case Value="0">
            <Image Name="RedLightOn.bmp"/>
         </Case>
         <Case Value="1">
            <Image Name="GreenLightOn.bmp"/>
         </Case>
      </Select>   
   </Element>
</Gauge>



GPS.xml

118

<Gauge Name="GPS" Version="1.0">
<Image Name="GPS_Background.bmp"/>
<Macro Name="c">C:fs9gps</Macro>
<Macro Name="g">C:fs9gps</Macro>
<Macro Name="CalculateZoomFactor">2000 1500 1000 500 350 200 150 100 50 35 20 15 10 5 3.5

2.0 1.5 1.0 0.576037 0.329164 0.246873 0.164582 0.082290 0 24 @1 case</Macro>
<Update Hidden="No">

<!-- calculate zoom factor range -->
(@g:map_ZoomStep0) 0 == if{ 6 (>@g:map_ZoomStep0) }
(@g:map_ZoomStep0) (>@g:map_ZoomStep)
@CalculateZoomFactor((@g:map_ZoomStep)) (>@g:map_ZoomFactor)
(A:GENERAL ENG PROPELLER LEVER POSITION:4, degrees) 57.3 / (A:Plane heading degrees

true, radians) >= if{ A:GENERAL ENG PROPELLER LEVER POSITION:4, degrees) 57.3 / 3.1416 - (A:Plane
heading degrees true, radians) >= if{ (A:GENERAL ENG PROPELLER LEVER POSITION:4, degrees) 57.3 /
(A:Plane heading degrees true, radians) 6.2832 + - } els{ (A:GENERAL ENG PROPELLER LEVER POSITION:4,
degrees) 57.3 / (A:Plane heading degrees true, radians) - } } els{ (A:Plane heading degrees true,
radians) 3.1416 - (A:GENERAL ENG PROPELLER LEVER POSITION:4, degrees) 57.3 / >= if{ (A:GENERAL ENG
PROPELLER LEVER POSITION:4, degrees) 57.3 / 6.2832 (A:Plane heading degrees true, radians) - + }
els{ (A:GENERAL ENG PROPELLER LEVER POSITION:4, degrees) 57.3 / (A:Plane heading degrees true,
radians) - } } (>L:Waypoint tracking error, radians)

</Update>
<Element Name="ViewWindow" Container="Yes">

<Position X="17.5" Y="17.5"/>
<RelClip Left="0" Top="0" Width="230" Height="145"/>
<Element Name="MapView Pages">

<Position X="0" Y="0"/>
<CustomDraw Name="fs9gps:map" X="230" Y="145" LayerTerrain="Yes"

LayerBorders="Yes" LayerFlightPlan="Yes" FlightPlanLineWidth="2.5"
ActiveColorLayerFlightPlan="0x7010B0" PastColorLayerFlightPlan="0xF0F0F0"
ColorLayerFlightPlan="0xF0F0F0" Bright="Yes" CenterX="115">

<CenterY>115</CenterY>
<Zoom>(@g:map_ZoomFactor) 1852.0 *</Zoom>
<Latitude>(A:GPS POSITION LAT, Radians)</Latitude>
<Longitude>(A:GPS POSITION LON, Radians)</Longitude>
<Heading>(A:GPS GROUND TRUE TRACK, Radians)</Heading>
<DetailLayerTerrain>(@g:setup_ColorTerrain) 0 == if{ 1 } els{ 2

}</DetailLayerTerrain>
</CustomDraw>
<!-- Aircraft symbol -->
<Element>

<Position X="115" Y="115"/>
<Polygon FillColor="%((@g:setup_ColorTerrain) if{ 0x503030 } els{

0xF0D0D0 })" Bright="Yes">
<Point X=" 0.5" Y="-7.5"/>
<Point X="   2" Y="-6.5"/>
<Point X="   2" Y="  -4"/>
<Point X=" 7.5" Y="  -4"/>
<Point X=" 7.5" Y="-1.5"/>
<Point X="   2" Y="-1.5"/>
<Point X="   2" Y=" 4.5"/>
<Point X=" 4.5" Y=" 4.5"/>
<Point X=" 4.5" Y=" 6.5"/>
<Point X="-4.5" Y=" 6.5"/>
<Point X="-4.5" Y=" 4.5"/>
<Point X="  -2" Y=" 4.5"/>
<Point X="  -2" Y="-1.5"/>
<Point X="-7.5" Y="-1.5"/>
<Point X="-7.5" Y="  -4"/>
<Point X="  -2" Y="  -4"/>
<Point X="  -2" Y="-6.5"/>
<Point X="-0.5" Y="-7.5"/>

</Polygon>
</Element>
<!-- Way Point -->
<Element>

<Position X="115" Y="115"/>
<Image Name="Way_Point.bmp">

         <Axis X="4.5" Y="4.5"/>
      </Image>

<Shift>
<Value>(A:GENERAL ENG MIXTURE LEVER POSITION:4, meter)

(@g:map_ZoomFactor) / 70 * 1852 /</Value>
<Scale Y="-1"/>



GPS.xml

119

</Shift>
<Rotate>

<Value>(L:Waypoint tracking error, radians)</Value>
</Rotate>
<Clip Top="17.5" Left="17.5" Width="230" Height="145"/>

</Element>
<!-- Heading arc -->
<Element>

<Position X="115" Y="138"/>
<CustomDraw Name="fs9gps:rose" X="216" Y="108" CenterX="108"

CenterY="115" Radius="115" LineWidth="1" Font="Arial" FontSize="12" BigFontSize="13" Bright="Yes">
<Color>(@g:setup_ColorTerrain) if{ 0x703030 } els{ 0xF0D0D0

}</Color>
<BackgroundColor>(@g:setup_ColorTerrain) if{ 0 } els{ 0x080808

}</BackgroundColor>
<Heading>(A:Plane heading degrees true, Radians)</Heading>
<Pivot X="108" Y="115"/>

</CustomDraw>
</Element>
<Element>

<Element>
<Position X="115" Y="138"/>
<Visible>(L:Waypoint tracking error, degrees) abs 60

&lt;</Visible>
<Polyline Color="0x208020" LineWidth="3">

<Point X="-5" Y="12"/>
<Point X=" 0" Y="0"/>
<Point X=" 5" Y="12"/>
<Pivot X="0" Y="113"/>

</Polyline>
<Rotate>

<Value>(L:Waypoint tracking error, radians)</Value>
</Rotate>

</Element>
<Element>

<Position X="115" Y="138"/>
<Visible>(L:Waypoint tracking error, degrees) 60 ></Visible>
<Polyline Color="0x208020" LineWidth="3">

<Point X="-2" Y="0"/>
<Point X=" 2" Y="6"/>
<Point X="-2" Y="12"/>
<Pivot X="0" Y="113"/>

</Polyline>
<Rotate>

<Value>60 dgrd</Value>
</Rotate>

</Element>
<Element>

<Position X="115" Y="138"/>
<Visible>(L:Waypoint tracking error, degrees) -60 &lt;</Visible>
<Polyline Color="0x208020" LineWidth="3">

<Point X=" 2" Y="0"/>
<Point X="-2" Y="6"/>
<Point X=" 2" Y="12"/>
<Pivot X="0" Y="113"/>

</Polyline>
<Rotate>

<Value>-60 dgrd</Value>
</Rotate>

</Element>
</Element>
<!-- Heading pointer -->
<Element>

<Position X="115" Y="22"/>
<Polyline LineWidth="1" Color="%((@g:setup_ColorTerrain) if{ 0x703030 }

els{ 0xF0D0D0 })" Bright="Yes">
<Point X="-22" Y="-6"/>
<Point X="-20" Y="-4"/>
<Point X="-4" Y="-4"/>
<Point X="0" Y="0"/>
<Point X="4" Y="-4"/>
<Point X="20" Y="-4"/>
<Point X="22" Y="-6"/>



GPS.xml

120

</Polyline>
</Element>
<!-- Heading display -->
<Element>

<Position X="115" Y="0"/>
<FormattedText X="40" Y="17" Font="Arial Black" FontSize="14"

Adjust="Center" Color="Yellow" BackgroundColor="#080808" Bright="Yes">
<String>%((A:Plane heading degrees true, degrees)

d360)%!03d!\{dplo= }</String>
<Pivot X="20" Y="0"/>

</FormattedText>
</Element>
<Element>

<Position X="71" Y="2"/>
<Text X="20" Y="11" Length="3" Font="Arial Black" FontSize="8"

Adjust="Center" VerticalAdjust="Bottom" Multiline="No" Color="0xF0D0D0" BackgroundColor="#080808"
Bright="Yes">

<String>TRK</String>
</Text>

</Element>
<!--Desired heading display -->
<Element>

<Position X="18" Y="23"/>
<FormattedText X="40" Y="17" Font="Arial Black" FontSize="14"

Adjust="Center" Color="Yellow" BackgroundColor="#080808" Bright="Yes">
<String>%((A:Rudder position,percent) near 256 % 127

>)%{if}%((A:GENERAL ENG PROPELLER LEVER POSITION:4, degrees) d360)%!03d!%{else}_ _ _%{end}\{dplo=
}</String>

<Pivot X="20" Y="14"/>
</FormattedText>

</Element>
<Element>

<Position X="8" Y="0"/>
<Text X="20" Y="11" Length="3" Font="Arial Black" FontSize="8"

Adjust="Center" VerticalAdjust="Bottom" Multiline="No" Color="0xF0D0D0" BackgroundColor="#080808"
Bright="Yes">

<String>DTK</String>
</Text>

</Element>
<!-- Distance to waypoint -->
<Element>

<Position X="205" Y="23"/>
<FormattedText X="45" Y="17" Font="Arial Black" FontSize="14"

Adjust="Center" Color="Yellow" BackgroundColor="#080808" Bright="Yes">
<String>%((A:Rudder position,percent) near 256 % 127

>)%{if}%((A:GENERAL ENG MIXTURE LEVER POSITION:4, meter) near)%!d!%{else}_ _ _%{end}\{dpl=
m}</String>

<Pivot X="20" Y="14"/>
</FormattedText>

</Element>
<Element>

<Position X="195" Y="0"/>
<Text X="20" Y="11" Length="3" Font="Arial Black" FontSize="8"

Adjust="Center" VerticalAdjust="Bottom" Multiline="No" Color="0xF0D0D0" BackgroundColor="#080808"
Bright="Yes">

<String>DIS</String>
</Text>

</Element>
<!-- Altitude -->
<Element>

<Position X="205" Y="124"/>
<FormattedText X="45" Y="17" Font="Arial Black" FontSize="14"

Adjust="Center" Color="Yellow" BackgroundColor="#080808" Bright="Yes">
<String>%((A:INDICATED ALTITUDE, meter) near)%!d!%\{dpl=

m}</String>
<Pivot X="20" Y="14"/>

</FormattedText>
</Element>
<Element>

<Position X="162" Y="113"/>
<Text X="20" Y="11" Length="3" Font="Arial Black" FontSize="8"

Adjust="Center" VerticalAdjust="Bottom" Multiline="No" Color="0xF0D0D0" BackgroundColor="#080808"
Bright="Yes">



GPS.xml

121

<String>ALT</String>
</Text>

</Element>
<!-- Altitude of waypoint -->
<Element>

<Position X="205" Y="142"/>
<FormattedText X="45" Y="17" Font="Arial Black" FontSize="14"

Adjust="Center" Color="Yellow" BackgroundColor="#080808" Bright="Yes">
<String>%((A:Rudder position,percent) near 256 % 127

>)%{if}%((A:GENERAL ENG THROTTLE LEVER POSITION:4, meter) near)%!d!%{else}_ _ _%{end}\{dpl=
m}</String>

<Pivot X="20" Y="14"/>
</FormattedText>

</Element>
<Element>

<Position X="162" Y="131"/>
<Text X="20" Y="11" Length="2" Font="Arial Black" FontSize="8"

Adjust="Center" VerticalAdjust="Bottom" Multiline="No" Color="0xF0D0D0" BackgroundColor="#080808"
Bright="Yes">

<String>WP</String>
</Text>

</Element>
</Element>

</Element>
<Mouse Name="MouseRoutines">

<!-- TERR Button -->
<Macro Name="TerrainButton">(@g:setup_ColorTerrain) !

(>@g:setup_ColorTerrain)</Macro>
<Area Name="TERR Button" Left="15" Top="172" Width="40" Height="15">

<Click Kind="LeftSingle+Leave">
(M:Event) 'LeftSingle' scmp 0 == (@g:terrButtonDown) 0 == and if{ 1

(>@g:terrButtonDown) @TerrainButton }
(M:Event) 'Leave' scmp 0 == (@g:terrButtonDown) 1 == and if{ 0

(>@g:terrButtonDown) }
</Click>
<Cursor Type="Hand"/>
<Tooltip ID="TOOLTIPTEXT_GPS_TERR_BUTTON"/>

</Area>
<!-- Zoom Button -->
<Macro Name="ZOOMINButton">

(@g:map_ZoomStep0) -- 1 max (>@g:map_ZoomStep0)
</Macro>
<Macro Name="ZOOMOUTButton">

(@g:map_ZoomStep0) ++ 20 min (>@g:map_ZoomStep0)
</Macro>
<Area Left="230" Top="170" Width="20" Height="20">

<Click Kind="LeftSingle+Leave">
(M:Event) 'LeftSingle' scmp 0 == (@g:zoominButtonDown) 0 == and if{ 1

(>@g:zoominButtonDown) @ZOOMINButton }
(M:Event) 'Leave' scmp 0 == (@g:zoominButtonDown) 1 == and if{ 0

(>@g:zoominButtonDown) }
</Click>
<Cursor Type="UpArrow"/>
<Tooltip ID="TOOLTIPTEXT_GPS_RANGE_UP"/>

</Area>
<Area Left="205" Top="170" Width="20" Height="20">

<Click Kind="LeftSingle+Leave">
(M:Event) 'LeftSingle' scmp 0 == (@g:zoomoutButtonDown) 0 == and if{ 1

(>@g:zoomoutButtonDown) @ZOOMOUTButton }
(M:Event) 'Leave' scmp 0 == (@g:zoomoutButtonDown) 1 == and if{ 0

(>@g:zoomoutButtonDown) }
</Click>
<Cursor Type="DownArrow"/>
<Tooltip ID="TOOLTIPTEXT_GPS_RANGE_DOWN"/>

</Area>
</Mouse>
<Keys>

<On Event="GPS_TERRAIN_BUTTON">@TerrainButton</On>
<On Event="GPS_ZOOMIN_BUTTON">@ZOOMINButton</On>
<On Event="GPS_ZOOMOUT_BUTTON">@ZOOMOUTButton</On>

</Keys>
</Gauge>



Clock.xml

122

<Gauge Name="Clock" Version="1.0">  
   <Element>
      <Position X="0" Y="0"/>
      <Text X="70" Y="20" Length="8" Fixed="No" Font="Quartz" FontHeight="0" FontWeight="400"
Charset="Default" Attributes="Normal" Adjust="Center" VerticalAdjust="Center" Multiline="No"
Color="#FF0000" BackgroundColor="transparent" HilightColor="white" Bright="Yes"
UseTransparency="Yes">
         <String>%((P:Local time,hours) flr 12 % 3 +)%!2d!:%((P:Local time,minutes) flr 60
%)%!02d!:%((P:Local time,seconds) flr 60 %)%!02d!</String>
         <Hilight>
            <SELECT_CLOCK_HOURS Start="1" End="2"/>
            <SELECT_CLOCK_MINUTES Start="4" End="5"/>
            <SELECT_CLOCK_SECONDS Start="7" End="8"/>
         </Hilight>
      </Text>
   </Element>
   <Mouse>
      <Tooltip ID="TOOLTIPTEXT_CLOCK"/>
   </Mouse>
</Gauge>



123

IEEE Conference Paper

Appendix E




